REGULARIZED HILBERT SPACE LAPLACIAN AND LONGITUDE OF HILBERT SPACE

Akira Asada and Nobuhiko Tanabe

Abstract

Let H be a real Hilbert space equipped with a non-degenerate symmetric positive Schatten class operator G whose zeta function $Z(G, s)=t r G^{s}$ is holomorphic at $s=0$. By using spectres of G, a regularization : Δ : of the Laplacian Δ of H is proposed. To study : Δ :, polar coordinate of H is useful. Polar coordinate of H lacks longitude and adding longitude, we get an extended space $H_{l_{g}}$ of H on which : $\Delta:$ is definded. : Δ : on $H_{l_{g}}$ induces a family of spherical Laplacians $\Lambda_{c}, 0 \leq c<1, \Lambda_{0}$ is the spherical Laplacian of H induced by $: \Delta:$. Spectres of Λ_{c} are the same as Λ_{0}, proper functions of Λ_{c} and they are expressed by Gegenbauer polynomials (including negative weights) and most of them shrinks on H.

AMS Subject Classification: 35R15, 33C55,58B30.
Key words: Spectre triple, Zeta regularization, Polar coordinate, Gegenbauer polynomials.

1 Introduction

Let H be a real Hilbert space with the coordinates $x=\sum x_{n} e_{n},\left\{e_{n}\right\}$ an O.N.-bases of H. Then the Laplacian Δ of H is given by $\sum \frac{\partial^{2}}{\partial x_{n}^{2}}$. But even the metric function $r(x)=\|x\|, \Delta(r(x))^{p}$ deverges unless $p=0$. So some regularization of Δ is needed.

In this paper, we propose a zeta-regularization of Δ. To do this, similar to Connes' spectre triple [4] we equipped a non-degenerate symmetric positive Schatten class oprator G on H such that whose zeta function $Z(G, s)=\operatorname{tr} G^{s}=\sum \lambda_{n}^{s}$ is continued holomorphically to $s=0$, with H (cf. [2],[4]). We take the proper functions $\left\{e_{n}\right\}$ of G to be the O.N.-basis of H and introduce the operator

$$
\begin{equation*}
\Delta(s)=\sum \lambda_{n}^{2 s} \frac{\partial^{2}}{\partial x_{n}^{2}}, G e_{n}=\lambda_{n} e_{n} \tag{1}
\end{equation*}
$$

In concrete examples, $\Delta(s)$ gives the Laplacian of a Sobolev space. The regularized Laplacian : Δ : is defined by
$: \Delta: f=\left.\Delta(s) f\right|_{s=0}$, if $\Delta(s) f$ exists for Res large and continued to $s=0$.
For example, we have:

$$
\begin{equation*}
: \Delta: r(x)^{p}=p(p+\nu-2) r(x)^{p-2}, \quad \nu=Z(G, 0) . \tag{3}
\end{equation*}
$$

This shows : Δ : is not elliptic if $\nu<0$ unless ν is an even integer.
To study : Δ : , we introduce the polar coordinate of H by

$$
\begin{align*}
& x_{1}=r \cos \theta_{1}, x_{2}=r \sin \theta_{1} \cos \theta_{2}, \ldots, x_{n}=r \sin \theta_{1} \cdots \sin \theta_{n-1} \cos \theta_{n}, \ldots, \tag{4}\\
& 0 \leq \theta_{n} \leq \pi, \theta_{m}=0 \text { if } \theta_{n}=0 \text { and } m>n . \tag{5}
\end{align*}
$$

This polar coordinate has only latitudes and lacks longitude. Since we have $\sum x_{n}^{2}=$ $r^{2}\left(1-\left(\lim \sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{n}\right)^{2}\right)$, we introduce the longitude x_{∞} by

$$
\begin{equation*}
x_{\infty}=r c, \quad c=\lim \sin \theta_{1} \cdots \sin \theta_{n} . \tag{6}
\end{equation*}
$$

If $x=\sum x_{n} e_{n}$ is an element of H and $r=\|x\|, \theta_{1}, \theta_{2}, \ldots$ need to satisfy the constraint $x_{\infty}=0$, that is

$$
\begin{equation*}
\lim \sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{n}=0 \tag{7}
\end{equation*}
$$

The polar coordinate expression of : Δ : depends only on ν. Denoting this operator by $\Delta[\nu]$, we have:

$$
\begin{align*}
& \Delta[\nu]=\frac{\partial^{2}}{\partial r^{2}}+\frac{\nu-1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Lambda[\nu], \tag{8}\\
& \Lambda[\nu]=\sum_{n=1}^{\infty} \frac{1}{\sin ^{2} \theta_{1} \cdots \sin ^{2} \theta_{n-1}}\left(\frac{\partial^{2}}{\partial \theta_{n}^{2}}+(\nu-n-1) \frac{\cos \theta_{n}}{\sin \theta_{n}} \frac{\partial}{\partial \theta_{n}}\right) . \tag{9}
\end{align*}
$$

These operators are defined on the extended space $H_{l_{g}}=\left\{\left(x, x_{\infty}\right) \mid x \in H\right\}$.
From (8) and (9), we have $\Delta[\mu]=\Delta[\nu]+\frac{\mu-\nu}{r} K$, where

$$
\begin{equation*}
K=\frac{\partial}{\partial r}+\sum \frac{\cos \theta_{n}}{r \sin ^{2} \theta_{1} \cdots \sin ^{2} \theta_{n-1} \sin \theta_{n}} \frac{\partial}{\partial \theta_{n}} . \tag{10}
\end{equation*}
$$

$: \Delta: f$ does not depend on regularization if and only if $K f=0$. Since the characteristic curve of K starting from $(x, 0) \in H \subset H_{l_{g}}$, is given by

$$
\begin{equation*}
x(t)=x, x_{\infty}(t)=\sqrt{(\|x\|+t)^{2}-\|x\|^{2}}, t \geq 0 \tag{11}
\end{equation*}
$$

$: \Delta: f$ does not depend on regularization (as a function on $H_{l_{g}}$), if and only if f is constant in x_{∞}-direction. This suggests significance of the longitude to the study of the Laplacian on H. We also ask: is there any relation between this longitude and the central charge in the definition of the Dirac-Romond operator (cf. [7])?

Formal treaties of radical and spherical part of $\Delta[\nu]$ are similar to the finite dimensional case ([5],[12]). But since most of $\{\nu-n-1\}$ are negative, Λ is not definite if ν is negative. Negative weight Gegenbauer polynomials appear as the components of proper functions of $\Lambda[\nu]$. We ask: is there any relation between this result and negative dimensional integration methods [11]?

Since : Δ : is defined on $H_{l_{g}}, \Lambda[\nu]$ induces an operator on $\{(x, c) \mid\|x\|=r\}, 0 \leq$ $c<r$. We denote this operator by $\Lambda_{c}\left(=\Lambda[\nu]_{c}\right) . \Lambda_{0}$ is the original spherical Laplacian induced from : Δ :. Since there are infinitely many independent proper functions of $\Lambda[\nu]$ of the form

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left(\sin \theta_{1} \cdots \sin \theta_{N}\right)^{l} f\left(\theta_{1}, \theta_{2}, \cdots\right), f \text { finite on } 0 \leq \theta_{i} \leq \pi, l=1,2, \cdots, \tag{12}
\end{equation*}
$$

there are infinitely many independent 1-parameter family of proper functions of Λ_{c} which degenarate as the proper functions of Λ_{0}.

2 Regularized Laplacian. Definition and examples

Let H be a real Hilbert space equipped with a non-degenarate positive symmetric Schatten class operator G on H such that whose zeta function $Z(G, s)=\operatorname{tr} G^{s}$ is continued holomorphically to $s=0$ (cf.[4]). Then taking the proper functions $\left\{e_{n}\right\}$ of G as O.N.-basis of H, we define the operator $\Delta(s)$ by

$$
\begin{equation*}
\Delta(s)=\sum \lambda_{n}^{2 s} \frac{\partial^{2}}{\partial x_{n}^{2}}, G e_{n}=\lambda_{n} e_{n} . \tag{13}
\end{equation*}
$$

Example 1. Let H be $L^{2}(X)$, the Hilbert space of square integrable sections of a symmtric vector bundle E over X, a compact Riemannian manifold, D a nondegenerate selfadjoint elliptic (pseudo)differential operator of order m acting on the sections of E. Then we can take as above the Green operator of D to be G. By definitions, we have:

$$
\begin{equation*}
Z(G, s)=\zeta(D,-s) . \tag{14}
\end{equation*}
$$

Hence $Z(G, s)$ is holomorphic at $s=0$ (see [6]). Since $m k$-th Sobolev norm $\|f\|_{k}$ for the sections of E can be fixed by

$$
\begin{equation*}
\|f\|_{k}=\left\|D^{k} f\right\| \tag{15}
\end{equation*}
$$

$\left\{\lambda_{n}^{k} e_{n}\right\}$ gives an O.N.-basis of $W^{m k}(X)$, the $m k$-th Sobolev space of sections of E : $D e_{n}=\lambda_{n}^{-1} e_{n}$. Hence $\Delta(k)$ is the Laplacian of $W^{k}(X)$.

Definition 2.1 If $\Delta(s) f$ exists for Res large and continued holomorphically to $s=0$, we define the regularized Laplacian $: \Delta:$ by

$$
\begin{equation*}
: \Delta: f=\left.\Delta(s) f\right|_{s=0} \tag{16}
\end{equation*}
$$

Example 2. Since $\frac{\partial^{2}}{\partial x_{n}^{2}}(r(x))^{p}=p r(x)^{p-2}+p(p-2) r(x)^{p-4} x_{n}^{2}$, we have:

$$
\begin{equation*}
\Delta(s)(r(x))^{p}=Z(G, 2 s) p r(x)^{p-2}+\sum \lambda_{n}^{2 s} p(p-2) r(x)^{p-4} x_{n}^{2} \tag{17}
\end{equation*}
$$

Since $Z(G, 0)=\nu$ is finite by assumption, we have:

$$
\begin{equation*}
: \Delta: r(x)^{p}=p(p+\nu-2) r(x)^{p-2} \tag{18}
\end{equation*}
$$

Using (18) , : $\Delta: r(x)^{2-\nu}$ is equal to 0 . If $\nu<0, r(x)^{2-\nu}$ is C^{2}-class on H, but not smooth unless ν is an even integer. So : Δ : is not elliptic if $\nu<0$ unless ν is an even integer.

We have defined the regularized dimension of H (equipped with G) by $\nu=$ $Z(G, 0)$ (see [1]). To consider Grassmann algebra or Clifford algebra over H with $(\infty-p)$-forms or ∞-spinors, ν needs to be an integer. Examples show that ν may be negative.

Example 3. Since $\sum x_{n} \frac{\partial h}{\partial x_{n}}=p h$ holds for homogeneous functions of degree p on H, if : $\Delta: h$ is defined, we have:

$$
\begin{equation*}
: \Delta: r^{m} h=m(m+\nu-2+2 p) r^{m-2} h+r^{m}: \Delta: h . \tag{19}
\end{equation*}
$$

Using (19), similar to the finite dimensional case (see [12]), denote by $C^{m}(H)$ the module of homogeneous functions of degree m such that : $\Delta:^{p}$ is defined for $1 \leq p \leq[m / 2]$, by $N^{m}(H)$ the module of homogeneous functions of degree m vanished by : Δ :; we have

$$
\begin{align*}
& C^{2 m}(H)=\sum_{p=0}^{m} r^{2 p} N^{2(m-p)}, \text { if } \nu+2 p \neq 0,0 \leq p \leq m \tag{20}\\
& C^{2 m+1}(H)=\sum_{p=0}^{m} r^{2 p} N^{2(m-p)+1}, \text { if } \nu+2 p+1 \neq 0,0 \leq p \leq m \tag{21}
\end{align*}
$$

3 Polar coordinate of H and longitude of H

To set $r=\|x\|$, the polar coordinate of $x \in H$ is given by:
$x_{1}=r \cos \theta_{1}, x_{2}=r \sin \theta_{1} \cos \theta_{2}, \ldots, x_{n}=r \sin \theta_{1} \cdots \sin \theta_{n-1} \cos \theta_{n}, \ldots, 0 \leq \theta_{n} \leq \pi$.
$\left\{\theta_{1}, \theta_{2}, \cdots\right\}$ is uniquely determined by x under the assumption

$$
\begin{equation*}
\theta_{m}=0 \text { if } \theta_{n}=0 \text { and } m>n . \tag{23}
\end{equation*}
$$

Since $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=r^{2}\left(1-\sin ^{2} \theta_{1} \cdots \sin ^{2} \theta_{n}\right), \theta_{1}, \theta_{2}, \ldots$ must satisfy the constraint

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sin \theta_{1} \cdots \sin \theta_{n}=0 \tag{24}
\end{equation*}
$$

In general, if $\theta_{1}, \theta_{2}, \ldots$ are independent variables $\left(0 \leq \theta_{n} \leq \pi\right), \lim \sin \theta_{1} \cdots \sin \theta_{n}=c$ always exists and $0 \leq c \leq 1$. From (23), we have:

Lemma 3.1

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sin \theta_{n} \sin \theta_{n+1} \cdots \sin \theta_{N}=0 \tag{25}
\end{equation*}
$$

for some n and if (23) holds, (25) holds for any n.
Definition 3.1 Considering $\theta_{1}, \theta_{2}, \ldots$, to be independent variables, we set

$$
\begin{equation*}
x_{\infty}=r c, \quad c=\lim \sin \theta_{1} \cdots \sin \theta_{n} \tag{26}
\end{equation*}
$$

We call x_{∞} the longitude of H.
By definition, we have $\sum x_{n}^{2}+x_{\infty}^{2}=r^{2}$. So the set $\left\{\left(x, x_{\infty}\right) \mid x \in H\right\}$ is contained in the Hilbert space $H \oplus R$. Since $0 \leq x_{\infty} \leq\|x\|$ by (26), we set

$$
\begin{equation*}
H_{l_{g}}=\{(x, c) \mid x \in H, 0 \leq c \leq\|x\|\} \subset H \oplus R \tag{27}
\end{equation*}
$$

Similar to the finite dimensional case, setting $r_{k}=\sqrt{\sum_{n \geq k} x_{n}^{2}}, r_{1}=r$, we have:

$$
\begin{equation*}
\sin \theta_{k}=\frac{r_{k+1}}{r_{k}}, \cos \theta_{k}=\frac{x_{k}}{r_{k}}, r_{k}=r \sin \theta_{1} \cdots \sin \theta_{k-1} \tag{28}
\end{equation*}
$$

From (28) and the definition of : $\Delta:$, we obtain the following result.
Proposition 3.1 Polar coordinate expression of : Δ : depends only on $\nu=Z(G, 0)$. Denoting this operator by $\Delta[\nu]$ and its spherical part by $\Lambda[\nu]$, we have:

$$
\begin{align*}
& \Delta[\nu]=\frac{\partial^{2}}{\partial r^{2}}+\frac{\nu-1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Lambda[\nu], \tag{29}\\
& \Lambda[\nu]=\sum_{n=1}^{\infty} \frac{1}{\sin ^{2} \theta_{1} \cdots \sin ^{2} \theta_{n-1}}\left(\frac{\partial^{2}}{\partial \theta_{n}^{2}}+(\nu-n-1) \frac{\cos \theta_{n}}{\sin \theta_{n}} \frac{\partial}{\partial \theta_{n}}\right) \tag{30}
\end{align*}
$$

Corollary 3.1 We have:

$$
\begin{align*}
& \Delta[\mu]=\Delta[\nu]+\frac{\mu-\nu}{r} K \tag{31}\\
& K=\frac{\partial}{\partial r}+\frac{1}{r} \sum_{n=1}^{\infty} \frac{\cos \theta_{n}}{\sin ^{2} \theta_{1} \cdots \sin ^{2} \theta_{n-1} \sin \theta_{n}} \frac{\partial}{\partial \theta_{n}} . \tag{32}
\end{align*}
$$

From (32), $\Delta[\mu] f=\Delta[\nu] f$ if and only if $K f=0$ and if $K f=0, \Delta[\nu] f$ does not depend on ν, that is, : $\Delta: f$ does not depend on the regularization.
K is a 1 -st order linear partial differential equation. So its solution is constant along the characteristic curves. Since the characteristic equation of K is

$$
\begin{equation*}
\frac{d r}{d t}=1, \frac{d \theta_{n}}{d t}=\frac{\cos \theta_{n}}{r \sin ^{2} \theta_{1} \cdots \sin ^{2} \theta_{n-1} \sin \theta_{n}}, n=1,2, \ldots \tag{33}
\end{equation*}
$$

its solution is given by:

$$
\begin{equation*}
r=t+c, \cos \theta_{1}=\frac{c_{1}}{t+c}, \ldots, \cos \theta_{n}=\frac{c_{n}}{\sqrt{(t+c)^{2}-\left(\sum_{k=1}^{n-1} c_{k}^{2}\right)}} \tag{34}
\end{equation*}
$$

From (34), we get:

$$
\begin{equation*}
\sin \theta_{n}=\sqrt{\frac{(t+c)^{2}-\left(\sum_{k=1}^{n} c_{k}^{2}\right)}{(t+c)^{2}-\left(\sum_{k=1}^{n-1} c_{k}^{2}\right)}} \tag{35}
\end{equation*}
$$

From (34) and (35), we have:

$$
\begin{equation*}
x_{n}=c_{n}, n=1,2, \ldots, x_{\infty}=\sqrt{(t+\|x\|)^{2}-\|x\|^{2}}, t \geq 0 . \tag{36}
\end{equation*}
$$

Hence, considering K to be an equation on $H_{l_{g}}$, the characteristic curve of K starting from $x=\left(x_{1}, x_{2}, \ldots\right) \in H$, is given by:

$$
\begin{equation*}
x(t)=x, x \in H, x_{\infty}=\sqrt{(t+\|x\|)^{2}-\|x\|^{2}}, t \geq 0 \tag{37}
\end{equation*}
$$

4 Proper functions of $\Lambda[\nu]$

Let $\Theta\left(\theta_{1}, \theta_{2}, \ldots\right)$ be a proper function of $\Lambda[\nu]$ belonging to the proper value μ. We assume Θ is the infinite product $T_{1}\left(\theta_{1}\right) T_{2}\left(\theta_{2}\right) \cdots$. Then similar to the finite dimensional case, we have the equations:
$\sin ^{-\nu+n+1} \theta_{n} \frac{d}{d \theta_{n}}\left(\sin ^{\nu-n-1} \theta_{n} \frac{d T_{n}}{d \theta_{n}}\right)+\left(a_{n-1}-\frac{a_{n}}{\sin ^{2} \theta_{n}}\right) T_{n}=0, n=1,2, \ldots, a_{0}=\mu$.
Replacing $\omega_{n}=\cos \theta_{n},(38)$ is changed to

$$
\begin{equation*}
\left(1-\omega_{n}^{2}\right) \frac{d^{2} T_{n}}{d \omega_{n}^{2}}-(\nu-n) \omega_{n} \frac{d T_{n}}{d \omega_{n}}+\left(a_{n-1}-\frac{a_{n}}{1-\omega_{n}^{2}}\right) T_{n}=0 \tag{39}
\end{equation*}
$$

The equation (39) needs to have a continuous solution at $\omega_{n}= \pm 1$. For this, assuming ν to be an integer, it is sufficient to take

$$
\begin{equation*}
a_{n}=l_{n}\left(l_{n}+\nu-n-2\right), l_{0} \geq l_{1} \geq \ldots \geq 0, l_{0}, l_{1}, \ldots, \text { are integers. } \tag{40}
\end{equation*}
$$

From (40), the series $\left\{l_{0}, l_{1}, \ldots\right\}$ satisfy

$$
\begin{equation*}
l_{n}=l_{n+1}=\ldots=l_{\infty} \geq 0, \text { for } n \text { enough large. } \tag{41}
\end{equation*}
$$

In order to solve the equations (39) under the assumption (40), we consider two cases. For a finite dimensional spherical Laplacian, case 2 provides only constant solution.

But in our case, case 2 provides infinitely many independent solutions and causes the phase transition phenomenons stated in the Introduction.

Case 1: $l_{n-1} \neq l_{n}$. This case occurs only finite times.
In this case, the solutions of the equations (39) are given using the Gegenbauer polynomials $C_{l}^{\mu}(x)$ defined by:

$$
\begin{equation*}
\frac{1}{\left(1-2 x t+t^{2}\right)^{\mu}}=\sum_{l=0}^{\infty} C_{l}^{\mu}(x) t^{l} \tag{42}
\end{equation*}
$$

The general solution is:

$$
\begin{equation*}
T_{n}\left(\omega_{n}\right)=C_{1}\left(1-\omega_{n}^{2}\right)^{l_{n} / 2} C_{l_{n-1}-l_{n}}^{l_{n}+(\nu-n-1) / 2}\left(\omega_{n}\right)+C_{2}\left(1-\omega_{n}^{2}\right)^{l_{n} / 2} C_{n+1-l_{n-1}-l_{n}-\nu}^{l_{n}+\left(l_{n}-n-1\right) / 2}\left(\omega_{n}\right) . \tag{43}
\end{equation*}
$$

Notice that the weight $l_{n}+(\nu-n-1) / 2$ may be smaller than -1 . But we still have

$$
\begin{equation*}
C_{l}^{\mu}(x)=\frac{(-1)^{l}}{2^{l} l!} \frac{\Gamma(\mu+1 / 2)}{\Gamma(l+\mu+1 / 2)}(2 \mu+l-1) \cdots 2 \mu \cdot\left(1-x^{2}\right)^{\frac{1}{2}-\mu} \frac{d^{l}}{d x^{l}}\left(1-x^{2}\right)^{l+\mu-\frac{1}{2}} \tag{44}
\end{equation*}
$$

even $\mu<-1$. Here $\frac{\Gamma(\mu+1 / 2)}{\Gamma(-l+\mu+1 / 2)}$ means $(\mu-1 / 2) \cdots(\mu-l-1 / 2)$ if μ is a negative half integer.

Case 2: $l_{n-1}=l_{n}$. From (41), taking $l_{n}=l_{\infty}$, the equation (39) belongs to this case if n is large.
In this case, it is convenient to solve the original equations (38). Setting $T_{n}\left(\theta_{n}\right)=$ $\sin ^{l_{n}} \theta_{n} \cdot S_{n}\left(\theta_{n}\right)$, the equations become:

$$
\begin{equation*}
\frac{d^{2} S_{n}}{d \theta_{n}^{2}}+\left(2 l_{n}+\nu-n-1\right) \frac{\cos \theta_{n}}{\sin \theta_{n}} \frac{d S_{n}}{d \theta_{n}}=0 \tag{45}
\end{equation*}
$$

Hence, if $n+1-\nu-2 l_{n} \geq 0$, the general solution of (38) is:

$$
\begin{equation*}
T_{n}\left(\theta_{n}\right)=\sin ^{l_{n}} \theta_{n}\left(c_{1}+c_{2} \int_{0}^{\theta_{n}}(\sin x)^{n+1-\nu-2 l_{n}} d x\right) \tag{46}
\end{equation*}
$$

To take infinite product $T_{1}\left(\theta_{1}\right) T_{2}\left(\theta_{2}\right) \cdots$, we need only to consider infinite product of the functions of the form (46). In this case, since $\int_{0}^{\pi}(\sin x)^{n+1-\nu-2 l_{n}} d x=B((n+1-$ $\left.\nu) / 2-l_{n}, 1 / 2\right)=O(1 / \sqrt{n})$, the infinite product $\prod_{n \geq N}\left(1+a_{n} \int_{0}^{\theta_{n}}(\sin x)^{n+1-\nu-2 l_{n}} d x\right)$ converges if

$$
\begin{equation*}
\sum\left|\frac{a_{n}}{\sqrt{n}}\right|<\infty \tag{47}
\end{equation*}
$$

Summarizing, we have the following result.

Proposition 4.1 The operator $\Lambda[\nu]$ considered on $\left\{\left(\theta_{1}, \theta_{2}, \ldots\right) \mid 0 \leq \theta_{n} \leq \pi\right\}$ has the proper values $-l(l+\nu-2), l=0,1,2, \ldots$, with infinitely many independent proper functions of the form

$$
\begin{equation*}
\Theta\left(\theta_{1}, \theta_{2}, \ldots\right)=F\left(\theta_{1}, \theta_{2}, \ldots, \theta_{N-1}\right) \prod_{n \geq N}\left(\sin \theta_{n}\right)^{l_{\infty}}\left(1+a_{n} \int_{0}^{\theta_{n}}(\sin)^{n+1-\nu-2 l_{\infty}} d x\right) \tag{48}
\end{equation*}
$$

where l_{∞} is an integer satisfing $l \geq l_{\infty} \geq 0,\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy (47).
Corollary 4.1 $\Lambda[\nu]$ is not defined if $\nu<1$.
Taking $r=1,\left\{\left(\theta_{1}, \theta_{2}, \ldots\right) \mid 0 \leq \theta_{n} \leq \pi\right\}$ is mapped to $\left\{\left(x, x_{\infty}\right) \mid\|x\|=1,0 \leq x_{\infty} \leq\right.$ $1\} \subset H_{l_{g}}$. We set $S_{c}^{\infty}=\left\{(x, c) \mid\|x\|^{2}=1-c^{2}\right\} \subset H_{l_{g}}, 0 \leq c<\sqrt{2} / 2$. Then $\Lambda[\nu]$ induces an operator $\Lambda_{c}=\Lambda[\nu]_{c}$ on $S_{c}^{\infty}, \Lambda_{0}$ is the original spherical Laplacian. Using Lemma 3.1 and Proposition 3.1, we have:

Theorem 4.1 Each Λ_{c} has common proper values $-l(l+\nu-2), l=0,1,2, \ldots$ Each proper value has infinitely many independent 1-parameter family of proper functions $\Theta_{c}\left(\theta_{1}, \theta_{2}, \ldots\right) ; \Lambda_{c} \cdot \Theta_{c}=l(l+\nu-2) \Theta_{c}, c \geq 0$, and $\Theta_{c} \neq 0$. If $l \geq 1$, the proper value $l(l+\nu-2)$ has infinitely many independent 1-parameter family of proper functions Φ_{c} such that:

$$
\begin{equation*}
\Lambda_{c} \Phi_{c}=l(l+\nu-2) \Phi_{c}, \Phi_{c} \neq 0, c \neq 0, \Phi_{0}=0 \tag{49}
\end{equation*}
$$

If ν is an integer and $\nu \leq 1$, there are infinitely many independent 1-parameter families of functions Ψ_{c} such that

$$
\begin{equation*}
\Lambda_{c} \Psi_{c}=0, \Psi_{c} \neq 0, c \neq 0, \Psi_{0}=0 \tag{50}
\end{equation*}
$$

There is another choice of l_{n} which provides continuous solution at $\omega_{n}= \pm 1$ of (38) such that $l_{n} \geq l_{n-1}+1$. Taking $l_{n}=l_{n-1}+1$ for n enough large, we again observe phase transition phenomenon sililar to Theorem4.1.

5 Supplementary remarks

1. As for radical part, let $R(r) \Theta\left(\theta_{1}, \theta_{2}, \ldots\right)$ be a proper function of $\Delta[\nu]$ belonging to λ, where $\Theta\left(\theta_{1}, \theta_{2}, \ldots\right)$ is a proper function of $\Delta[\nu]$ belonging to $p(p+\nu-2)$, then R satisfies the equation

$$
\begin{equation*}
\frac{d^{2} R(r)}{d r^{2}}+\frac{\nu-1}{r} \frac{d R(r)}{d r}-\left(\lambda+\frac{p(p+\nu-2)}{r^{2}}\right) R(r)=0 . \tag{51}
\end{equation*}
$$

The solution of this equation is given by:

$$
\begin{align*}
& R(r)=C_{1} r^{p}+C_{2} r^{2-p-\nu}, \quad \lambda=0 \tag{52}\\
& R(r)=C_{1} r^{1-\nu / 2} J_{\mu}\left(\frac{\lambda^{2}}{4} r\right)+C_{2} r^{1-\nu / 2} J_{-\mu}\left(\frac{\lambda^{2}}{4} r\right), \mu=p+\nu / 2-1, \tag{53}
\end{align*}
$$

where λ is a negative real number. Notice that since ν may be negative, $2-p-\nu$ may be positive and $r^{1-\nu / 2} J_{-\mu}\left(\frac{\lambda^{2}}{4} r\right)$ may be continuous (or smooth) in $r=0$.

From (53), phase transition phenomenon similar to Theorem4.1 holds for $\Delta[\nu]$ considered on $\left\{\left(x, x_{\infty}\right)\left|\|x\|^{2}+\left|x_{\infty}\right|^{2} \leq a^{2}\right\}\right.$ with the Dirichlet or Neumann boundary condition at $\left\{\left(x, x_{\infty}\right)\left|\|x\|^{2}+\left|x_{\infty}\right|^{2}=a^{2}\right\}\right.$, regarding the longitude variable x_{∞} as a parameter.
2. Considering $\Lambda[\nu]$ an infinite dimensional spherical symmetric hamiltonian without interaction, one of the authors (NT) defined angular momentum operators of $\Lambda[\nu]$, using Jordan algebra constructed by the inner product of H (see [9]). This Jordan algebra is an infinite dimensional flat space version of Turtoi's Jordan algebra (cf. $[10]$), so the angular momentum operations are closely related to Petroşanu's Dirac kind operator (cf. [8]).
3. Computation of proper values and functions of : Δ : for the periodic boundary condition such as

$$
\begin{align*}
& \left.u\right|_{x_{n}=-\lambda_{n}^{-d / 2}}=\left.u\right|_{x_{n}=\lambda_{n}^{d / 2}}, \\
& \left.\frac{\partial u}{\partial x_{n}}\right|_{x_{n}=-\lambda_{n}^{-d / 2}}=\left.\frac{\partial u}{\partial x_{n}}\right|_{x_{n}=\lambda_{n}^{d / 2}} \tag{54}
\end{align*}
$$

also provides an extra-dimension to H. This new dimension can be interpreted as the determinant bundle constructed from the Ray-Singer determinant of D (cf. [1],[2]). For the details, see [3].

Acknowledgement. A.A thanks to Prof. K.Fujii and Prof. O.Suzuki for discussions and useful comments. A.A is partially supported by Grant-in-Aid for Scientific Research(C) No. 10640202.

References

[1] Asada A., Hodge operators on mapping spaces, Group 21, Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras, 925-928, World Sci., 1997, Hodge operators of mapping spaces, Local Study, BSG Proc. Grobal Ananysis, Differntial Geometry, Lie Algebras(1997), 1-10.
[2] Asada A., Clifford bundles on mapping spaces, to appear in Proc. Conf. Diff. Geometry and Applications, Brno, 1998. Geometric Aspects of Partial Differential Equations, eds. Booss-Barnbeck,B.- Wojciechowski,K.P., Contemporary Math., 181-194, A.M.S.1999.
[3] Asada A., Regularized Hilbert space Laplacian and determinant bundle, (to appear).
[4] Connes A., Geomtry from the spectral point of view, Lett. Math. Phys., 34(1995), 203-238.
[5] Erdély A.,Magnus W., Oberhettinger F., Tricomi,G., Higher Transcendental Functions, II. McGraw, 1953.
[6] Gilkey P., The Geometry of Spherical Space Forms, World Sci., 1989.
[7] Killingback T.P., World sheet anomalies and loop geometry, Nucl. Phys.B288 (1987), 578-588.
[8] Petroşanu D., Aboout a Dirac Kind Operator, Stud. Cerc. Mat., 49 (1997), 103106.
[9] Tanabe N., paper in preparation.
[10] Tutoi A., Sur un fibré algebrique de Jordan, Proc. Conf. Geom. Timişoara 309311, 1984.
[11] Suzuki A.T., Schmidt A.G.M., Negative-dimensional integration revised, J. Phys. A. Math. Gen. 31(1998), 8023-8039.
[12] Villenkin N.J., Special Functions and the Theory of Group Representations, Transl. Math. Monograph, 21, Amer. Math. Soc. 1968.

Authors' address:
Akira Asada and Nobuhiko Tanabe
Department of Mathematical Science, Faculty of Science, Shinshu University, Japan
email: asada@math.shinshu-u.ac.jp and tanabe@math.shinshu-u.ac.jp

