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Abstract

Let H be a real Hilbert space equipped with a non-degenerate symmetric
positive Schatten class operator G whose zeta function Z(G, s) = trGs is holo-
morphic at s = 0. By using spectres of G, a regularization : ∆ : of the Laplacian
∆ of H is proposed. To study : ∆ :, polar coordinate of H is useful. Polar
coordinate of H lacks longitude and adding longitude, we get an extended space
Hlg of H on which : ∆ : is definded. : ∆ : on Hlg induces a family of spher-
ical Laplacians Λc, 0 ≤ c < 1, Λ0 is the spherical Laplacian of H induced by
: ∆ :. Spectres of Λc are the same as Λ0, proper functions of Λc and they are
expressed by Gegenbauer polynomials (including negative weights) and most of
them shrinks on H.
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1 Introduction

Let H be a real Hilbert space with the coordinates x =
∑

xnen, {en} an O.N.-bases

of H. Then the Laplacian ∆ of H is given by
∑ ∂2

∂x2
n

. But even the metric function

r(x) = ||x||, ∆(r(x))p deverges unless p = 0. So some regularization of ∆ is needed.
In this paper, we propose a zeta-regularization of ∆. To do this, similar to Connes’

spectre triple [4] we equipped a non-degenerate symmetric positive Schatten class
oprator G on H such that whose zeta function Z(G, s) = trGs =

∑
λs

n is continued
holomorphically to s = 0, with H(cf. [2],[4]). We take the proper functions {en} of
G to be the O.N.-basis of H and introduce the operator

∆(s) =
∑

λ2s
n

∂2

∂x2
n

, Gen = λnen. (1)
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In concrete examples, ∆(s) gives the Laplacian of a Sobolev space. The regularized
Laplacian : ∆ : is defined by

: ∆ : f = ∆(s)f |s=0, if ∆(s)f exists for Res large and continued to s = 0. (2)

For example, we have:

: ∆ : r(x)p = p(p + ν − 2)r(x)p−2, ν = Z(G, 0). (3)

This shows : ∆ : is not elliptic if ν < 0 unless ν is an even integer.
To study : ∆ :, we introduce the polar coordinate of H by

x1 = r cos θ1, x2 = r sin θ1 cos θ2, . . . , xn = r sin θ1 · · · sin θn−1 cos θn, . . . , (4)
0 ≤ θn ≤ π, θm = 0 if θn = 0 and m > n. (5)

This polar coordinate has only latitudes and lacks longitude. Since we have
∑

x2
n =

r2(1 − (lim sin θ1 sin θ2 · · · sin θn)2), we introduce the longitude x∞ by

x∞ = rc, c = lim sin θ1 · · · sin θn. (6)

If x =
∑

xnen is an element of H and r = ||x||, θ1, θ2, . . . need to satisfy the constraint
x∞ = 0, that is

lim sin θ1 sin θ2 · · · sin θn = 0. (7)

The polar coordinate expression of : ∆ : depends only on ν. Denoting this operator
by ∆[ν], we have:

∆[ν] =
∂2

∂r2
+

ν − 1
r

∂

∂r
+

1
r2

Λ[ν], (8)

Λ[ν] =
∞∑

n=1

1
sin2 θ1 · · · sin2 θn−1

(
∂2

∂θ2
n

+ (ν − n − 1)
cos θn

sin θn

∂

∂θn

)
. (9)

These operators are defined on the extended space Hlg = {(x, x∞)| x ∈ H}.
From (8) and (9), we have ∆[µ] = ∆[ν] +

µ − ν

r
K, where

K =
∂

∂r
+

∑ cos θn

r sin2 θ1 · · · sin2 θn−1 sin θn

∂

∂θn
. (10)

: ∆ : f does not depend on regularization if and only if Kf = 0. Since the character-
istic curve of K starting from (x, 0) ∈ H ⊂ Hlg , is given by

x(t) = x, x∞(t) =
√

(||x|| + t)2 − ||x||2, t ≥ 0, (11)

: ∆ : f does not depend on regularization (as a function on Hlg ), if and only if f is
constant in x∞-direction. This suggests significance of the longitude to the study of
the Laplacian on H. We also ask: is there any relation between this longitude and
the central charge in the definition of the Dirac-Romond operator (cf. [7])?
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Formal treaties of radical and spherical part of ∆[ν] are similar to the finite di-
mensional case ([5],[12]). But since most of {ν −n− 1} are negative, Λ is not definite
if ν is negative. Negative weight Gegenbauer polynomials appear as the components
of proper functions of Λ[ν]. We ask: is there any relation between this result and
negative dimensional integration methods [11]?

Since : ∆ : is defined on Hlg , Λ[ν] induces an operator on {(x, c)| ||x|| = r}, 0 ≤
c < r. We denote this operator by Λc(= Λ[ν]c). Λ0 is the original spherical Laplacian
induced from : ∆ :. Since there are infinitely many independent proper functions of
Λ[ν] of the form

lim
N→∞

(sin θ1 · · · sin θN )lf(θ1, θ2, · · ·), f finite on 0 ≤ θi ≤ π, l = 1, 2, · · · , (12)

there are infinitely many independent 1-parameter family of proper functions of Λc

which degenarate as the proper functions of Λ0.

2 Regularized Laplacian. Definition and examples

Let H be a real Hilbert space equipped with a non-degenarate positive symmetric
Schatten class operator G on H such that whose zeta function Z(G, s) = trGs is
continued holomorphically to s = 0 (cf.[4] ). Then taking the proper functions {en}
of G as O.N.-basis of H, we define the operator ∆(s) by

∆(s) =
∑

λ2s
n

∂2

∂x2
n

, Gen = λnen. (13)

Example 1. Let H be L2(X), the Hilbert space of square integrable sections
of a symmtric vector bundle E over X, a compact Riemannian manifold, D a non-
degenerate selfadjoint elliptic (pseudo)differential operator of order m acting on the
sections of E. Then we can take as above the Green operator of D to be G. By
definitions, we have:

Z(G, s) = ζ(D,−s). (14)

Hence Z(G, s) is holomorphic at s = 0 (see [6]). Since mk-th Sobolev norm ||f ||k for
the sections of E can be fixed by

||f ||k = ||Dkf ||, (15)

{λk
nen} gives an O.N.-basis of Wmk(X), the mk-th Sobolev space of sections of E :

Den = λ−1
n en. Hence ∆(k) is the Laplacian of W k(X).

Definition 2.1 If ∆(s)f exists for Res large and continued holomorphically to s = 0,
we define the regularized Laplacian : ∆ : by

: ∆ : f = ∆(s)f |s=0. (16)
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Example 2. Since
∂2

∂x2
n

(r(x))p = pr(x)p−2 + p(p − 2)r(x)p−4x2
n, we have:

∆(s)(r(x))p = Z(G, 2s)pr(x)p−2 +
∑

λ2s
n p(p − 2)r(x)p−4x2

n. (17)

Since Z(G, 0) = ν is finite by assumption, we have:

: ∆ : r(x)p = p(p + ν − 2)r(x)p−2. (18)

Using (18) , : ∆ : r(x)2−ν is equal to 0. If ν < 0, r(x)2−ν is C2-class on H, but not
smooth unless ν is an even integer. So : ∆ : is not elliptic if ν < 0 unless ν is an even
integer.

We have defined the regularized dimension of H (equipped with G) by ν =
Z(G, 0)(see [1]). To consider Grassmann algebra or Clifford algebra over H with
(∞− p)-forms or ∞-spinors, ν needs to be an integer. Examples show that ν may be
negative.

Example 3. Since
∑

xn
∂h

∂xn
= ph holds for homogeneous functions of degree p

on H, if : ∆ : h is defined, we have:

: ∆ : rmh = m(m + ν − 2 + 2p)rm−2h + rm : ∆ : h. (19)

Using (19) , similar to the finite dimensional case ( see [12]), denote by Cm(H)
the module of homogeneous functions of degree m such that : ∆ :p is defined for
1 ≤ p ≤ [m/2], byNm(H) the module of homogeneous functions of degree m vanished
by : ∆ :; we have

C2m(H) =
m∑

p=0

r2pN2(m−p), if ν + 2p 6= 0, 0 ≤ p ≤ m, (20)

C2m+1(H) =
m∑

p=0

r2pN2(m−p)+1, if ν + 2p + 1 6= 0, 0 ≤ p ≤ m. (21)

3 Polar coordinate of H and longitude of H

To set r = ||x||, the polar coordinate of x ∈ H is given by:

x1 = r cos θ1, x2 = r sin θ1 cos θ2, . . . , xn = r sin θ1 · · · sin θn−1 cos θn, . . . , 0 ≤ θn ≤ π.
(22)

{θ1, θ2, · · ·} is uniquely determined by x under the assumption

θm = 0 if θn = 0 and m > n. (23)

Since x2
1+x2

2+· · ·+x2
n = r2(1−sin2 θ1 · · · sin2 θn), θ1, θ2, . . . must satisfy the constraint

lim
n→∞

sin θ1 · · · sin θn = 0. (24)

In general, if θ1, θ2, . . . are independent variables (0 ≤ θn ≤ π), lim sin θ1 · · · sin θn = c
always exists and 0 ≤ c ≤ 1. From (23), we have:
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Lemma 3.1
lim

N→∞
sin θn sin θn+1 · · · sin θN = 0 (25)

for some n and if (23) holds, (25) holds for any n.

Definition 3.1 Considering θ1, θ2, . . ., to be independent variables, we set

x∞ = rc, c = lim sin θ1 · · · sin θn. (26)

We call x∞ the longitude of H.

By definition, we have
∑

x2
n + x2

∞ = r2. So the set {(x, x∞)| x ∈ H} is contained
in the Hilbert space H ⊕ R. Since 0 ≤ x∞ ≤ ||x|| by (26), we set

Hlg = {(x, c)| x ∈ H, 0 ≤ c ≤ ||x||} ⊂ H ⊕ R. (27)

Similar to the finite dimensional case, setting rk =
√ ∑

n≥k

x2
n, r1 = r, we have:

sin θk =
rk+1

rk
, cos θk =

xk

rk
, rk = r sin θ1 · · · sin θk−1. (28)

From (28) and the definition of : ∆ :, we obtain the following result.

Proposition 3.1 Polar coordinate expression of : ∆ : depends only on ν = Z(G, 0).
Denoting this operator by ∆[ν] and its spherical part by Λ[ν], we have:

∆[ν] =
∂2

∂r2
+

ν − 1
r

∂

∂r
+

1
r2

Λ[ν], (29)

Λ[ν] =
∞∑

n=1

1
sin2 θ1 · · · sin2 θn−1

(
∂2

∂θ2
n

+ (ν − n − 1)
cos θn

sin θn

∂

∂θn

)
. (30)

Corollary 3.1 We have:

∆[µ] = ∆[ν] +
µ − ν

r
K, (31)

K =
∂

∂r
+

1
r

∞∑
n=1

cos θn

sin2 θ1 · · · sin2 θn−1 sin θn

∂

∂θn
. (32)

From (32), ∆[µ]f = ∆[ν]f if and only if Kf = 0 and if Kf = 0, ∆[ν]f does not
depend on ν, that is, : ∆ : f does not depend on the regularization.

K is a 1-st order linear partial differential equation. So its solution is constant
along the characteristic curves. Since the characteristic equation of K is

dr

dt
= 1,

dθn

dt
=

cos θn

r sin2 θ1 · · · sin2 θn−1 sin θn

, n = 1, 2, . . . , (33)
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its solution is given by:

r = t + c, cos θ1 =
c1

t + c
, . . . , cos θn =

cn√
(t + c)2 − (

n−1∑
k=1

c2
k)

. (34)

From (34), we get:

sin θn =

√√√√√√√
(t + c)2 − (

n∑
k=1

c2
k)

(t + c)2 − (
n−1∑
k=1

c2
k)

. (35)

From (34) and (35), we have:

xn = cn, n = 1, 2, . . . , x∞ =
√

(t + ||x||)2 − ||x||2, t ≥ 0. (36)

Hence, considering K to be an equation on Hlg , the characteristic curve of K starting
from x = (x1, x2, . . .) ∈ H, is given by:

x(t) = x, x ∈ H, x∞ =
√

(t + ||x||)2 − ||x||2, t ≥ 0. (37)

4 Proper functions of Λ[ν]

Let Θ(θ1, θ2, . . .) be a proper function of Λ[ν] belonging to the proper value µ. We as-
sume Θ is the infinite product T1(θ1)T2(θ2) · · ·. Then similar to the finite dimensional
case, we have the equations:

sin−ν+n+1 θn
d

dθn

(
sinν−n−1 θn

dTn

dθn

)
+

(
an−1 −

an

sin2 θn

)
Tn = 0, n = 1, 2, . . . , a0 = µ.

(38)
Replacing ωn = cos θn, (38) is changed to

(1 − ω2
n)

d2Tn

dω2
n

− (ν − n)ωn
dTn

dωn
+

(
an−1 −

an

1 − ω2
n

)
Tn = 0. (39)

The equation (39) needs to have a continuous solution at ωn = ±1. For this,
assuming ν to be an integer, it is sufficient to take

an = ln(ln + ν − n − 2), l0 ≥ l1 ≥ . . . ≥ 0, l0, l1, . . . , are integers. (40)

From (40), the series {l0, l1, . . .} satisfy

ln = ln+1 = . . . = l∞ ≥ 0, for n enough large. (41)

In order to solve the equations (39) under the assumption (40), we consider two cases.
For a finite dimensional spherical Laplacian, case 2 provides only constant solution.
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But in our case, case 2 provides infinitely many independent solutions and causes the
phase transition phenomenons stated in the Introduction.

Case 1: ln−1 6= ln. This case occurs only finite times.
In this case, the solutions of the equations (39) are given using the Gegenbauer poly-
nomials Cµ

l (x) defined by:

1
(1 − 2xt + t2)µ

=
∞∑

l=0

Cµ
l (x)tl. (42)

The general solution is:

Tn(ωn) = C1(1 − ω2
n)ln/2C

ln+(ν−n−1)/2
ln−1−ln

(ωn) + C2(1 − ω2
n)ln/2C

ln+(ν−n−1)/2
n+1−ln−1−ln−ν(ωn).

(43)
Notice that the weight ln + (ν − n− 1)/2 may be smaller than −1. But we still have

Cµ
l (x) =

(−1)l

2ll!
Γ(µ + 1/2)

Γ(l + µ + 1/2)
(2µ+ l− 1) · · · 2µ · (1−x2)

1
2−µ dl

dxl
(1−x2)l+µ− 1

2 , (44)

even µ < −1. Here
Γ(µ + 1/2)

Γ(−l + µ + 1/2)
means (µ−1/2) · · · (µ− l−1/2) if µ is a negative

half integer.

Case 2: ln−1 = ln. From (41), taking ln = l∞, the equation (39) belongs to this
case if n is large.
In this case, it is convenient to solve the original equations (38). Setting Tn(θn) =
sinln θn · Sn(θn), the equations become:

d2Sn

dθ2
n

+ (2ln + ν − n − 1)
cos θn

sin θn

dSn

dθn
= 0. (45)

Hence, if n + 1 − ν − 2ln ≥ 0, the general solution of (38) is:

Tn(θn) = sinln θn

(
c1 + c2

∫ θn

0

(sin x)n+1−ν−2lndx

)
. (46)

To take infinite product T1(θ1)T2(θ2) · · · , we need only to consider infinite product of
the functions of the form (46). In this case, since

∫ π

0
(sin x)n+1−ν−2lndx = B((n+1−

ν)/2 − ln, 1/2) = O(1/
√

n), the infinite product
∏

n≥N

(1 + an

∫ θn

0
(sin x)n+1−ν−2lndx)

converges if ∑ ∣∣∣∣ an√
n

∣∣∣∣ < ∞. (47)

Summarizing, we have the following result.
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Proposition 4.1 The operator Λ[ν] considered on {(θ1, θ2, . . .)| 0 ≤ θn ≤ π} has the
proper values −l(l + ν − 2), l = 0, 1, 2, . . ., with infinitely many independent proper
functions of the form

Θ(θ1, θ2, . . .) = F (θ1, θ2, . . . , θN−1)
∏

n≥N

(sin θn)l∞

(
1 + an

∫ θn

0

(sin)n+1−ν−2l∞dx

)
,

(48)
where l∞ is an integer satisfing l ≥ l∞ ≥ 0, {an} and {bn} satisfy (47).

Corollary 4.1 Λ[ν] is not defined if ν < 1.

Taking r = 1, {(θ1, θ2, . . .)| 0 ≤ θn ≤ π} is mapped to {(x, x∞)| ||x|| = 1, 0 ≤ x∞ ≤
1} ⊂ Hlg . We set S∞

c = {(x, c)| ||x||2 = 1 − c2} ⊂ Hlg , 0 ≤ c <
√

2/2. Then Λ[ν]
induces an operator Λc = Λ[ν]c on S∞

c , Λ0 is the original spherical Laplacian. Using
Lemma 3.1 and Proposition 3.1, we have:

Theorem 4.1 Each Λc has common proper values −l(l+ν−2), l = 0, 1, 2, . . .. Each
proper value has infinitely many independent 1-parameter family of proper functions
Θc(θ1, θ2, . . .); Λc ·Θc = l(l + ν − 2)Θc, c ≥ 0, and Θc 6= 0. If l ≥ 1, the proper value
l(l + ν − 2) has infinitely many independent 1-parameter family of proper functions
Φc such that:

ΛcΦc = l(l + ν − 2)Φc, Φc 6= 0, c 6= 0, Φ0 = 0. (49)

If ν is an integer and ν ≤ 1, there are infinitely many independent 1-parameter
families of functions Ψc such that

ΛcΨc = 0, Ψc 6= 0, c 6= 0, Ψ0 = 0. (50)

There is another choice of ln which provides continuous solution at ωn = ±1 of (38)
such that ln ≥ ln−1 + 1. Taking ln = ln−1 + 1 for n enough large, we again observe
phase transition phenomenon sililar to Theorem4.1.

5 Supplementary remarks

1. As for radical part, let R(r)Θ(θ1, θ2, . . .) be a proper function of ∆[ν] belonging to
λ, where Θ(θ1, θ2, . . .) is a proper function of ∆[ν] belonging to p(p + ν − 2), then R
satisfies the equation

d2R(r)
dr2

+
ν − 1

r

dR(r)
dr

−
(

λ +
p(p + ν − 2)

r2

)
R(r) = 0. (51)

The solution of this equation is given by:

R(r) = C1r
p + C2r

2−p−ν , λ = 0, (52)

R(r) = C1r
1−ν/2Jµ(

λ2

4
r) + C2r

1−ν/2J−µ(
λ2

4
r), µ = p + ν/2 − 1, (53)
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where λ is a negative real number. Notice that since ν may be negative, 2 − p − ν

may be positive and r1−ν/2J−µ(λ2

4 r) may be continuous (or smooth) in r = 0.
From (53), phase transition phenomenon similar to Theorem4.1 holds for ∆[ν]

considered on {(x, x∞)|||x||2 + |x∞|2 ≤ a2} with the Dirichlet or Neumann boundary
condition at {(x, x∞)|||x||2 + |x∞|2 = a2}, regarding the longitude variable x∞ as a
parameter.

2. Considering Λ[ν] an infinite dimensional spherical symmetric hamiltonian with-
out interaction, one of the authors (NT) defined angular momentum operators of Λ[ν],
using Jordan algebra constructed by the inner product of H (see [9]). This Jordan
algebra is an infinite dimensional flat space version of Turtoi’s Jordan algebra (cf.
[10]), so the angular momentum operations are closely related to Petroşanu’s Dirac
kind operator (cf. [8]).

3. Computation of proper values and functions of : ∆ : for the periodic boundary
condition such as

u|
xn=−λ

−d/2
n

= u|
xn=λ

d/2
n

,

∂u

∂xn

∣∣∣∣
xn=−λ

−d/2
n

=
∂u

∂xn

∣∣∣∣
xn=λ

d/2
n

, (54)

also provides an extra-dimension to H. This new dimension can be interpreted as the
determinant bundle constructed from the Ray-Singer determinant of D (cf. [1],[2]).
For the details, see [3].

Acknowledgement. A.A thanks to Prof. K.Fujii and Prof. O.Suzuki for discus-
sions and useful comments. A.A is partially supported by Grant-in-Aid for Scientific
Research(C) No.10640202.

References

[1] Asada A., Hodge operators on mapping spaces, Group 21, Physical Applications
and Mathematical Aspects of Geometry, Groups and Algebras, 925-928, World
Sci., 1997, Hodge operators of mapping spaces, Local Study, BSG Proc. Grobal
Ananysis, Differntial Geometry, Lie Algebras(1997), 1-10.

[2] Asada A., Clifford bundles on mapping spaces, to appear in Proc. Conf. Diff. Ge-
ometry and Applications, Brno, 1998. Geometric Aspects of Partial Differential
Equations, eds. Booss-Barnbeck,B.- Wojciechowski,K.P., Contemporary Math.,
181-194, A.M.S.1999.

[3] Asada A., Regularized Hilbert space Laplacian and determinant bundle, (to ap-
pear).

[4] Connes A., Geomtry from the spectral point of view, Lett. Math. Phys., 34(1995),
203-238.



10 A. Asada and N. Tanabe
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