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Ana-Maria Teleman

Abstract

The aims of this article are to present a few properties of the Dirac oper-
ators associated to Spin®(3) -structures and to give a generalised version of
the Weitzenbock Formula for Spin©(3) -structures. This formula is in fact a
Bochner-Lichnerowicz type identity, as it can be found in [LM], Theorem II.
8.8., Theorem II. 8.17. and Theorem D.12. and gives identities in which one
of the terms is a Dirac laplaceian (in this case the square of a Dirac operator).
It can be found also in papers related to the Seiberg-Witten theory (see for in-
stance [OT1}, [OT?2], [OT3] and [OT4]), with the name of Weitzenbock formula.

. The definitions related to vector bundles and connections can be found in [FU),
{KI. f[KX] and [We]. The general definitions of the Lie groups Spin®(n) (n € N*),
of Smna(n)-structures in SO(n)-principal bundles and of associated Seiberg-
Witten monopole equations (for SO(4)-coframes bundles) have been introduced
znd studied in [T1] and [T3]. We shall consider only the case n = 3.
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1 Introduction

Let (X.p) be a Riemannian compact manifold of dimension 3 and E a hermitian
vector bundle over X of rank r. We shall assume that the associated vector bundles
like A¢T~X or End(FE) are endowed with the canonically induced respective metrics.
We shall use the following

Notations:

ad(E) = P Xady,, u(r), where P is the principal bundle of the unitary frames in E
and u(r) the Lie algebra of the unitary group U/(r).

AYE)={s: X — E; s is a smooth section in E}.

Af(X) = AY(AT=(X)).
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AY(E) = A°(A'T*(X) ® E).
A% = AT*(X).
A(E) = {a : A%(T(X)) x A°(E) — A°(E); a unitary connection in E}.
For a given Lie group we shall denote by Ad the adjoint morphism from the Lie group
to its group of automorphisms and by ad the adjoint representation of the Lie group
in its Lie algebra. :

Convention: su(2) shall be considered endowed with the scalar product < a,b >=
~1Tr{ab), for any a,b € su(2).

‘The adjoint representation of the Lie group SU(2) on its Lie algebra su(2) gives
the exact sequence

1 — Z, = SU(2) 22 SO(su(2)) — 1
which induces the exact sequence
1 —» Zp — SU(2) 2+ SO(3) — 1

Since SU(2) is connected and simply connected it follows that the group Spin(3),
defined as the universal cover of SO(3), is SU(2).

Definition 1.1 Let (V,h) be a hermitian vector space of finite dimension. Let G C

U(V) be a closed subgroup of the unitary group of V which contains the central invo-
lution —Idy . Then

Spin®(3) := Spin(3) xz, G=S8U(2)xz,G,
where Z; as subgroup of SU(2) x G is {+(Idy, Idv)}.
Notation: L := Lie(G).
Remark 1.2 With the above notations, L C u(V).

Notations: For (u, g) € SU(2)x G we denote by [u, g] the corresponding class modulo
Z; of (u,g) in Spin®(3).
When there is no danger of confusion we use the same notation for elements in fibre
bundles associated with a given principal bundle and a left action of its structure Lie
group on a given manifold. (For such fibre bundles we use the definition from [KN],
pg. 52-53)).

We define now some important Lie group morphisms defined on Spin€(3).

Definition 1.3 1) ads : Spin®(3) — SO(su(2)) is the morphism canonically in-
duced by the adjoint representation of SU(2) in its Lie algebra: ads([u,g]) = ad(u).

2) adg : Spin®(3) — O(L) is the morphism canonically induced by the adjoint rep-
resentatlion of G in iis Lie algebra: adg([u, g]) = ad(g).

3) Ads : Spin©(3) — Aut(SU(2)) is the morphism canonically induced by the ad-
joint morphism from SU(2) to Aut(SU(2)): Ads([u,g]) = Ad(u).

4) Adg : Spin®(3) — Aut(G) is the morphism canonically induced by the adjoint
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morphism from G to Aut(G): Adg([u, g]) = Ad(y).

5) X : Spin®(3) — U(C?*® V) is the morphism defined by A([u, g])(:8v) = uz@gu
foranquSU(Q) g€G, zeCandveV.

6) = : Spin®(3) — SO(3) is the morphism defined by =([u,g]) = p(u) for any
u ESU(?) and g €G.

7) 6 : Spin®(3) — G/ 2, is the canonical projection §([u, g]) = [g)(mod Z5).

Remark 1.4 The following sequences are ezact:
1 — SU(2) < Spin®(3) == G/2, — 1,
1 — G — Spin®(3) — SO(3) — 1,
1 — Z, < Spin€(3) =2 S0(3) x G/ 2, — 1.

Proof The proof is a direct consequence of the general theorems of group isomor-
phisms.

Convention: From now on we shall always assume a Riemannian 3-manifold to be
connected, compact and oriented.

Convention: If P is the SO(3)-principal bundle of the oriented and p-orthonormal
coframes of (X, p) then P Xs0(3) R3 shall be considered automatically endowed with
the euclidian structure given by

< [p, (a2, )], [p, (v, 2, v)] >= wlod + u2o? 4+ ¥

for any [p, (u!, u?,v%)], [p, (v, v2,v%)] € P x50(3) R>.

Remark 1.5 If P is the SO(3)-principal bundle of the oriented and p-orthonormal
coframes of (X, p), then P Xs50(3) R3® is canonically isomelric in an orientation pre-
serving way with AY, where the cotangent bundle AY is endowed with the metric
induced by p.

Proof One can check very easily that the morphism given by
P x50(3) R® 3 [p, (u1, uz, uz)] = u'py + u’py + v’ps € A%

for any p = (p1,p2,p3) € P and (u;,un, u3) € R3 is the required isometry.

Definition 1.6 A Spin®(3)-siructure on a Riemannian 3-manifold (X.p) is a pair
(PC,v: P xso(s) R® => P® x. R®) where P is a Spin®(3)-principal bundle over
X, P 1s the SO(3)-principal bundle of the oriented and p-orthonormal coframes of
(X.p) and v is an orientation preserving linear isometry.

Remark 1.7 If (PC,y: P X 50(3) R3® — PS x,. R®) is a Spin®(3)-structure on
Riemannian 3-manifold (X, p) then P x, R® can be isometrically identified with
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PC X 445 5u(2). Furthermore, P x 50(3) R3 can be identified with AY as seen in remark
1.5 and v can be considered as an orientaiion preserving isomeiry

7 : A} — PC x4, su(2).

Definition 1.8 If(P®,7) is a Spin®(3)-structure in a Riemannian 3-manifold (X, p)
then the isometry « is called the Clifford map of the given structure.

Convention: From now on we shall consider a fixed hermitian vector space (V,h)
and an associated Lie group G C U(V) as in definition 1.1. We shall consider a fixed
Riemannian 3-manifold (X, p) endowed with a given Spin®(3)-structure (P€,+).

We shall define now some fibre bundles associated to (P€,7).

Definition 1.9 ad(P®) := P% x4, su(2),
£(PY) i= P9 Xagy L;

E(PY) = PO x5 (PR V),

§(PC) := P® x4 (G/ Z,).

Definition 1.10 The vector bundle £(P€) is called the spinor bundle and its as-

socialed space of sections, A°(Z(PC)), the apace of spinors. The elements of
A%(Z(PC)) are called spinors.

Convention: By composing with the respective isomorphims between the Lie alge-
bras we shall consider

1) the space of connections in §( P€) as an affine space over A}(L(P€)),
2) the connections in PG defined by su(2) @ L valued 1-forms.

Proposition 1.11 The real vector bundles ad(P€) and L(P®) are isomorphically
included in End(Z(P€)) as real subbundles via the morphisms:

o :dad(PG) — End(Z(P9)), a([p,u]) = [p,u® Idy] for any p € P® and u € su(?)

B : L(P®) — End((PC)), B(lp,9]) = [p, Id, ® g] for any p € PC and g € L,
respectively. Considering a convenient scalar product for complez 2 x 2-mairices i B
is an 1somelry onto its image and by rescaling the scalar product in End(V) such that
Idy has norm 1, a becomes an isometry onto ils image, 100.

Proof Direct easy computations on the fibres. o

2 The Dirac Operators
Associated to a Spin®(3) -Structure

Let (X,p) be the given Riemannian 3-manifold and (P, ) its fixed Spin®(3)-
structure.

Convention: Using remark 1.7, we shall consider from now on

v : A% — ad(P°)



Dirac Operators aad the Weitzen!3ck Formula for Spin©(3) -Structures 243

as well as
so@) R® — ad(PE).

Lemma 2.1 The Clifford map + defines a struciure of A'(X)-Clifford module in
A(Z(P€)). Furthermore, £(P€) is a complez vector bundle of Clifford-modules over
the corresponding fibres of A .

Proof According to proposition 1.11 and to the propositions 1.1 and 1.3 from (LM]
we only have to check the Clifford identity for v, i.e. that

1N18) +7(0)2) = ~2p(w, O)ldy(pe) Vs,0 € A

The checking can be done fibrewise. With convenient choices of trivialisations we may
assume that w, € € {f), fa, f3} where (f1, f2, f3) is an oriented orthonormal frame of
AY(R®) which is transformed via 7 into the oriented orthonormal frame (71,72, 73) in
su(2), where

wetnz (3 Qonm (5 )omm (8 e (0 2)

For this choice of w and 6 the Clifford identity is a direct consequence of the relations
e W Y

i = =Ty ==
N E=-nn =713,
T E=-mN =T,
3L = —-NT3=T3.

and it extends in general by linearity.

Notations:

1) We shall also denote by 7 the morphism A!(Z(P%)) — A°(Z(P€)) naturally
induced by the Clifford map, +(« @ ¥) = a(y(w))(¥) for any w € A}(X) and
v € A°(Z(PC€)) and extented to A!(Z(P€)) by linearity where « is the morphism
given in proposition 1.11.

2) We shall denote by T' the morphism A% — End(X(P€)) induced by the Clifford
map y and given fibrewise by I(= A6) := L[a(v(w))a(7(8)) - a(7(8))a(x(w))] for any
~. 8 € A and then extended to A% by linearity.

3) The same notation I' shall be used for the multiplication with 2-forms

A*(X) — End(A°(Z(P€))) induced by v, namely

T(«(9))(z) := T(we(p:)) for 2nv = € A%(X), p € A°(Z(PC)) and z € X and then
:xtended to A?(X) by linearity.

:) The same notations shall be used for the canonical extensions to C-valued forms
“f v and T, respectively: ¥(if) := i+(8) for any 1-form 6 and I'(iw) := i[() for any
2-form w.

Remark 2.2 T eztends naturally to a morphism (which shall be denoted by T as well)
I : A*(L(P®)) — A°(ad(P€) ® L(PC)),
defined by I'w @ f) = T'(w) @ f and then eztended by linearity.
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Remark 2.3 The multiplication with forms induced by v acts locally (via trivialisa-
tions) as identity on the V-component of a section in T(P€).

Proof Direct consequence of proposition 1.11. e

Definition 2.4 Let P be the SO(3)-principal bundle of the oriented and p-orthonormal
coframes of (X, p). Let A € A(8(PC)) be a unitary connection in §(PC) and A the
unitary connection induced in T(PC) by A and the Levi-Civita connection in P. The
Dirac operator defined by A is

Py =70V : A%Z(P®)) — A%(Z(P°))
where v : A}(Z(PC)) — AY(Z(PC)) and V; : A°(Z(P€)) — AYZ(PC)).

Definition 2.5 Let A € A(§(P€)). A spinory € A°(Z(PC)) is called P,-harmonic
iff P4(¥) =0.

Now we shall give some properties of the Dirac operators.

Remark 2.6 For any A € A(8(P€)), D, has symbol ¢(P,) = 1.
Consequently, the symbol of JD, does not depend on A.

Proof Direct easy computations using the general definition of symbols. e

Lemma 2.7 For any A € A(8(P€)) the associated Dirac operator ], is an elliptic
self-adjoint differential operator of order 1.

Proof See [LM, Lemma I1.5.1 and Example II1.1.5.] for ellipticity, [LM, Proposition
11.5.3.] for self-adjointness.

In order to use the proofs given in [LM] it is necessary to add the following remarks:
for ” Ellipticity” : The symbol of ), is v and for any £ € A}, det(v(€)) = ||¢]|?. It
follows that o¢(JD,) is an isomorphism for any £ € A} \ {0}.

for ”Self-adjointness” : In the proof of 11.5.3., when related to spinors we have to use
V ; instead of V, which is the Levi-Civita connection in A%. Then we use that V ;
is a unitary connection in L(PC):

d<p,¥>=< V;ip,v>+<¢, V9> forany p,% € 2(PY).

for ”Order of JD,”: Since 7 is an isomorphism (has order 0) and V ; has order 1 it
follows that J), :=+ oV ; has order 1.

3 The Weitzenbock Formula
for a Spin®(3) -Structure

Let (X,p) be the given Riemannian 3-manifold and (P€,y) its fixed Spin®(3)-
structure.

The relation we shall give in the following theorem is to be considered subject to the
conventions stated after definition 1.10.



Dirac Operators and the Weitzenbock Formula for Spin©(3) -Structures 245

Theorem 3.1 Let P be the SO(3)-principal bundle of the oriented and p-orthonormal
coframes of (X, p) and s the scalar curvature of (X,p). Let A € A(6(P®)), Fu ils
curvature, V ; the connection induced in £(P€) by A and the Levi-Civita connection
in P. Let V", be the adjoint operator of V ; with respect to the Lj-scalar product.
Then the following relation holds:

' 1
P=V5V+ 75+ T(Fa).

Proof The links between the Lie groups we use can be illustrated in the following
diagram, the closed polygons being commutative:

SU(2)
P1

i
SU2)xG 2 ¢

lg Nv o la
Spin®(3) — G/Za,
where each morphism is the respective canonical projection.

Let r: SU(2) x G — U(C? ®¢ V) be the canonical representation of
SU(2) x G in C?*@¢ V. Then the following diagram is commutative:

SU@2) x G
lq N T
Spin6(3) 2 U(C*®c V).

The Weitzenbock formula can be proven locally since all the operators involved are
local. Thus we can suppose that all the bundles we consider here are trivial

and that P¢ admits a lift P -1+ PS of type ¢q. We need to introduce some
Notations: P, := P xp, SU(2), P;:= P xp,G, S := P xp, C*, E:= P x,, V.

Using the above two diagrams one can check very easily that:

1) S = P, x,, C? and is a Spin(3)-spinorial vector bundle,

2) E = P2 Xp, V and is an unitary complex vector bundle,

3) P, is a lift P, -~ &(PS) of type p,

4) (P°)=SQ E.

Let w be the connection form in §( PC) associated to A and wg the connection form
in P€ associated to = and the Levi-Civita connection in P. Furthermore, let w be
the connection form induced in P; by w and wg the connection form induced in P by



246 Ana-Maria Teleman

wg. The two following diagrams:
T(Py) — T(§(P%))
L@ lw

L £ Lie(G]Z,)

and
7By L T(P%)
| wg lwe
su(2)@ L %  Lie(Spin©(3))
are exact.

Moreover, the Lie algebra morphisms pu. and g¢. are isomorphisms. With the
convention given after definition 1.10 we shall consider these diagrams as: & = wodg
and we = wg o df, respectively. It follows that the curvature form of the connection
induced by @ in F is equal to F4 and that the connection form induced by w¢ in SQE
is equal to the connection form of V ;. The claim follows now from [LM, Theorem
2.8.17.) applied to S ® £ with the connection induced in Eby &. e

Corollary 3.2 Under the conditions of theorem 3.1, if s = 0 and if A is flat then
every JD,-harmonic spinor is globally parallel with respect 1o V ;.

Proof Let ¢ € A°(%(P€)) be a J,-harmonic spinor, namely P, (¥) = 0. From
theorem 3.1 it follows that V%V ;() = 0. We now take the Lj-scalar product with
¥ and get < V%V ;i(#),¥ >r2= 0 which implies [|V 3(#)||2 = 0. It follows that
Vi(¥) =0, ie. that ¢ is V ;-parallel. o
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