THE GEOMETRY OF RELATIVISTIC
RHEONOMIC LAGRANGE SPACES

Mircea Neagu

Abstract

In this paper we shall present a geometrization of time-dependent La-
grangians. The reader is invited to compare this geometrization with that con-
tained in the book of Miron and Anastasiei [11). In this direction, Section 1
describes the main geometrical aspects of the 1-jet space J!(R, M), in the sense
of d-tensors, d-connections, d-torsions and d-curvatures. Section 2 introduces
the notion of Relativistic Rheonomic Lagrange Space, which naturally generalizes
that of Classical Rheonomic Lagrange Space [11], and constructs its canonical
nonlinear connection I' as well as its Cartan canonical I'-linear connection. From
a physical point of view, our time-dependent Lagrange geometry gives a rela-
tivistic model for both gravitational and electromagnetic field. The relativistic
rheonomic Lagrangian electromagnetism togsther with its Maxwell equations
are presented in Section 4. Section 5 describes the Einstein’s gravitational field
equations of a relativistic rheonomic Lagrange space.
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1 The geométry of JY(R, M)

1.1 Some physical aspects

Let us consider the usual time axis represented by the set of real numbers R znd a

real, smooth and n-dimensional manifold M that we regard like a ”spatial” manifold
[16]. We suppose that the temporal manifold R is coordinated by ¢ while the spatial
- manifold M is coordinated by (z*);—17- Note that, throughout this paper, the latin

letters ¢,7,k ... run from 1 to n.
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Let J}(R, M) = RxTM be the usual 1-jet vector bundle over the product manifold
base Rx M. The local coordinates on J!(R, M) are denoted (¢, z*,3'). From a physical
point of view, the fibre bundle

JYR,M)—=Rx M, (tz'y)—(tz), (1.1.1)

is regarded like a bundle of configurations, in mechanics terms. The gauge group of
this bundle of configurations is

t= {(t)

7' = zi(29)

L _ 0% d (4
y dzi dt

We remark that the form of the gauge group 1.1.2 stands out by the relativistic
character of the time coordinate t. The above reasons determine us to consider
the jet vector bundle of order one J!(R, M) like a natural house for a subsequent
development of a relativistic rheonomic Lagrangian mechanics.

Comparatively, the configuration bundle used in the classical rheonomic La-
grangian mechanics [11], is the vector bundle

7:RxTM — M, (t,z',y') — (2'), ' (1.1.3)
whose geometrical invariance group is '
t=t
= f:i(:j)
L oF - (1.1.4)
T 0ziY

The structure of the gauge group 1.1.4 emphasizes the absolute character of the time
coordinate t from the classical rheonomic Lagrangian mechanics. At the same time,
we point out that the gauge group 1.1.4 is a subgroup of 1.1.2.

Like a conclusion, we underline that the gauge group of the jet bundle of order one
(i. e., the configuration bundle of the relativistic rheonomic Lagrangian mechanics)
is more general than that of the configuration bundle of the classical theonomic La-
grangian mechanics, which ignores the temporal reparametrizations. Consequently,
this will be an essential difference between our subsequent time-dependent Lagrangian
geometrization and that constructed by Miron and Anastasiei.

Finally, we emphasize that the main physical aspects of Miron-Anastasiei’s time-
dependent Lagrangian geometry are presented by Ikeda in [6] and [12). From our
point of view, these physical interpretations can be easily and naturally extended to
the relativistic approach of the rheonomic Lagrangian geometry that we develope in
this paper.

1.2 Time-dependent sprays. Harmonic curves

Let us consider that the temporal manifold R is endowed with a semi-Riemannian
metric i = (h)1(2)). In order to develope the geometrical background of the relativis-
tic rheonomic Lagrangian mechanics on the 1-jet fibre bundle E = J}(R, M), we will
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introduce a collection of important geometrical concepts. An important geometrical
concept on J!(R, M) is that of time-dependent spray, which naturally generalizes the
notion of time-dependent spray on R x M, used in [11] and [22]. To introduce this
concept, let us consider the following notions:

Definition 1.2.1 A global tensor H (resp. G) on E, locally expressed by

& . iy.. O
respectively
PP 4) 9
G=ydt® y i _2G(l)ldt®_5;j- (1.2.2)

is called a temporal (resp. spatial) spray on E.

Because the sprays H and G are global tensors, using the coordinate transforma-
tions 1.1.2 of the 1-jet space E, it is easy to deduce the following [16]

Theorem 1.2.1 To give a temporal (spatial) spray on E is equivalent to give a sei

of local functions H = (H((;;l) (resp. G = (Gﬁ%l)) which transform by the rules

N2 A=k ~k
(k) _ o) [(dt)\° 02" di by
respectively
2 o~k i o=~
2(k) _ onG) ((dt\° 02 9z' oFF ;
2GE1)1 - 268)1 (d{) 8zi 9%) aziy’- (1.24)

The previous theorem allows us to offer the following important examples of tem-
poral and spatial sprays. The importance of these sprays comes from their using in

the description of the local equations of harmonic maps between two semi-Riemannian
manifolds [4].

Example 1.2.1 Let h = (hy,;) (resp. ¢ = (ij)) be a semi-Riemannian metric on R
(resp. M) and H}, (resp. 7},) its Christoffel symbols. In this context, taking into

account the transformation rules of the Christoffel symbols H}, and ik, We deduce
that the components 2!{((‘:))1 =—-HLY (resp. 2G8}1 = ‘){,y* ') represent a temporal

(resp. spatial) spray which is called the canonical temporal (resp. spatial) spray as-
sociated 1o the metric h (resp. ).

Definition 1.2.2 A pair (H,G), which consists of a temporal spray and a spatial
one, is called a time-dependent spray on J*(R, M).

Following the geometrical development of the classical rheonomic Lagrange me-
chanics, we introduce a natural generalization of the notion of path of a time-
dependent spray, used in [11].
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Definition 1.2.3 A curve ¢ € C®(R, M) is called a harmonic curve of the time-
dependent spray.(H,G) on JY(R, M), with respect to the semi-Riemannian temporal
metric h = (h11(t)) on R, if ¢ is a solution of the DEs system of order two .

d?xt ) ()
h“{ 5 an F2H =0, (1.2.5)

where h''h;; = 1 and the curve c is locally expressed by R 3t — (z*(t)) EM.

i=1n
Remarks 1.2.1 i) Under the coordinate transformations of J1(R, M), the left term
of the equations 1.2.5 modifies like a d-tensor, that is,

d*z ; oz* [- d?zi T
[h” {F +2G3), + QH((I))I}] === [h {-3——2— +2G33, + QH(('{;I}] .
(1.2.6)
Consequently, the equations 1.2.5 are global on JY(R,M) = R x TM (i. e. their
geometrical invariance group is 1.1.2).
ii) Comparatively, the equations of a path on RxT'M (see [11]), that we generalized
by 1.2.5, are invariant only under the gauge group 1.1.4.

Example 1.2.2 Let us consider the canonical sprays asociated to the metrics h and
. which are locally expressed by

1 1
HE, = 5Ly, G = 57 vt (1.2.7)
(1) (= 3 |

The equations of the harmonic curves attached to these sprays, with respect to the
semi-Riemannian temporal metric A, reduce to

Bz det . ded det |
hll{____H%l.E.t__I_Tjk_._-} =0, (128)

that is, exactly the equations whose solutions are the well known classical harmonic
maps between the semi-Riemannian manifolds (R, k) and (M, ) [4]. Particularly,
if we regard the temporal manifold R endowed with the euclidian metric h = §,
we recover the classical equations of geodesics of the semi-Riemannian manifold M.
These facts emphasize the naturalness of our previous definition. .

1.3 Nonlinear connections. Adapted bases.

It is well known the importance of the nonlinear connections in the study of the
geometry of a fibre bundle £. A nonlinear connection (i. e. a supplementary horizon-
tal distribution of the vertical distribution of E') offers the possibility of construction
of the vector or covector adapled bases. These allow a more simple description of the
geometrical objects or properties of the total space E. In this sense, considering our
particular case £ = J}(R, M), we proved in [16]
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Theorém 1.3.1 A nonlinear connection I' on the jet fibre bundle of order one E
is determined by a pair of local function sets M((;;l and N((;;j which modify by the
transformation laws

~ (§) di _ (B dt 83 oY

M(1)1a}' = TN azk - At (1.3.1)
-y Ok 7 7
) oz = N&®) dt 0% oy (1.3.2)

(e Gzi ~ TO¥gi oz 9zt

Definition 1.3.1 A set of local functions M{}}, (resp. N(};) on J(R, M), which
transform by the rules 1.3.1 (resp. 1.3.2) is called a temporal nonlinear connection
(resp. spatial nonlinear connection) on E = J'(R, M).

Example 1.3.1 Studying the transformation rules of the local components
M), = -HhLy', N3 =it (1.3.3)

where H{, (resp. 'y;: ;) are the Christoffel symbols of a temporal (resp. spatial) semi-
Riemannian metric h (resp. ), we conclude that Ty = (M((') Ny represents a

1147 (1))
nonlinear connection on E, which is called the canonical nonlinear connection attached

to the metric pair (h, ).

Taking into account the transformation laws 1.2.3, 1.2.4and 1.3.1, 1.3.2, we deduce
without difficulties that the notion of temporal (resp. spatial) spray is intimately
connected to the notion of temporal (resp. spatial) nonlinear connection.

Theorem 1.3.2 i) If M((31 are the components of a temporal nonlinear connection,
then the components

i Lot .
Byl = EM((& (1.3.4)

represent a iemporal spray.
11) Conversely, if Hfgl are the componentis of a temporal spray, then

M), =3HE, (1.3.5)
are the components of a temporal nonlinear connection.
Theorem 1.3.3 1) If G?l))l are the components of a spatial spray, then the compo-
nents :

G _
Nay = "3y

(1.3.6)

represent a spatial nonlinear connection.
ii) Conversely, the spatial nonlinear connection N((;;J. induces the spatial spray

2G (i = Ny (1.3.7)
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Remark 1.3.1 The previous theorems allow us to conclude that a time-dependent
spray (H,G) induces naturally a nonlinear connection I' on E, which is called the
canonical nonlinear connection associated fo the time-dependent spray (H,G). We
point out that the canonical nonlinear connection I' attached to the time-dependent
spray (H,G) is a natural generalization of the canonical nonlinear connection N in-
duced by a time-dependent spray G from the classical theonomic Lagrangian geometry
contained in [11].

Let ¥ = (.-‘tf({gl, N((gj) be a nonlinear connection on the 1-jet fibre bundle E. At
the same time, let us consider the geometrical objects,
6 _ 0 i) O

—=— = M =
5= o Mon Ay’

6 3 N(J') 0 (1.3.8)

5zt oz - (1)"6_3;5’
Sy =dy' + MWD dt + N dgi .

(in (1)j
. | 6 & 0 -
It 1s easy to deduce that the set of vector fields { —, —, — » C A (E) and of cov-
o 6t bzt’ Oy :
ector fields {dt.dz*, 6y} C X~(E) are dual bases on E.

. ) é& ¢ O : .
Definition 1.3.2 The basis {E?;@—}CX(E) and its dual Dbasis

{dt.dz'.éy'} C X"(E) are called the adapted bases on E, determined by the non-
linear connection T

The big advantage of the adapted bases is that the transformation laws of its
elements are simple and natural.

Proposition 1.3.4 The transformation laws of the elements of the adapted bases
attached to the nonlinear connection T are

(6 dfé
6t~ dt &t
¢ 6 _o¥ & (1.3.9)
srt Ozt 37
& _o#dt &
\ dy'  Oxidiby’
( dt -
dt = —dt @
di
$dzi = 9 g5 (1.3.10)
ar’
i 3.2‘{ d{ —a
| Y =5 a
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Remark 1.3.2 The simple transformation rulés 1.3.9 and 1.3.10 determine us to
describe the objects with geometrical and physical meaning from our subsequent
theory, in adapted components.

1.4 TI'-linear connections

In order to develope the theory of I'-linear connections on the 1-jet space E, we
need the following

Proposition 1.4.1 i) The Lie algebra X(E) of vector fields decomposes as
X(E) = X(Hr) © X(Hu) © X(V),
where

X(Hr) = Span{%} . X(Mp) = Span {-a-f;-} . X(V) = Span {'«9%} .

i) The Lie algebra X*(E) of covector fields decomposes as
X*(E)=X"(Hr)® X*(Hm) ® X7(V),
where
X*(MHr) = Span{dt®}, X*(Ha) = Span{dz'}, X*(V)= Span{éy'}.

Let us consider hy, hps (horizontal) and v (vertical) as the canonical projections
of the above decompositions.

Definition 1.4.1 A linear connection V : X(E) x X(F) — X(E) is called a I'-linear
connection on E if Vhy = 0, Vhps = 0 and Vv = 0.

In order to describe in local terms a I'-linear connection V on E, we need nine
unique local components,

— (A1 kAR 71 opk p(R)1) A1) ~k(L) ~(k)1)1)
VI = (Gi1, Givy Gy L Lijh Loy Caiy Cigy » Caiin) ) (1.4.1)
which are locally defined by the relations
6 = 6 ) p 0 '3_(;:)(1)3
Ve =Cug Ve =Cagr  Viagg = Cowgg
6 71 6 6 _ 8 8 _ 0
Van =l Vaw=Unn Vs g
§ _mé § _ ok 8 9 _ ~mm 0
L5 -0 Visss =G0 g Vibay = Comn g
. : A : 6 & &
Now, using the transformation laws 1.3.9 of the elements { — 6 — —— } together
§t'éxri’ Oy

with the properties of the I'-linear connection V, we obtain by computations
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Theorem 1.4.2 1) The coefficients of the I'-linear connection V modify by the rules.

, - ) -\ 2 -
xy dt _x3 (dt dt
1. - i il
O = Cu (dt) +

= Oz* 0%7 di
ko _
() G =Cligem ot
k 825 JF N\ 2 g2
k)(1) _ A(m)) 0" 0% dt dt\* d%
BN *

W0ngem oz ar % @) @@
(-, 027 =1
Lijgzrr=L1:

m O -, 0ZP 9%9 825"
(har) § L dzm ~ P93z 521 ' Bz'0z)

m)a) 0" _ (1) OzP 829 %%
(1)(3)3 azm - (1)(p)q 35; 62:: az;azj ]

[ =1(1) _ x1(1) 97/ dt
Civy =Cunga g

) k 5=p 9zr
| K1) _ go1) 02" 02F 03" dt
(v) < Cs'(:') = Cp(r) dz* 8z 8zJ di

) _ A1) 9z 0P 92 dt
WG = “0)e)) 337 Ba7 BT 1

\

i1) Conversely, to give a I-linear connection V on the 1-jet space E is equivalent to
give a set of nine local coefficients 1.4.1 whose local transformations laws are described
in 1.

The previous theorem allows us to offer an important example of I'-linear connec-
tion on J}(R, M).
Example 1.4.1 Let h); (resp. p;;j) be a semi-Riemannian metric on the temporal
(resp. spatial) manifold R (resp. M) and H}, (resp. 7}‘:-) its Christoffel symbols. Let
us consider g = (M((; ;1, -‘\"((35)' where M((;;x =-HL, N((;;j = 7}y, the canonical
nonlinear connection on E attached to the metric pair (h11,ij). Using the trans-

formation rules of the Christoffel symbols, we deduce that the following set of local
coefficients [13]

= (O k)(1) k. r(k)(1)
BT = (G}l!or GE1%E,‘)1: 0, Lijr (1))(,'):': 0,0,0), (1.4.2)
where G}, = H},, GE:%:'I))I = —8FH},, LY = ~ and LE’;}E‘}))J' = 6lvf, is a

I'o-linear connection. This 1s called the Berwald Tg-linear connection of the metric
pair (hyy, ¢ij).

Note that a T-linear connection V on E, defined by the local coefficients 1.4.1, in-
duces a natural linear connection on the d-tensors set of the jet fibre bundle J}(R, M),
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in the following fashion. Starting with X € X(E) a d-vector field and a d-tensor field
D locally expressed by

5 5 8
— 1__ s (m) &
p=piim-8 o 8 o 0 onedte 5y’
HAERLFE oy i

we introduce the covariant derivative

VxD:XIVﬁD-i'XPVTiTD-FXg))V D= {XID:;((‘{I))((II;.::II'}-XP

1(G)(1)... (P) H1iCH)(1)-- (1) 9 !
D1k(11)((1)'-.1p+X(1 Dyrinyay.. l(w)} ®@®dt®dz by ...,
where
(TR SDLENDT | amGiy). 1i(m)(1)... ~()(1)
1i(5)(1)... m i i{m J
(hr) < Piecowyon = 6t + DLy Cmi + Dixayy. Cityimy
KO- om _ pHO)-.. m)(1) _
[t D)y Gkt = Di(dymy.. Gyt — -+
[ .. 5D (YD) Li(m)(1)... 1 ()(1)
1i(5)(1 - 1 im(; i m J
Drxtiyay.1p = '—“5'-,, + Dy Lmp + Dreqrjy. Lryimyp
(har) «
- 1G)(). HE)-. p(m)(1)
to = Diniyay. e = Drr)imy.. Ly — -+
4 aDI‘(J)(l)
pHEOM- (@) _ CPOD- | pimG)) i) plim).. oGO
W { Procle)= g+ Puan One + P Caxme)
LG)(1) (1) UGN Am)DE)
L ~ D1y Crpy’ — Pri(iimy... CY) ()

» b »n »n

The local operators ”;,”, ”},” and ”]( )» are called the R-horizonial covariant
derivative, M -horizontal covariani derwatwe and vertical covariani dernatne of the
I'-linear connection V.

The study of the torsion T and curvature R d-tensors of an arbitrary I'-linear
connection V was made in [18]. In- this context, we proved that the torsion
d-tensor is determined by twelve effective local torsion d-tensors, while the curva-
ture d-tensor of V is determined by eighteen local d-tensors.

1.5 hAh-Normal I'-linear connections

Let hjy; be a fixed semi-Riemannian metric on the temporal manifold R, Hi, its
Christoffel symbols and J = J(}},  22: ® dt ® da’, where J(33, . = hy,6}, the normal-
izgtion d-lensor [16] attached to the metric hy;. In order to reduce the blg number of

torsion and curvature d-tensors which characterize a general I'-linear connection on
E, we consider the following
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Definition 1.5.1 A I'-linear connection V on E, defined by the local coefficients

_ (AL ah o) F1 gk 1) &) AL ARO0)
VI = (G11, Gin Gaajan: L1j» Lz Ly Caiiy: Ciy » Caying) )

that verifies the relations G}, = H},, L}; = 0, C‘ll((;)) =0and VJ =0, is called a
h-normal T'-linear connection.
Remark 1.5.1 Taking into account the local covariant R-horizontal ” N, M-

horizontal ”|;” and vertical ”]3%” covariant derivatives induced by V, the condition
VJ = 0 is equivalent to

i @ ) () _
Janin =0 Janie =0 Jap;le =0 (1.5.1)

In this context, we can prove the following
Theorem 1.5.1 The coefficients of a h-normal I'-linear connection V verify the iden-
tities
Gl, = H}, L =0, Gl =0,

) _ b W) _ rk AR _ k(D)
Guyan =G =& Hin Ly = Lij: Cajaigy = Cigy -

(1.5.2)

Proof. The first three relations come from the definition of a h-normal I'-linear
connection.
The condition VJ = 0 implies locally that

0 . [ ok

h116§1J)(é:‘)1 = hnGj, + §; [— 81!11 + Hlll] ;

huLE?)((i-)) = hn1 L}, (1.5.3)
@) _ 5 A1)

h1Chyiyr) = huCigy,

where Hy;; = H} hy; represent the Christoffel symbols of the first kind attached to
the semi-Riemannian metric h;;. Contracting the above relations by h!!, one obtains
the last three identities of the theorem. m

Remarks 1.5.2 i) The preceding theorem implies that a h-normal I-linear on E is
determined just by four effective coefficients
k(1
VT = (H},,Gh, L?j: C;(g)))-
i1) Considering the particular case of the temporal metric & = §, we remark that

a é-normal I'-linear connection on J!(R, M) is a natural generalization of the notion
of .V-linear connection used in the [11).

Example 1.5.1 Using the previous theorem, we deduce that the canonical Berwald
['o-linear connection associated to the metric pair (h11,:;) is a h-normal I'g-linear
connection, defined by the local coefficients BTy = (H},, 0,7%,0).
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1.6 d-Torsions and d-Curvatures

The study of the torsion T and curvature R d-tensors of a h-normal I‘-lin;ar con-
nection V was made in [15]. We proved there that the adapted components T},, T};,

Pllg)) and REY;)U of the torsion d-tensor T of V vanish. Consequently, we obtain the_

following [15)

Theorem 1.6.1 The torsion d-lensor T of the h-normal I'-linear connection V 1s
determined by eight local d-iensors

. }lT hM v
hrhy | 0 0 0
(m)
huhr | 0 | T RE’{;;J. |
m
hvhy | 0 | TiF 1(3(15).'{1) (1.6.1)
m
i
m m
AR s
w | 0] 0 | ShmG
6M("‘) : 3_4\"("‘.)
m) () _ 9Mqys 1 m) (1) _ 9V
where P(l)l(i) T 9y —G;nl""s;pHn' P(l)i(j) T oy _L;?:
(m) (m) (m) (m) .
pem = Man  Nay  pemy _ SNy NGY  cemane _ ome) _ ome)
W15 = g 5 TN T T 50 P06 T i) i)
1 1
T4 =-GR, T§ =Lf-Lf}, PGy =Cly).

Remark 1.6.1 For the Berwald I'p-linear connection associated to the metrics hyg
and g;;, all torsion d-tensors vanish, except RE:‘)L = rihz,,, where (resp. r7},) are the
curvature tensors of the metric ¢;;.

In the same context, following the paper [15], we deduce that the number of the

effective adapted components of the curvature d-tensor R of a h-normal I'-linear
connection V is five.

Theorem 1.6.2 The curvature d-tensor R of V is deiermined by the following ef-
fective local d-curvatures

hr hy v
hphp 0 0 0
hahr | 0 Ra"u Rﬂﬂ%u - Rglk
huhy | 0 | Rijy Rﬁ))(é{jk = Riji (1.6.2)
vhr | 0 | Pogy | Pijancs = Pag
vhw | 0 | Py | Poye = Py
w_ | 0] St | S = Sigi
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where
665 6L£ m m (1 L4l
R, = _6::_"1 - Tk +GA Ly — LG Gy + Cs‘gm))REl))lk’
§LL. Ll i
1 9L ik mrl ! (1) p(m)
Rije = a0 = g7+ Lij Lk = Lk Lonj + Citmy Ry

Ly _ 0Gh K1) p(m) (1)
Fagy = Fgo = Cun + CigmyPayiony

OL!.
) _ 9Ly L o) pim) )
Fity = gy — G + CitmyPiricey

(1) I(1)
sww _ %6 Cm | moyoi) - amy g

SGXE) T TGy k oy i) “m(k) — Yi(k) ¥m(@)
Remark 1.6.2 In the case of the Berwald I'g-linear connection associated to the
metric pair (h1,ij), all curvature d-tensors vanish, except R:-j = rf-j +» Where rf.j x
are the curvature tensors of the metric ¢;;.

2 Relativistic rheonomic Lagrange geometry

2.1 Some aspects of classical rheonomic Lagrange geo'metry

A lot of geometrical models in Mechanics, Physics or Biology are based on the
notion of ordinary Lagrangian. Thus, the concept of Lagrange space which generalizes
that of Finsler space was introduced. In order to geometrize the fundamental concept
in mechanics, that of Lagrangian, we recall that a Lagrange space L" = (M, L(z, y))
is defined as a pair which consists of a real, smooth, n-dimensional manifold M and
a regular Lagrangian L : TM — R, not necessarily homogenous with respect to the
direction (9i)£=ﬁ- The differential geometry of Lagrange spaces is now considerably
developped and used in various fields to study the natural processes where the de-
pendence on position, velocity or momentum is involved [11]. It is very important
that the geometry of Lagrange spaces gives a model for both the gravitational and
electromagnetic field, in a very natural blending of the geometrical structure of the
space with the characteristic properties of these physical fields.

At the same time, there are many problems in Physics and Variational calculus
in which time-dependent Lagrangians (i. e., smooth real functions on R x TM™)
are involved. Consequently, a geometrization of the time-dependent Lagrangians was
required. In this direction, a geometry derived from a time-dependent Lagrangian was
sketched in [11] by Miron and Anastasiei. This is called the ”"Rheonomic Lagrange
Geomelry”. From our point of view, this time-dependent Lagrangian geometrization
has an important inconvenience that we will describe. , '

In the context exposed in the book [11], the energy action functional £, attached
to a given time-dependent Lagrangian,

L:RxTM — R, (t,l'i, y‘) —* L(t?z"! y‘.)t
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not necessarily homogenous with respect to the direction (y'), is of the form

.—.'l_:r_'l"

b
£(c) = /a L(t, (), #(2)) dt, (2.1.1)

where -[a, b)C Rand ¢ : [a,b] — M is a smooth curve, locally expressed by t — (z'(t)),
and having the velocity £ = (2%(t)). It is obvious that the non-homogeneity of the
Lagrangian L, regarded as a smooth function on the product manifold R x TM,
implies that the energy £(c) is dependent of the parametrizations of the curve c. In
order to remove this difficulty, the authors regard the space R x TM like a fibre
bundle over M. In this context, the geometrical invariance group of R x TM is
given by 1.1.4. In other words, to remove the parametrization dependence of £, they
ignore the temporal repametrizations on R x TM. Naturally, in these conditions,
their energy functional becomes a well defined one, but their approach stands out by
the “absolute” character of the time coordinate ¢, that is, an other inconvenience.

In our geometrical approach, we try to remove the deficiency of the time-dependent
Lagrangian geometrization constructed by Miron and Anastasiei. For that reason we
regard the space RxTM = J!(R, M) like a fibre bundle over Rx M. The gauge group
of this bundle of configurations is given by 1.1.2. Consequently, our gauge group does
not ignore the temporal reparametrizations, hence, it stands out by the relativistic
character of the time coordinate t. In this approach, using a given semi-Riemannian
metric hy1(t) on R, we construct a more general and natural energy action functional
attached to the time-dependent Lagrangian L, setting

b
£(c) = / L(t, 2 (2), #(8))/Thua] dt. (2.1.2)

Obviously, £ is well defined and is independent of the curve parametrizations.

In conclusion, we consider that the deficiency of the classical rheonomic geometry
comes from a puzzling utilization of the notion of Lagrangian. From this point of
view, we point out that, in our geometrical development, we use the distinct notions:

1) time-dependent Lagrangian function — A smooth real function on J1(R, M)=
RxTM;

il) time-dependent Lagrangian (Olver’s terminology) — A local function £ on
J'(R, M), which transforms by the rule £ = L|dt/df|. If L is a Lagrangian func-
tion on 1-jet fibre bundle, then £ = Ly/|hy;] represents a Lagrangian on J1(R, M).

Finally, we point cut that the geometrization attached to a time-dependent La-
grangian function that we will construct, can be called ”Relativistic Rheonomic La-
grange Geomelry”. The reasons which motivates us to use a such terminology was

given at the begin of this paper. .
2.2 Relativistic rheonomic Lagrange spaces

In order to develope our time-dependent Lagrange geometry, we start the study
considering L : E — R a smooth Lagrangian function on £ = J!(R, M), which
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is locally expressed by E 3 (t,z*,y') — L(¢,z*,v') € R. The vertical fundamental
metrical d-tensor of L is defined by

may _ 1 8L

C66) = 35509

(2.2.1)

Let h = (hy;) be a semi-Riemannian metric on the temporal manifold R.

Definition 2.2.1 A Lagrangian function L : £ — R whose vertical fundamental
metrical d-tensor is of the form

GE,}))((,-I))(% =%, y¥) = K (2)gi; (¢, 2%, ), (2.2.2)

where g;;(t,z¥,y*) is a d-tensor on E, symmetric, of rank n and having a constant
signature on E, is called a Kronecker h-regular Lagrangian function, with respect 1o
the temporal semi- Riemannian metric h = (hy;).

In this context, we can introduce the following

Definition 2.2.2 A pair RL" = (J}(R,M),L), where n = dim M, which con-
sists of the 1-jet fibre bundle and a Kronecker h-regular Lagrangian function
L:JYT,M)— Ris called a relativistic rheonomic Lagrange space. ‘

Remark 2.2.1 In the geometrization of the time-dependent Lagrangian function L
that we will construct, all entities with geometrical or physical meaning will be directly

arised from the vertical fundamental metrical d-tensor GE:))((;)). This fact emphasizes

the metrical character (see [5]) and the naturalness of the subsequent relativistic rheo-
nomic Lagrangian geometry.

Examples 2.2.1 i) Suppose that the spatial manifold M is also endowed with a
semi-Riemannian metric g = (g;j(z)). Then, the time dependent Lagrangian func-
tion L : JY(R, M) — R defined by

Ly = k" (t)gij (z)y'y’ (22.3)

is a Kronecker h-regular time dependent Lagrangian function. Consequently, the pair
RL™ = (J'(R, M), L,) is a relativistic rheonomic Lagrange space. We underline that
the Lagrangian £; = L;/|hy,| is exactly the energy Lagrangian whose extremals are
the harmonic maps between the semi-Riemannian manifolds (R, k) and (M, g). At
the same time, this Lagrangian is a basic object in the physical theory of bosonic
strings. '

1) In above notations, taking U((,.l))(t, z) as ad-tensor fieldon £ and F : RxM — R
a smooth map, the more general Lagrangian function L : E — R defined by

L2 = h''()gij(=)y'y + UL (¢, 2)y + F(t, z) (22.4)

is also a Kronecker h-regular Lagrangian. The relativistic rheonomic Lagrange space
RL™ = (JY(R, M), L,) is called the autonomous relativistic rheonomic Lagrange space
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of electrodynamics because, in the particular case hy; = 1, we recover the classical
Lagrangian space of electrodynamics which governs the movement law of a particle
placed concomitantly into a gravitational field and an electromagnetic one [11]. From
a physical point of view, the semi-Riemannian metric hy(t) (resp. gij(z)) represents
the gravitational poteniials of the space R (resp. M), the d-tensor U((l-l))(t, z) stands for
the electromagnetic poientials and F is a function which is called potential function.
The non-dynamic character of the spatial gravitational potentials g;;(z) motivates us
to use the term of "autonomous”.

iii) More general, if we consider g;;(t,z) a d-tensor field on E, symmetric, of
rank n and having a constant signature on E, we can define the Kronecker h-regular
Lagrangian function L3 : E — R, setting

La = h'(8)gij(t, 2)y'y + Uy (t,z)y' + F(t,2). (2.2.5)

The pair RL" = (J}(R, M), L3) is a relativistic rheonomic Lagrange space which is
called the non-autonomous relativistic rheonomic Lagrange space of electrodynamics.
Physically, we remark that the gravitational potentials g;;(t, z) of the spatial manifold
M are dependent of the temporal coordinate t, emphasizing their dynamic character.

2.3 Canonical nonlinear connection of RL"

Let us consider h = (h;;) a fixed semi-Riemannian metric on R and a rheonomic
Lagrange space RL™ = (J}(R, M), L), where L is a Kronecker h-regular Lagrangian
function. Let [a,b] C R be a compact interval in the temporal manifold R. In this
context, we can define the energy action functional of RL™, setting

E:C®°(R,M)— R, &(c)= /h L(t,z",yi)\/]n’l-|dt,

where the smooth curve c is locally expressed by (t) — (z'(t)) and ¢' = %ft—- _
The extremals of the energy functional £ verifies the Euler-Lagrange equations
d*zi 8L dz¥ 0L 9*L oL
261N e e e _ .
OO @7 T 570y & 9z T ooy T oy
where H{, are the Christoffel symbols of the semi-Riemannian metric h;;.
Taking into account the Kronecker h-regularity of the Lagrangian function L,
it is possible to rearrange the Euler-Lagrange equations 2.3.1 of the Lagrangian
L = L\/|h|, in the Poisson form [16],

Apzt +2G5(t, 2™, y™) =0, YE=Tn, (2.3.2)

H}, =0, Vi=Tn, (23.1)

where
d?z* dz* dz™

avet =i { G - M} o = T
MoOo82L . 9L 8L

2G* = g—{ ) — - -

9 =T \avarY "5t iy

o R
+ 37 Hj, + ?gs.fh”ﬂfly’j -
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Theorem 2.3.1 Denoting G(l)l = hy1G", the geometrical object G = (G(I)l) s a
spatial spray on the 1-jet space E.

Proof. By a direct calculation, we deduce that the local geometrical entities of the
1-jet space J!(R, M),

ki 2
kE_ g L : 3L}
25" = 2 {azJayy, ozt |’
8L oL (2.3.4)
k_9
s 9 {8t8y‘ ByH }

2J* = h“Huy’,

verify the following transformation rules:

Oz? PP 11 0zP dtaz.,

257 = 25" o2 Frd 87! dt 0z7
,3 uazpd'ta 23.5
2 =2 a* th e ar 5
OzP dt 87
P r 11 hotd
27° =27 6" —R 8z dt 6t

Consequently, the local entities 2G? = 287 +2HP +2JP modify by the transformation
laws

0z) OzP :
Hence, multiplying the relation 2.3.6 by h;; and regarding the equations 1.2.4, we
obtain what we were looking for. m

s oo OF
2" =267~ —h (2.3.6)

Taking into account the harmonic curve equations 1.2.5 of a time-dependent spray
on E, we can give the following natural geometrical interpretation of the Euler-
Lagrange equations 2.3.2 attached to the Lagrangian L.

Theorem 2.3.2 The eztremals of the energy functional atiached to a Kronecker
h-regular Lagrangian function L on J'(R,M) are harmonic curves of the time-
dependent spray (H,G), with respect to the semi-Riemannian metric h, defined by
the temporal components

i 1 ;
Hi = —3 Hh @)y (23.7)
and the local spatial components

) _ hug* [ 82L . 8L 8°L 4L
Gl 4 [31133;"!") 3:*+6t6y"+az"

H} + 2h“H}19k,y‘] . (2.3.8)

Definition 2.3.1 The time-dependent spray (H,G) constructed in the preceding
theorem is called the canonical time-dependent spray attached to the relativistic rheo-
nomic Lagrange space RL™.
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‘Remark 2.3.1 In the particular case of an autonomous electrodynamics relativistic
rheonomic Lagrange space (i. e., gi; (t, z*, y*) = gi;(z*)), the canonical spatial spray
G is given by the components

(1)

i) i h 9“ aUl 1

oF
6 1

(2.3.9)

(1) (1) .
where U ) 6U(‘.) EJU .
i)i ozI 33:'

In the sequel, using the theorems 1.3.2 and 1.3.3, we obtain the following

Theorem 2.3.3 The pair of local functions T = (M, (1)1, (1)3), which consists of the
temporal components

M, =203, = -HL, (2.3.10)

and the spatial components .
® _ 9Guy
(1i = gy

(2.3.11)

where Hg))l and GEI))I are the components of the canonical time-dependent spray of
RL", represents a nonlinear connection on JY(R, M).

Definition 2.3.2 The nonlinear connection I' = (! I((gl,N((lg ) from the previous

theorem is called the canonical nonlinear connection of the relativistic rheonomic
- Lagrange space RL™.

Remark 2.3.21) In the case of an autonomous electrodynamics relativistic theonomic
Lagrange space (i. e., gi;(t,z%,¥*) = g:;(z*¥)), the canonical nonlinear connection

becomes ' = (M(lgl,N(l)) where

() _ i hug (1)
M= -Hhy', NG =vht* + =00, (2.3.12)

2.4 Cartan canonical metrical connection of RL™

The main theorem of this paper is the theorem of existence of the Cartan canon-
ical h-normal linear connection CT which allows the subsequent development of the

relativistic theonomic Lagrangian geomeiry of physical fields which will be exposed in
the next Sections.

Theorem 2.4.1 (of existence and uniqueness of Cartan canonical connection)
On the relativistic theonomic Lagrange space RL™ = (JY(R, M), L), endowed with ils
canonical nonlinear connection [, there is a unique h-normal T'-linear connection

i 11
CT = (Hllslez jk» JE]:)))?
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having the metrical properties
. 1
i) 9ijie =0, gij IE;‘; =0,

kia',, ¥
i) Gh =420, Lk =1k, i =cit).

2 6t i Y =
Proof. Let CT = (G},,G},, L, ;E:._))) be a h-normal I'-linear connection whose
bgi
coefficients are defined by G}, = H},, Cv"‘1 = T-—“%{ and
i _ 9™ (bgim , bgrm  bgji
kT bk T bzi  szm )

(2.4.1)

i) _ 9™ (0gjm . Ogkm  Ogji
C:'(k)_ 2 ( " - :

oyt oy oym
By computations, one easily verifies that Ccr sétisﬁes the conditions : and ii.

Conversely, let us consider CT' = (G“,G o Ly (k)) a h-normal I'-linear con-
nection which satisfies i and 1. It follows directly that

=1 g 691
Gllellla ande 2 6tJ

The condition g;jjx = 0 is equivalent with

69‘1
bzk

Applying a Christoffel process to the indices {i, j, k}, we find

Tio _ gim (6gjm 6gkm 6937]:)
5 :

= gmj L QamL_,k

&= ozk bz bzm
By analogy, using the relations C'E;)) = C;((i)) and 9=J|E3 = 0 and following a

Christoffel process applied to the indices {, j, k}, we obtain

5i(1) _ 9™ [09jm 99km _ 0Ogjk
Gt =3 (ayk * oy aym)'

In conclusion, the uniqueness of the Cartan canonical connection CT is clear. =

Remarks 2.4.1 i) Replacing the canonical nonlinear connection I' by a general one,
the previous theorem holds good.
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ii) As a rule, the Cartan canonical connection of a relativistic rheonomic Lagrange
space RL"™ verifies also the metrical properties

hun =hyp= h].llg,)) =0 and g;;,, = 0. | (2.4.2)

iii) Particularly, the coefficients of the Cartan connection of an autonomous rela-
tivistic theonomic Lagrange space of electrodynamics (i. e., gi;(t, z*,4*) = gi;(z¥))
are the same with those of the Berwald connection, namely, CT = (H%I,O,‘y}k,O).
Note that the Cartan connection is a I-linear connection, where T is the canonical
nonlinear connection of the relativistic rheonomic Lagrangian space while the Berwald
connection is a I'g-linear connection, I'y being the canonical nonlinear connection asso-
ciated to the metric pair (hy;, gi;). Consequently, the Cartan and Berwald connections
are distinct. .

iv) The torsion d-tensor T of the Cartan canonical connection of a relativistic rheo-

nomic Lagrange space is determined by only six local components, because the proper-
ties of the Cartan canonical connection imply the relations T = 0 and S((;:;((B((?) = 0.
At the same time, we point out that the number of the curvature local d-tensors of
the Cartan canonical connection not reduces. In conclusion, the curvature d-tensor
R of the Cartan canonical connection is determined by five effective local d-tensors.

Their expressions was described in Section 1.

Definition 2.4.1 The torsion and curvature d-tensors of the Cartan canonical con-
nection of an RL™ are called the torsion and curvature of RL™.

By a direct calculation, we obtain

Theorem 2.4.2 i) Ali torsion d-tensors of an auionomous relativistic rheonomic
Lagrange space of electrodynamics vanish, ezcept

mk BU(I)
(m) _  hug 1 7(1) (k)j
gy ==—— g+ 5

(2.4.3)

k

(m) _ .m .k, hug™ [ (1) (1) ]
Ry = iy + = [Uggas + Ui -

where r;;-‘k are the curvaiure iensors of the semi-Riemannian meiric Gt

i1) All curvature d-tensors of an autonomous relativistic rheonomic Lagrange space

of electrodynamics vanish, ezcept jok = r::jk-

3 Relativistic rheonomic Lagrangian electromag-
netism

3.1 Electromagnetic field

Let us consider RL"™ = (J*(R, M), L) a relativistic rheonomic Lagrange space and
I's= (M((; ;1=N((3j) its canonical nonlinear connection. At the same time, we denote

Gr={H, Gfl,ij,C‘.k(gi))) the Cartan canonical connection of RL".
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. g .
Using the canonical Liouville d-tensor field C= y‘BF, we can introduce the de-
flection d-tensors

A . i) _ i () _ i)
Dy =4 DRy =vis D =I5, (3.1.1)

where 7,7, 7|;” and ”|8g” are the local covariant derivatives induced by CT.
By a direct calculation, we find

Proposition 3.1.1 The deflection d-tensors of the rheonomic Lagrang~ space RL"™
have the ezpressions
ik
=) _ 9" Sg9km
Pon =5 v

) = (1) i
D) = =Nay; + Limy™,

D) _ i 4 i)
) = 65 + Cithum.

(3.1.2)

Remark 3.1.1 For an autonomous relativistic theonomic Lagrange space of electro-
dynamics (i. e.. gij = gi;(z¥)), the deflection d-tensors reduce to

o I, S 1) (1) _ g
D=0, D= _Zg:khnU((ij, i) =8k, (3.1.3)

In the sequel, using the vertical fundamental metrical d-tensor GES&; = hllg.. of
the relativistic rheonomic Lagrange space RL™ we construct the meirical deflection

d-tensors,
Dl = Gl D = v
Diss = Glaxey Dl = vy (3.14)
dg})((il)) = GE:))((:))dg;S)) = |8’§=
where y; = GE}))((,:})y" = h'lg;xy*. Using the expressions 3.1.2 of the deflection distin-
guished tensors, it follows

Proposition 3.1.2 The metrical deflection d-tensors of the relativistic rheonomic
Lagrange space RL™ are given by the formulas

11
ALY h égl'm m
O 2 & Y

Dj; = hligax [-NE) + Lhm] (3.1.5)

1)1 E(1) m
sy = h" [9"1' + 9t Cr)y ] |
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Remark 3.1.2 In the particular case of an autonomous relativistic rheonomic La-
grange space of electrodynamics (i. e., gi; = gij(z*)), we have

DU) __U(

o d 1) = plig,. (3.1.6)

ay _
=0, D @it oG =

O

In order to construct the relativistic rheonomic Lagrangian theory of electromag-
netism, we introduce the following

Definition 3.1.1 The distinguished 2-form on E = J!(R, M),
F = FQl8y' Adz’ + V64 A8y, (3.1.7)
where

()i Gj? =)(J) = (OG) — TEX
is called the electromagnetic d-form of the relativistic rheonomic Lagrange space RL™.

F(l) 2 [D(l) D(l) 1)(1) {d(l)(l) -}(1) (318)

Using the above definition, by a direct calculation, we obtain

Proposition 3.1.3 The following ezpressions of the electromagnetic components,

hll 1M1
) = 5 [omNE — sim NG + (gin L — onLhn)y™] . D) = 0

(3.1.9)
hold good.

Remark 3.1.3 We emphasize that, in the particular case of an autonomous rela-
tivistic rheonomic Lagrange space (i. e. gi; = gij(z*)), the electromagnetic local
components get the form

W _ Lo o] o
Foyi = g[o)s Uil fagy =0 (3.1.10)

3.2 Maxwell equations

The main result of the electromagnetic relativistic rheonomic Lagrangian geom-
etry is given by

Theorem 3.2.1 The electromagnetic local components F((‘.l)} of a relativistic rheo-
nomic Lagrange space RL™ = (J'(R, M), L) are governed by the Mazrwell equations

(1) . A1) (1) Q) plm) #(1) pim)
F(;)m A{t,k}{D(smk"‘D(‘)mm- (:)(m)R(l)lk [1:]& Ck[m)R ]yp},

f1;1i
F) 1)(1)(1) (m) (1) (1J
Z (ile = Z )(')(mJR(I)Jky’ Z: F( jl(k) =
{i.5.k} {t J k) {ij,k}

(1)(1), ¢ M) _ A1)~y _ A 8P
UJhcrc yp - G(P)(q)y and C(‘)(;)(m) = G(l)(q) C‘(m) 2 ay‘aylaym
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Proof. Firstly,. we point out that the Ricci identities [18], applied to the spatial
metrical d-tensor g;;, imply that the following curvature d-tensor identities

1 @
Reitk + Rimik =0,  Rmijk + Rimjr =0, Pm.j((k)) + P‘.mj(k)) =,

where Rmi1x = gipRiuk: Rumije = g;prnjk and Pms'j((lk)) = g.-pr:lj((:)), are true.
Now, let us consider the following general defiection d-tensor identities [18]:

A ( () m 1) p(m)
dy) D?Sm - D(gkn =y R — Dy Tk — dEi’%ﬂ?)me

®) ®»  _ @)1) p(m)
d2) Dyjiie = Dityey = V™ R — d(050my Rityiao

®) (1) _ XD _ mpp (1) _ (@) ~m1) _ 0)1) p(m) (1)
ds) D)1 — 48 = v Pasy) DimCity =AY Py -

G(I)(l)

Contracting these deflection d-tensor identities by (e and using the above curva-
ture d-tensor equalities, we obtain the following metrical deflection d-tensors identi-
ties:

(1) '3 (- 1 (1)(#) p(
dy) D i D(;))m = —ym R — D(;fmTi‘i - d(i)(:z)R(?;)lk'

()1}
. 1 _ m o 1)) p(m)
2) Diiyite = Diiyet; = —¥m Bk = diijimy Rt

N A _ D) _ o pm (1) (1) ~m() (1)) p(m) (1)
3) Diigile) — dhiscens = —Im P03 = Digm ity — A PSS

At the same time, we recall that the following Bianchi identities [15]

I(1 m
b1) Aggay { Riui + Thype + CIOLRE Y =,
I(1 m
b2) Loy {Risr = Clm B =0,

! H m
bs) Ay {Pjs(y) + i + Clm PG = 0,
where Ay; ;) means alternate sum and E{i'j.k} means cyclic sum, hold good.

In order to obtain the first Maxwell identity, we permute 7 and k in d} and we
subtract the new identity from the initial one. Finally, using the Bianchi identity &,
we obtain what we were looking for. '

Doing a cyclic sum by the indices {7, j, k} in d} and using the Bianchi identity b5,
it follows the second Maxwell equation.

Applying a Christoffel process to the indices {7, j,k} in d§ and combining with
the Bianchi identity b3 and the relation P((Blj)(]f; ) = P((f;z(j()l J, we get a new identity.
The cyclic sum by the indices {i, j, k} applied to this last identity implies the third
Maxwell equation. =

Remark 3.2.1 In the case of an autonomous relativistic rheonomic Lagrange space
of electrodynamics (i. e., gij = gi;(z*)), the Maxwell equations take the simple form

am _1 (m) a (1)) _
Fiyen = 'Q'A{f-*}hug"mR(l)lk’ E Feyiie =0, Z F:‘)jl(k) =0. (3.2.1)
{i.j, k) {i.j.k)
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4 Relativistic rheonomic Lagrangian gravitational
theory

4.1 Gravitational field

Let h = (hj;) be a fixed semi-Riemannian metric on the temporal manifold R
and T = (M((;%p N((HJ') a fixed nonlinear connection on the 1-jet space J}(R, M). In
order to develope a relativistic rheonomic Lagrange theory of gravitational field on
J(R, M), we introduce the following

Definition 4.1.1 From physical point of view, an adapted metrical d-tensor G on
JY(R, M), expressed locally by

G = hyydt ® dt + g;jdz* ® dz? + hllg;;6y° @ 6y,

where g;; = g,-j(t,:::",yk) is a d-tensor on J*(R, M), symmetric, of rank n = dim M
and having a constant signature on FE, is called a gravitational h-potential on E.

Now, taking RL™ = (J}(R, M), L) a relativistic rheonomic Lagrange space. via
its vertical fundamental metrical d-tensor

) 1 8L iy
O0) = 3555y =1 et zt v,

and its canonical nonlinear connection I' = (M((BI,N({:L), one induces a natural
gravitational h-potential on J!(R, M), setting

G= h}_]_dt X dt + g,'jd.’ti ® de -+ hng,-jéyi @ 6‘1;’ _ (411)

4.2 Einstein equations and conservation laws

Let us consider CT = (Hy,, G}y, L} k,C;Ei})) the Cartan canonical connection of
the relativistic theonomic Lagrange space RL™.

We postulate that the Einstein equations, which govern the gravitational A-
potential G of the relativistic rheonomic Lagrange space RL", are the Einstein equa-
tions attached to the Cartan canonical connection of RL" and the adapted metric G
on J}(R, M), that is,

Se(CT

(2_ )G = KT, (4.2.1)
where Ric(CT) represents the Ricci d-tensor of the Cartan connection, Se(CT) is its
scalar curvature, K is the Einstein constant and 7 is an intrinsec tensor of matter
which is called the siress-energy d-tensor.

: 6 6 0

In the adapted b (Xa) = | =, —, —
apted basis (X4) (&, 527 Oy

Cartan connection is expressed locally by R(X¢c,Xg5)Xs = REg-Xp. Hence, it

Rie(CT) —

), the curvature d-tensor R of the
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follows that we have Rap = Ric(CT)(X4,Xp) = R2pp and Sc(CT) = GABR,p,

where "
rh“, fOl‘A:l,B:l

g7, for A=i, B=j

G = i i ; (4.2.2)
hi1g". for A= El))’ = 8;
. 0, otherwise.

Taking into account the expressions of the local curvature d-tensors of the Cartan
connection and the form of the vertical fundamental metrical d-tensor GA2 | we deduce

Proposition 4.2.1 The Ricci d-tensor of the Cartan canonical connection of RL"
is determined by the following siz effective local Ricci d-tensors,

=]

tHu - Hllu =0, Ra=R}.. Rij= R::;_lm, R(l) not P_(l) = _pm ()

iG) T TiG) T ThimG)
RY Mot p) _ pm (1) p(1) not p1) _ pm (1) p(1)(1) RO (1)(1) _ om(1)(1)

(N (M il(m) * (O] )i — T ij(m) (HG) — “(3G) T CiG)m)

n
Ry,

Consequently, denoting R = g/ R;; and S = hy,¢"/ 5'8))6.1)), we obtain

Proposition 4.2.2 The scalar curvature of the Cartan canonical connection of RL"
has the expression '

Se(CT) = R+ 8. (4.2.3)

Remark 4.2.1 In the particular case of an autonomous relativistic rheonomic La-
grange space of electrodynamics (i. e.. g;; = gij(z*)), all Ricci d-tensors vanish,
except R;; = r;j, where r;; are the Ricci tensors associated to the semi-Riemannian
metric g;;. It follows that the scalar curvature of a such space is S¢(CT) = r, where
r is the scalar curvature of the semi-Riemannian metric g;;.

Using the above results, we can establish the following
Theorem 4.2.3 The Einstein equations. which govern the gravitational h-potential

G induced by the Kronecker h-regular Lagrangian function of a relativistic rheonomic
Lagrange space RL™, have the form

f R+S .
-—‘5‘—"111 = K7y,
R+ S
pay _ R+S .0 L))
Stoey — —5—h"ai = KTHEY,
e T (1) _ (1)
E { 0=Ti. Ra=KTi Py =KTgy
= o)) o) el 1) el
0=T: Py =KTgy, Fay =KT6
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where Typ, A, B € {1,1, E:))} are the adapted local components of ih_c siress-energy
d-tensor T .

Remark 4.2.2 i) Note that, in order to have the compatibility of the Einstein equa-
tions, it is necessary that the certain adapted local components of the stress-energy
d-tensor vanish ”a priori”.

i1) In the particular case of an autonomous relativistic rheonomic Lagrange space of

electrodynamics (i. e., gi; = gi;(z*)), the following Einstein equations of gravitational
field,

r
rij = 9 = KTy

(Er) ;
| P 1)(1)
~5h"9i = KTG0)
0=Ty, 0=Ty, 0=T)
(Eg) (M
_q@) a_ g1 4o )
0=Tu, 0=Tgy, 0=Ty;
hold good.

It is well known that, from physical point of view, the stress-energy d-tensor
7 must verifies the local conservation laws TABl =0V A€/, (3}, where
TAB =GBP1p,.
‘ Denoting 73! = ATy, ™ = ¢™ T, and T((l';'()j()l) = hug”“"‘f(s,l)ﬁl)), by computa-
tions, we find

Theorem 4.2.4 In the relativistic rheonomic Lagrangian gravitationat theory, the
conservation laws of the stress-energy d-tensor T have the local form:

f

m)(1
7'11[1 = R'ﬂm B P((l)l)I( :

(m)
)y
{ Tiim = —Piji (m) (4.2.4)
M) |(1) _ _ pm()

WG |(m) — ()Im?

.

where R} = g™ Rm1, P((gl = hug""‘P((:‘))l, P((SJ = hug""‘P&))j, P’f;; — g""‘Pm(é)).
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