GRADIENT METHODS
ON FINSLER MANIFOLDS

G. Bercu

Abstract

The present paper refers to the gradient method on Finsler manifold, showing
how to use the direction y for obtaining a suitable descent algorithm.
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1 Preliminaries

Let M be an n-dimensional, complete, connected C* manifold and TM its tangent
bundle. Denote by (z,y) an arbitrary point in TM and by z the corresponding in M.

Definition. The pair (M, F) is called Finsler manifold if the function F : TM —
R satisfies the axioms:

1) F(z,y) >0, Vz € M,Vy # 0;

2) F(z,My) = || - F(z,y),¥A € R, V(z,y) € TM;
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4) F is of C*-class at every point (z,y) € TM, where y # 0, and it is continuous
at every point (z,0) € TM. _

Suppose we have a C? real function f : M — R. and we want to find one of its
minima. P

We consider the 1-form df(z) which has the components f;(z) = 6_:;;(::) and the
vector field grad f(z,y), which has the components fi(z,y) = g (z,y)fj(z), called
the gradient of the function f. We remark that —grad f is a vector field orthogonal
to the hypersurfaces of constant level of f, which shows at every point z € M the

3) the fundamental tensor g;;(z,y) = is positive definite;
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direction and the sense of steepest descent. This suggests that the most suitable
solution of the inequality df(z;)(Xz,) <0 is

Xz, = —grad f(z;i,y), y€T: M.

We obtain an iterative process, called the gradient method. Thls method is de-
scribed by the following algorithm:

1) One considers an initial point z; and computes grad f(z1,y), y € T:, M.

If grad f(z1,y) = 0 for every y € T;, M, then stop !

2) If grad f(z1,y) # O, then from the point z; we pass to another point z, =
exp, (—t - grad f(z1,y)), t € [0,00).

We choose y such that Hz;lna_:t:l f(z2(z1,9)) < f(z1).

If gradf(z2,y) = 0 for every y € T, M, then stop.
3) If grad f(z2,y) # 0, then from the point z, we pass to another point z3 =
exp,,(—t - grad f(z2,y)).
We choose y such that jmax f(za(z2(z1,v))) < f(z2).
y -

If gradf(zs,y) = 0 for every y € T;, M, then stop.

At "stop” one verifies if the detected point is a minimum point.
4) Generally, if we have grad f(z;,y) # 0, then we set

ZTiy1 = exp;, (—tgrad f(z;,y)).
We choose y such that !ﬁll]ajl F(zis1(zi(- . - (z2(z1,¥)) -- ) < f(=:).

Remark. The real number ¢t > 0 is arbitrarily chosen and the same for all
iterations, such as the next inequality is verified

() f(z) = f(z:) < t-€ - df(Xi).

Here
Xi = —grad f(zi,y), z = exp;,(~t - gradf(zi,y))
and ¢ € (0;1) is an arbitrarily fixed constant, independent of i.
If the inequality (#) is not satisfied, then we replace ¢ by At, A € (0; 1), with A
fixed such as () to be satisfied.

In the book [1] the notion of forward (resp. backward) Cauchy sequence is intro-
duced.

Definition 2. A sequence {z;} in M is called a forward (resp. backward) Cauchy
sequence if, for all = > 0, there exists a positiv integer N(¢) such that N < i< j =
d(zi,z;) < € (resp. d(zj,zi) < ).

2 Main Results

Theorem 1. Let {z;} be a sequence in a Finsler manifold (M, F). Then the following
three statements are equivalent:
(a) {zi} converges to z in the manifold topology of M.
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(b) d(z,z;) = 0
(¢) d(zi,z) — 0.
Let us refer to the sequence generated by the previous algorithm. If

{z1,22(21,9), z3(21,9), - .}

is a sequence which uniformly converges forward to z,, then the sequence of values
f(z1) > f(z2) > ... f(z;) > ... converges to the minimum f(z.). Also, we can prove
. the convergence of {grad f(z;,y)} to zero.

Theorem 2. Let M be n-dimensional, complete connected C*® Finsler manifold,
and f : M — R a real lower bounded C? function. We denote by X; and Xz the
tangent vectors at = and Z respectively to the geodesic which joins the point z and z.
If for any z,Z € M, the Lipschitz condition

|df(Xz) — df(Xz)| < r-d*(z,2), r >0

is satisfied, and if the choice of numbert > 0 is made as described above, then in the
1terative process zi41 = exp, (—t-grad(zi,y)), i =1,2,..., we have ,-ﬁjﬂ, grad f(z;) =
0, for any given initial point z,.

Proof. Let 75z : [0,1] = M be a geodesic which joins the point z = 7.2(0) and
Z = 7:z(1). Since the equation of 4,z does not depend on y, we infer that the proof
is similar as in Riemann case [3]. Thus, since f is of class C?, we find

F@) = 1) = fOer(D) = free0) = [ FofCree(a))du =

1
|} e @) = dfGiee (o)
and ug € [0;1]. Denoting z = v,:2(ug), we can write

df (Yzz (uo)) df(X:) = df(Xz) + (df (X:) - df(X:)) <

< df(X:)+ rd¥(z,2).

Since vzz is a geodesic, we have ||¥z2(u)]] = ||422(0)]] = const. Thus

Up 2
7)< (]o Il‘ru(u)lld") = |z (0)I1” - uf < [I5=2(0)II7-
Putting X; = 9.2(0) := —t - grad f(z,y), t > 0, it follows

f(Z) = f(z) = df(7z2(uo)) < —t - ||grad f(z, y)II*+
+rt? - |lgrad f(z,y)|]? =t - ||grad f(z,v))? - (-1 +1r)

It follows the inequality f(z) — f(z) <t-2-(-1+1r).
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This estimation shows there exist some numbers ¢ > 0 such that the inequality
f(z) = f(zi) < €-t-df(X;) is satisfied, (where X; = —grad f(zi,y)), namely those
2 _

for which bz(—l +ir)< et < 952;:

So, we find that f(ziy1)— f(z:) < —¢-t-||grad f(zi, y)||?. If |lgrad f(z:, v)||? > 0,
then for any : € N* we have f(zi+1) — f(zi) < 0; i.e. the sequence {f(z:)} is
decreasing. Moreover, f is lower bounded, hence ilirg (f(zi+1) — f(=z:)) = 0.

But, from the last inequality we infer that

lrad f(ae, )t < ZEL=S(Ew0)

2

where 0 <t < 9—# Hence, we obtain that lim ||grad f(z,-,y)“.' =0.
1—00
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