DYNAMICS INDUCED
BY SECOND-ORDER OBJECTS

C. Udriste

Abstract

§1 defines the second-order objects. §2 (§3) describes a nonclassical elec-
tric (magnetic) dynamics produced by a "clever second-order Lagrangian”, via
the extremals of the energy functional. §4 generalize this dynamics, having in
mind possible applications for dynamical systems coming from Biomathematics,
Economical Mathematics, Industrial Mathematics, etc.
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1 Introduction

This paper will concentrate on certain geometric ideas that are very important in the
physical applications. To avoid too much repetition, M will denote a differentiable
manifold of dimension n, and all the functions are of class C*.
Let z° = z°(z%), a,a = 1,...,n be a changing of coordinates on M. Then we

introduce the symbols
ps =92 pa _ Oz

@™ ggo’ TP T fgagh’
For a differentiable function f : M — R we use the simplified coordinate expression
f(z®) = f(z%(z®)), the first order derivatives f,q, f,o and the second order derivatives
f.ap, f.ab- These are connected by the rule
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The pair (first-order partial derivatives, second-order partial derivatives) possesses
the ”tensorial” change law that the second derivative, by itself, lacks. This pair was
used in the classical works like ”contact element” or like ”jet”.

If a curve is given by the parametric equations z® = z%(t), t € I, then the preceding
diffeomorphism modifies the pair (z,z ® z)7 as follows

£® = #°D?%, £* = £°D? 4+ °z* DY,

(;‘;p)=(’f D;;f)(éf;.).

The pair (acceleration, "square of velocity”) is suggested by the equations of geodesics
o4+ = 0. _

Consequently, when first and second derivatives come into play together, then
matrices of blocks such as '

D: Do D Dg
K = a B , K_l — b _
0 DiD} 0 DgD}
are useful.

Definition. Let (w,) be an 1-form and (w,;) be a mathematical object with two
indices. Any pair (wa,wqs) admitting the changing law () is called second-order
object.

The theory of superior-order objects was initiated by Foster [3], suggesting new
point of view about the fields theory.

We use these ideas to study the extremals of some energy functionals Ssroduced by

; : . 1 ;
particular second-order Lagrangians associated to n + n? or n + n(n_;-- potentials.

Let U C R® = M be a domain of linear homogeneous isotropic media. In terms
of differential forms, Mazwell equations on U x R can be expressed as

dD = p, dH =J +6,D
dB = 0, dE = —agB,

where the magnetic induction B, the electric displacement ‘D, and the electric current
density J are all 2-forms; the magnetic field H, and the electric field E are 1-forms;
the electric charge density p is a 3-form. The operator d is the exterior derivatives
and the operator 9; is the time derivative.

The constitutive relations are

D=¢e¢xE, B=puxH,

where the star operator * is the Hodge operator, ¢ is the permitivity, and u is the
scalar permeability.

The local components E;, i = 1,2,3, of E are called electric potentials, and the
local components H;, i = 1,2,3, of H are called magnetic potentials. Since the electric
field E, and the magnetic field H are 1-forms [1), we combine our ideas [4], [5) with
the ideas of Foster, creating a nonclassical electric or magnetic dynamics. Finally, we
generalize the results to nonclassical dynamics induced by a second-order object.
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2 Nonclassical electric dynamics

Let E; be the electric potentials. The usual derivative E; ; may be decomposed into
skew-symmetric and symmetric parts,
1 1
Eij = 3(Bij — Bjs) + 5(Bij + Ejs).
The skew-symmetric part ¢
mij = 5(Eij = Ejy)

is called Mazwell tensor field giving the opposite of the time derivative of magnetic
induction. The symmetric part

1

5(Eij + Ejy)
is not an ordinary tensor, but the pair

1

is a second-order object, whereas the pair (E;, 0) is not [3].
Let w;i; be a general object such that (Ej;,w;;) is a second-order object. The
difference

1
(0, wij = 5(Eij + Eji))

is a second-order object, having the form (0, g;;) of a Riemann (or semi-Riemann)
metric if w;; is symmetric, g;; is a (0,2) tensor field and det(g;;) # 0. In this context
the equality

(Es,wij) = (E;, %(Ei.j + Ej;)) + (0, 9i5)

shows that the valuable objects

1
§(E-',i + Ej.i)

come from electricity and mate with gravitational potentials g;;. Consequently they
have to be electrogravitic potentials.

The preceding potentials determine an electric energy element (square of the elec-
tric arc element),

dn? = E; &7 + -;-(E,-,,- + E; ;)dz'do.
If the most general energy element (square of the arc element) is given by
do? = E; d*z* + w;,-dzid::j 5
and the gravitational energy element (square of the pure gravitational arc element) is

ds? = ggjdzidzj ;
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then

do? = dn? + ds°.
The electric energy element is zero along integral curves of the distribution generated
by the electric 1-form E. The general energy element determines the energy functional

d?z’ dz? dz’
(1) f (E o T a ) o,
which is not independent of the parameter ¢.
Theorem. The exiremals of the energy functional (1) are described by the DEs

Py . dz' do’
ki gr T [“"*5" ~ g B + By = By ")] E

Proof. Using the second-order Lagrangian
d%z} dz’ dzi

L=Ei 7 +wiigr o

the Euler-Lagrange equations

d Ly + - L =)
priat T il
transcribe like the equations in the theorem.
To an arc element there may correspond a field theory. Consequently we ob-

tain a field theory having as basis the general electrogravitic potentials. The pure
gravitational potentials are given by

Lox —

9ij = Wij — %(Ef,j + Eji).
We deﬁne 1
Lije = wije — E(Ek,:'j + Ejix — Ei i),

where

' 1

Wijk = §(w£j,k + Wik,j — Wkji)
are the Christoffel symbols of w;;. It is verified that

Lijk = gijk + mijk,

- where g;;; are the Christoffel symbols of g;;, and
MijE = Myj k + Mik j

is the symmetrized derivative of the Maxwell tensor
1
mij = 5 (Eij — Bji)-
Corollary. The exiremals of the energy functional (1) are described by the DEs

d*z! - )dz‘ dzi 0
9ki—75 p7p) gk;t Mkji a dat
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3 Nonclassical magnetic dynamics

Let H; be the magnetic potentials. The usual derivative H;; may be decomposed
into skew-symmetric and symmetric parts,

1 1 ’
Hij = 5(Hij - Hj;) + 5 (Hij + Hj,i),
where

u— (Ht..i" J,s)

is the Mazwell tensor field giving the sum between the electric current density and
the time derivative of the electric displacement.
The pair

(Hi, %(Hi,j + H,-,i))

is a second-order object. If (H;,w;;) is a general second-order object, then the differ-
ence

1
9ij = wij — (Hij + Hj:)
represents the gravitational potentials (a metric) provided that w;; is symmetnc, gij is

a (0,2) tensor field and det(g;;) # 0. Consequently the valuable objects -(H, Ji+H;i),

which come from magnetism and mate, have to be magnetogravitic paient:als
The preceding potentials produce the following energy elements:
1) magnetic energy element,

d\? = H; d*z' + —;-(H,- j+ Hj)dz'dz;
2) gravitational energy element,
ds? = g;_,-da:id:j :
3) general energy element,
dp? = H; d*z' + wijdz*dz? |

which satisfy the relation
du? = d)\? + ds?.

The magnetic energy element is zero along integral curves of the distribution
generated by the magnetic 1-form H.
Let us consider the energy functional

d?zt dz* dz’
9 ST .
@) ./(H' az Ty dt)dt

determined by a particular second-order Lagrangian.
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Theorem. The eztremals of the energy functional (2) are solulions of the DEs

de' do
dt dt

d?z?

1
Gri—p5 T [Whji — E(Hk.ij + Hj,ik = Hjix) | =0.

To an energy element (arc element) there may correspond a field theory. Conse-
quently we obtain a field theory having as basis the general magnetogravitic potentials.
The pure gravitational potentials are (components of a Riemann or semi-Riemann
metric)

1
gij = wij — 5(Hi;j + Hjp).
We introduce {
Lijr = wijr — §(Hk,'ij + Hjix — Hi ji)-
It is verified the relation .
Lijk = gijx + Miji,

where g;;x are the Christoffel symbols of g;;, and

M = M e + Mii
is the symmetrized derivative of the Maxwell tensor

1

Mi; = 5(Hij — Hjj).

Corollary. The extremals of the energy functional (2) are solutions of the DEs
d2zt dei dzi

Gki~py T (grji + Mkji)?t'"-&?' = ),

4 Nonclassical dynamics induced by a
second-order object

Now we want to generalize the preceding explanations since they can be applied to dy-
namical systems coming from Biomathematics, Economical Mathematics, Industrial
Mathematics etc.

Let w; be given potentials. The usual derivative w; ; may be decomposed as
1 1
wij = glwij = wji) + 5 (Wi +wji),

where

1
M;; = g(wi.j — wj i)

i1s a Mazwell tensor field. The pair

(wi: %(wf,j + w,-,,-))
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is a second-order object. If (w;,w;;) is a general second-order object, then we suppose
that the difference

1
9ij = wij = 5(wij +wj,)

represents the components of a metric, i.e., w;; is symmetric, gi; is a (0,2) tensor field
and det(g;;) # 0.

The preceding potentials produce the following energy elements:

1) potential-produced energy element,

do? = w; d*z’ + %(w;h,' + wj ;)dz'dz!
2) gravitational energy element,
ds? = g;;dz'dz?;
3) general energy element,
df? = w; d*z* + w;_,—dz‘d:j,
which verify
df? = da?® + ds?.

The Pfaff equation widz® = 0, i = 1,...,n defines a distribution on M. The
valuable objects

1
7 (Wi +wji)

are the components of the second fundamental form of that distribution (6].

The potential-produced energy element is zero along integral curves of the distri-
bution generated by the given 1-form w = (w;).

The general energy element produces the energy functional

d*z’ dz' dz’
@) J (oG e ) &

which depends on t. This energy functional is associated to a particular Lagrangian
L of order two.

Theorem. The extremals of the energy functional (8) are solutions of the DEs

d?z’ Lo dz’ dz’
Jri—gr + |Whii — S(Wk,ij + wj ik — wjix) s =,

To an energy element there may correspond a field theory. We introduce
1
Fije = wiji — 5 (@ ij + wjik — wiji),
where w;;; are the Christoffel symbols of wi;j. After some computations we find

Lijk = gijx + mijx,
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where g;;i are the Christoffel symbols of gij, and
- m;jr = Mij e + Mik j

is the symmetrized derivative of the Maxwell tensor field M.
Corollary. The eztremals of the energy functional (8) are solutions of the DEs

d*z! )d:c dzi -0
Gki—5 di2 -+ (Qk;u + my;; di dt = U
Open problem. 1) Find the linear connections [2] associated to the preceding
second-order DEs.

2) Analyse the second variations of the preceding energy functionals.
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