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Abstract

Let M be a compact manifold. One very importaant problem is to determine,
if on M there is a metric with positive sectional curvature. We study this
problem by the means of the spectrum of the Laplace operator.
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1 . Introduction

Let M be a compact orientable Riemannian manifold of dimension n. The existence of
a Riemannian metric g on M with some properties is an open problem. Especially to
determine Riemannian metrics with positive sectional curvature is a difficult problem.
It is an open problem to find out if the manifold Sk × Sλ, k, λ ≥ 2 can carry a
Riemannian metric with positive sectional curvature. In order to face this problem
we use the notion of positively k-pinched manifold. Therefore this problem can be
stated as follows: If a manifold is given, is there a Riemannian metric positively
k-pinched, where k is small as we like ?

The aim of the present paper is to study this problem. The whole paper contains
four sections. The first section is the introduction. Some basic elements for Rie-
mannian manifolds are given in the second section. The third section contains some
results concerning exterior forms on a Riemannian manifold. The basic results of this
paper are contained in the fourth section.

2 . Some basic elements on riemannian manifolds

Let M be a compact orientable manifold of dimension n. It is known that the Rieman-
nian metrics R(M) on M form a Banach space. If g ∈ R(M), then (M, g) is a compact
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orientable Riemannian manifold. We assume that n = 2m, that is dim M = 2m. Let
Dq(M,D0) and Dq(M,D0) be the modules of contravariant and covariant tensor fields
of order q on M over the algebra D0(M) of real functions on M . These two modules
are isomorphic. The isomorphism in a local level can be expressed as follows:

f : Dq(M,D0) → Dq(M,D0) (1)

f : α(αi1...iq ) → f(α) = (αj1−jq
= gi1j1 ...giqjqα

i1...iq ) (2)

where (gij) are the local components of g with respect to the local coordinate system
(x1, ..., xn) of the local chart (U,ϕ). This local isomorphism permits to substitute the
notion covariant by contravariant and vice versa. From now on we use the notion of
tensor field of order q.

If α and β are two tensor fields of order q on the manifold M . The local product
of α and β is defined by:

(α, β) =
1
q!

αi1...iqβi1...iq (3)

and the local norm of α is defined by:

|α|2 = (α, α) =
1
q!

αi1...iqαi1...iq .

Let α be the volume element of the manifold. The global product of two tensors
α and β of order q and the global norm of α are given by:

< α, β >=
∫
M

(α, β)ω, ||α||2 =
∫
M

|α|2ω. (4)

If α is an exterior q-form, then we have ([5, p. 3]):

1
2
∆(|α|2) = (α, ∆α) − |∇α|2 +

1
2(q − 1)!

Qq(α), (5)

where

|∇α|2 =
1
q!
∇kαi1...iq∇kαi1...iq

and (6)

Qq(α) = (q − 1)Rkl,mnαkli3...iqαmn
i3...iq

− 2Rklα
ki2...iqαl

i2...iq
. (7)

The following formula is valid [4, p. 187]:

< α, ∆α >= ||δα||2 + ||dα||2, (8)

where < α, ∆α > is the global product of the exterior q-forms α, ∆α and ||dα||2,
||δα||2 are the global norms, of dα and δα respectively.
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3 . Some results on exterior forms on a Riemannian
manifold

Let P be a point of the manifold. If X,Y ∈ TP (M), where TP (M) is the tangent
space of M in P , then we denote by

< X,Y > and |X| (9)

the scalar product of the vectors X, Y and the norm of the vector |X| respectively. It
is known that the inner product <> on TP (M) is induced by the Riemannian metric
g on M . The curvature tensor R in the point P , by means of two given vectors Y , Z
defines an endomorphism on TP (M) as follows:

R(Y,Z) : TP (M) → TP (M), R(Y,Z) : X → R(Y,Z)X. (10)

The Riemannian tensor field R1 in the point P defines a quadrilinear mapping

(R1) : TP (M) × TP (M) × TP (M) × TP (M) → IR, (11)

(R1) : (X,Y, Z,W ) → (R1)P (X,Y, Z,W ) =< R(X,Y )Z,W > . (12)

Let λ be a plane of the tangent space TP (M) which is spanned by two linearly
independent vectors X, Y ∈ TP (M). The sectional curvature of the plane λ is given
by:

σ(λ) = σ(X,Y ) = − 〈R(X,Y )X,Y 〉
〈X,Y 〉2 − |X|2 |Y |2

. (13)

PROBLEM 2.1 Is there a Riemannian metric g on M , that is g ∈ R(M), with
some special properties?

In some cases the problem is very difficult and it is still open.
We assume that the Riemannian manifold (M, g) is positively k-pinched, that

means σ(λ) satisfies the inequalities:

0 < k ≤ σ(λ) ≤ 1, (∀)λ ∈ TP (M), (∀)P ∈ M. (14)

The components of the Riemannian curvature in any point of this manifold satisfies
the inequalities [2, p. 74-93]:

|Rijih| ≤
1
2
(1 − k), Rihjl <

1
3
(1 − k). (15)

Let (x1, ..., xn) be a normal coordinate system around the point P , which is taken
as the origin of the system. It is known that there is an orthonormal base:

X1, X2, ..., Xn (16)

of TP (M), such that its dual base:

X∗
1 , X∗

2 , ..., X∗
n (17)
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has the property that a given exterior 2-form α can be written as follows:

α = α12X
∗
1 ∧ X∗

2 + α34X
∗
3 ∧ X∗

4 + · · · + α2m−1,2mX∗
2m−1 ∧ X∗

2m. (18)

We form the exterior 2m-form β defined by

β =
1
m!

α ∧ α ∧ . . . ∧ α. (19)

The relation (19), by means of (18), takes the form:

β = α12α34 . . . α2m−12mX∗
1 ∧ X∗

2 ∧ . . . ∧ X∗
2m. (20)

From the relations (18) and (20) we have:

|α|2 = α2
12 + α2

34 + · · · + α2
2m−1,2m, |β|2 = α2

12α
2
34...α

2
2m−1,2m. (21)

If we calculate Q2(α) at the point P from the formula (7) and take under consid-
eration the inequalities (14) and (15) and the equalities (21), then we obtain:

1
2
Q2(α) ≤ −4(m − 1)k|α|2 + γ(1 − k)/3, (22)

where

γ = α12α34 + α12α56 + ... + α12α2n−1,2n + α34α56 + ... + α2n−3,2nα2n−1,2n. (23)

It has been proved [9, p. 306]:

||δβ||2 ≤ (2m − 1)(m − 2)
mm−2

|∇α|2|α|2m−2, (24)

which by integration implies:

‖αβ‖2 ≤ (2m − 1)(m − 2)
mm−2

∫
α2α2m − 2ω. (25)

.

4 . Main results

We assume that on the Riemannian manifold (M, g) exists the exterior 2m-form β
belonging to a zero class, that means its integral on the manifold is zero, in other
words ∫

M

β = 0. (26)

Since the manifold M is of dimension 2m, if we apply the ∗ operator on the form
β, then we have the function

f = ∗β. (27)
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From the relation δ = −∗d∗ of the operators δ, ∗, d and the relations (8) and (27)
we obtain:

‖δβ‖2 = ‖df‖2 =< f, ∆f > . (28)

If we integrate the equation (26) we have:∫
M

β =
∫
M

fω = 0. (29)

Let {λi} be the spectrum of the Laplace operator ∆ on the the functions on the
manifold M . If {fi} are the eigenfunctions of ∆, then we obtain:

∆fi = λifi. (30)

It is known that the function f can be written:

f = µ∗ +
∑

µifi. (31)

The relations (29), (30) and (31) imply:

µ∗ =
∫
M

β =
∫
M

fω = 0. (32)

The relation (31) by means of (32) takes the form:

f =
∑

µifi. (33)

The spectrum of the Laplace operator ∆ on the functions on M has the form:

Sp(M, g) = {0 < λ1 = λ1 = · · · < λ2 = λ2 = · · · < λn = λn = · · · < ∞}, (34)

which means that Sp(M, g) is discrete and each eigenvalue has a finite multiplicity.
It has been proved the following theorem [1]:

Theorem 1 Let M be a compact manifold of dimension n ≥ 3. There is always
a Riemannian metric g such that the spectrum (34) has a lower bound any positive
number.

This theorem states that for a given positive number ε > 0, we can find a Rie-
mannian metric g on M with the property:

λ2 > λ1 > ε > 0. (35)

From (28), by means of (30) and (32), we obtain:

‖δβ‖2 = ‖df‖2 =< f, ∆f >=<
∑

µifi,
∑

λiµifi =
∑

λi(µifi)2 (36)
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which by virtue of (35) implies:

‖δβ‖2 = ‖df‖2 ≥
∑

ε(µifi)2 = ε|f |2. (37)

The relation (37) by virtue of (27) yields:

‖δβ‖2 = ‖df‖2 ≥= ε|f |2 = ε|β|2. (38)

If α ∈ H2(M, IR), then the formula (5) takes the form:

1
2
∆|α|2 = −|∇α|2 +

1
2
Q2(α). (39)

It can be easily proved that we have:

∆(|α|2m) = m|α|2m−2∇(|α|2) − (m − 1)|α|2m−4(d|α|2)2, (40)

which by integration implies: ∫
M

|α|2m−2|∇α|2 ≥ 0. (41)

The relation (39), by integration and take under the consideration (41), yields:∫
M

|α|2m−2|∇α|2ω ≤ 1
2
≤ 1

2
(α)ω. (42)

The inequality (42), by means of (12) and (25), becomes:

mm−3

2(m − 1)
‖δβ‖2 ≤ 1

2

∫
[|∇α|2m−2[−4(m − 1)k|α|2 +

1
3
(1 − k)]ω, (43)

which by means of (38) takes the form:∫
M

[[
1
2
|α|2m−2[4(m − 1)k|α|2 − 1

3
(1 − k)] +

mm−3

2(m − 1)
ε|β|2]ω ≤ 0. (44)

The relation (44), after some calculations, takes the form:∫
M

[6(m − 1)2k|α|2m − γ(1 − m)(1 − k)|α|2m−2 + 3mm−3δ1|β|2]ω ≤ 0. (45)

We construct the following function:

f = 6(m − 1)2k|α|2m − (m − 1)(1 − k)γ|α|2m−2 + 3mm−3δ1|β|2, (46)

whose restriction at the point P gives:

fP = 6(m − 1)2k|α|2m
P − (m − 1)(1 − k)γP |α|2m−2

P + 3mm−3δ1|β|2P . (47)
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From (47), by virtue of the inequalities

γP ≤ m − 1
2

|α|2P , |β|2P ≤ 1
mm

|α|2m
P , (48)

we conclude that

fP ≥ |β|2P
[
6(m − 1)2k − (m − 1)2

2
(1 − k) + δ1

3
m3

]
. (49)

If

k >
m3(m − 1)2 − 2δ1

11(m − 1)2m3
, (50)

then fP ≥ 0, which contradicts the inequality (44) and therefore fP = 0, if

α12 = α34 = ... = α2m−12m = 0 (51)

and hence
α = 0. (52)

From the above we obtain the theorem:

Theorem 2 Let M be a compact orientable positively k-pinched manifold of dimen-
sion n = 2m. If k > {m3(m−1)2−2δ1}/{11(m−1)2m3} , where δ1 is a lower bound
of the first eigenvalue of the Laplace operator, then there exists no element different
from zero of the cohomology group H2(M, IR) such that its exterior m-power belongs
to a zero class.
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