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Abstract
The Rosen or A-continued fractions (ACF,) are related to Gq, ¢ € N°*, ¢ > 4,
the Hecke (triangle) group of index q. Using explicit planar natural extensions
for the associated interval maps, we find the transition operator corresponding
to the dynamical system underlying ACF. We prove that the associated RSCC
(random system with complete connections) is with contraction and its transi-
tion operator is regular with respect to L(J) = the Banach space of Lipschitz

fanctions on I = [-3‘-, 1‘-), where A = 2cos =
2° 2 q
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1 Introduction

The Rosen fractions form an infinite family which generalizes the nearest-integer
continued fractions (see [5]). Although D.Rosen (7] introduced his infinite family
of continued fractions in the mid-1950s, it is very recently that there has been any
investigation of their metric properties [8], [6], [3]. It has been found in 1998 (see
[1]) explicit planar natural extensions for each of the interval maps associated to the
Rosen fractions.

The Rosen maps are naturally divided into two subfamilies-those of odd index and
those of even. The fine behaviour of the transformations is starkly different in these
settings. ‘

We mention some related theory. Underlying the family of transformations which
we discuss here is an example of what J.Wolfart [10] called a discrete deformation of
Fuchsian groups. Wolfart showed that for any Riemann surface with a cusp, there is
a family of Riemann surfaces with quotient singularities which has the given cusped
surface as its limit (in the Chabauty topology).
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The groups which underlie our interval maps are Fuchsian groups of the first kind,
acting upon the Poincaré upper half-plane by Mébius (fractional linear) transforma-
tions, with all of R as their limit sets. We avoid most of this theory, but the reader
may wish to consult [2] for related discussion.

2 Preliminaries

Let A = A, equal 2 cos = for g€ {34 }iS= ( (1) )1\ ) and T = 01 "é )
q i
Then the group G, generated by S and T is called the Hecke (iriangle) group of indez
g. All relations in the group arise from 72 = I and U? = I, where U = ST and I
represents the projective identity.
D.Rosen [7] defined a continued fraction related to G, ¢ > 4. Fix some such ¢

and let I, = [-—%, %) Then the map

Te:1g— I

1
M 14(z) = |z~ = [[:c"‘])«.‘1 + %] A z#0; 71,0)=0,

gives a shift map on continued fraction expansions of the type

(2)

- €1 _ €1
@A+ 7(z) g A4

[ = [51311520'2:---]:

as A+

where ¢; € {£1} and a; € N. We call this the Rosen or M-ezpansion (ACF) of z. Of
course, the various €; and a; depend on z. So, we have

®)  enle) = s0n(7 @), an@) = (7N 4 5| me

in case 77~ 1(z) # 0, and €,(z) = 0, an(z) = 00 in case 77~ (z) = 0.
In analogy to the classical setting, we call z a G,-irrational if z has a Rosen
expansion of infinite length. There are restrictions on the set of admissible sequences

of €; and a;. For Gg-irrationals, these restrictions are determined simply by the orbit

A
f —.
o 7
Setting
.p_ﬂ - [5101162‘12: .. -:5nan],
n
we find that

Pn = @GnAPn—1+ EnPn-2,

On = GnAQn-1 + Engn-2.
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If we replace the tail of a continued fraction, we have

Pn + Pn-1Y

€ €2G2,...,En(AnA + )] = .
[e1a1,€2a2 n(anA +y)] & TP

To obtain precise values of specific expansions, we utilize a sequence of polynomials
in A, already discussed by H. Weber [9). |

Bo = 0; B; =1
B, =ABn.y — Bn_2, n>2.

u" = ( S . ) ;
Bn “Bn--l

Note that

Now, [9], gives

. 7w
sin —
B, = . ‘?r
sin —
q
Interpreting U as a Mébius transformation, one finds U~!(z~!) = e and thus,

U(z)
U9=i(z=1).U(z) = 1. Since U(z) = A—z~!, we have UJ(A) = A-U97-2()). Now, if

q = 2p is even one solves to find UP~1(}) = 7 similarly, if ¢ = 2h+3 is odd, one finds

2

U*(A) = 1. Slightly more involved again with ¢ = 2h + 3, U* . §?T . Uh-}()\) = T

The above is in accordance with the formulas of [7].

The orbit of ——;\— under 7, is of extreme importance. We define ¢; to be rg (—%) g

with ¢ = —%. Thus for even ¢, ¢; = S~1T(¢;-,),for j € {1,...,p—1} and $p-1=0.

For ¢ = 2h + 3, we have ¢; = S~!T(¢;_,), for j € {0,...,h=1}U{h+1,...,2h};
n41 = S™2T(¢n) and dan41 = 0. That is, ¢; has for its expansion the j-th shift of
that of ¢o.

3 Natural extensions for the Rosen maps

Consider (see [1]) the so-called natural eztension T for any Rosen interval maps, which
is defined as follows: for any ¢ > 4, fixed, let A = A, 7(z) be 7,(z) and

T = () =)

where we have suppressed the dependence of a = a; and € = ¢; on z.
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Also notice that 7 is a transformation which on the first coordinate is simply the
* interval map while on the second coordinate it is directly related to the ”past” of the
first coordinate.

It has been shown in [1], that 7 is a bijective transformation of a domain € in R?
except for a set of Lebesgue measure zero. We consider two cases.

3.1 Even indices
Let ¢ = 2p, with p > 2. Now let I be the interval I,. Putting ¢j =1 (—%), with

A 248 e . . -
¢o = g we construct a partition of I by considering the intervals
Ji = [$j-1,0;5) for j € {1,...,p— 1},

A
n=pd)

Furthermore, let K; = [0,L;], j € {1,...,p— 1} and K, = [0, R], where Lj,
1 <3 <p-1, and R satisfy the system

A R = )l = Lp_.}
1
L= ——
" AFR
) L= —t foiefn...p-1)
J_I\—Lj_l or j yeeey D
1
R=
\ A— Lp—l
P
Let Q= U Jx X Ki. If the above system admits a unique real solution, then {2 is
k=1

the domain in R? on which 7 is bijective except for a set of Lebesgue measure zero.
Moreover, for this solution, R = 1.
If n > 2, then

(T(x)’m\l-l—y)’ it (=,9) € ((2n—?—1)h’(2n31))\) x [0,1],

(T(”)’ n,\l—y) W R ((2n:21)A’ (2n_+21)A) * 10, Lp-)
If n = 1, then

' (T(x),Aiy), it (2,9) € [3%%) x[ﬁ,l],

(T(m), Aiy), if (z,y)€ (U Jj X kj) U ([qsp_g,;—f) x 1{,-1).

T(z,y) =

T(z,y) =<

\ J=1
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Also, the normalized invariant measure for the planar natural extension 7 is read-

C
(1 +zy)?
where C is a normalizing constant. Actually, for ¢ even, the constant C such that v
is a probability measure on 2 is given by

ily found (see [6]). So, T preserves the probablhty measure v with density ————

C= :
r
(l+cou-
In |
sin —

3.2 0Odd indices
Now, fix an odd ¢ and recycle notation as above. Let I be the interval I, and
¢j=1 (—%), with ¢o = -%. Putting h = 2—;—3, we construct a partition of I by

considering the intervals J;, j € {1,...,2h + 2}, where
Jar = [@n4x,0) for k € {1,...,A},

Jors1 =[Ok, Onsr41) for k€ {0,1,..., A},

A
Jonsa = [0: ';2') .

Let K; =[0,L;], j € {1,...,2h + 1}, and let Kap43 = [0, R), where Lj, 1 < j <
2h + 1, and R satisfy by system

( R=A— Lany
1
L‘“n-L,,
1
: L:—QI\-Lzh-I-l
1 .
L,_I:—I:; for2<j<2h+2
1
“R_A-Lza'
2h42
Let ¢=2h+3, with h > 1 and @ = | Jj x K;. If the above system admits a

j=1
unique real solution, then Q is the domain in R? on which 7 is bijective except for a
set of Lebesgue measure zero. Moreover, for this solution, R satisfies the equation

R*+(2-))R-1=0.
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A
In particular, = < ‘R < 1. Also the normalizing constant C such that v is a
1

probability measure on 2, with density m

'(-.‘l-l-C_xy)?’ is given by C =

4 The Associated Transition Operator

Let (I, By, p, 7) be the dynamical system underlying ACF, where I = [—%, %) , Br
is the collection of Borel sets on I, p is the invariant measure of 7 (projecting v, we
find the invariant measure p, of 7) and 7 is defined as in (1).

Let (Q2,Bq,v,T) be the natural extension of (I, Br,p,7), where Q,v and T are
defined in Section 3.

Let p be an arbitrary non-atomic probability on By and define

ne1=rem =n(me 1)), nemse

A
Clearly, Fo(z) = p ([—E,x)) because 7° is the identity map. Since —% <

<z iff

-1
(z+ an41(2)N) 7! < €npa(z)m(2) < (-% 7 “n+1($))\) ;

we can write the Gauss-Kuzmin type equation as

l l
Fn-l-l(m): Z: ! Fﬂ 'A—'_' —Fn( +‘IA) ,REN,.’L’GI,
(l,i)ex —§+‘l‘A z

X ={-1,1} x N*.

Assuming that for some m € N the derivative F exists everywhere in I and

is bounded, it is easy to see by induction that F,,, exists and is bounded for all
n € N*, and we have

1 !
F! = . F;,( _ ) " "
+1(1') (l.a‘z)e:X (z + ;,\)2 %4\ n>m zec

Further, write

z€EI,

where
Lj, ifzeJ;,je{l,...,p—1)
H; = g '
1, ifzeJ,
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in the even case (see Subsection 3.1), and
- { L;, ifzeJj,je{l,...,2h+1}
R, ifz € Jany2
in the odd case (see Subsection 3.2), to get
fas1=Vfa, n2m,

with V being the linear operator defined as

Vi)=Y a(z)f(vi(z)), fe€B(U), z€l,
(Li)ex :
where B(I) is the Banach space of bounded measurable complex-valued functions f
on I under the supremum norm |f| = sue |f(z)l,
z€

0, ifze [—%,% - A] , (1,1) € {(-1,1),(1,1)}

qh'(z) = H#ﬂ' 1 +:H=
He (a4 (e+id+1H

) , otherwise

e Y A2

5 ifz € [-—-2;, . A] , (1,4) € {(-1,1),(1,1)}
vii(z) =
otherwise.

z+i)’
Note that here V is the transition operator of the homogeneous Markov chain
(yn)n>0 defined as

Un = [Cnan:fn—lau—ls---nslalla ne N.a

and yo = 0. Clearly, (yn)n>0 satisfies the recursion equation

€En

sty MEN =0

Un=

and y, € I, Yn € N.

5 The Main Result

Here we restrict our attention to the transition operator V introduced in the previous
section. In this section we deal with the properties of V on function spaces different
from B(I).



194 G. I. Sebe

In connection with the operator V, we obtain the following results. First, if we
define

e = f, f(z)e(dz), f € B(),

then we have V®V"f =V f for all f € B(I) and n € N*. Second, let L(I) be the
Banach space of all bounded complex-valued Lipschitz functions on I under the usual
norm [|flz = |f| + s(f), where

|f(=z) = £(=")]
s(f) = su :
(f) :#EJ ]:: — .'L'"l
Then V takes boundedly L([) into itself. Moreover, we have the following result.
Theorem. Let be given I = —%,% and By the collection of Borel sets on I.

Consider X = {-1,1} x N*, X = P(X),
v:IxX—=1I
v(z, (,1)) = vi(z)

and

Q:IxX—][0,1]

Q(z, (1,9)) = qui(z)-

Then the (RSCC) {(I,Br), (X,X),v,Q} is with contraction and its transition oper-
ator V is regular with respect to L(I).
Proof. We have for all (I,7) € X

2
< sup —1-—--='\—<1,

d
—uv(z,(l,1
dl'.' ( ( )) I‘E(*—-\.%} (I+A)2 4

sup
zel

2Q(z,(1,9)| < co.

Hence the requirements of definition of an RSCC with contraction are met with
k = 1 (see Definition 3.1.15 in [4]). By Theorem 3.1.16 in [4], it follows that the
Markov chain (yn)n>0 associated with the RSCC {(I, Br), (X, X), v, Q} is a Doeblin-
Fortet chain. Hence by Definition 3.2.1 in [4], the Markov chain (yn)n>0 is compact
and its transition operator is a Doeblin-Fortet operator.

To prove the regularity of V with respect to L(I) let us define recursively 2,4y =
(zn +2)~', n € N, with zo = z. A criterion of regularity is expressed in Theorem
3.2.13 in [4], in terms of the supports ¥, (z) of the n-step transition probability
functions Q"(z, ), n € N*, where with the usual notation

sup
zel

Q(z,B) = > Q(z,(1,i)), z€l, BeB.

{(hi)eX|v(z,(1,i))eB}
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Clearly zn4+1 € Y_,(zn) and therefore Lemma 3.2.14 in [4] and an induction ar-
gument lead to the conclusion that z, € }_,(z), n € N*. But lim z, = V2 -1 for

any z € I. Hence

d(Ta(2),V2-1) <lzn = VZ+1| =0 as n— o,

where d(z,y) = |z - y|, Vz,y € I.
Now, the regularity of V' with respect to L(I) follows from Theorem 3.2.13 in [4).
The proof is complete.
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