COMPARISON THEOREM FOR GENERALIZED
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Abstract

We establish new inequalities for the sectional curvature of generalized Heisen-
berg groups. Then we prove that these Lie groups are completely characterized
(in the class of nilpotent ones) by the sectional curvature of 2-planes which
contain one central direction.
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1 Introduction

The generalized Heisenberg groups play a role of "standard spaces” between the Lie
groups endowed with invariant metrics, similar to that of symmetric spaces in global
Riemannian geometry : they have large isometry groups and their geodesic symme-
tries preserve the volume form ([7]); Eberlein shown they are the 2-nilpotent groups
characterized by the fact that any unitary geodesic is contained in at least one three-
dimensional totally geodesic submanifold ([4]). As isometry groups of symmetric
spaces with negative curvature, the Heisenberg groups operate transitively on the
horospheres ([8]). Moreover, these groups are the elementary ”bricks” for construct-
ing solvable Lie groups with Einstein invariant metrics ([9], [12]).

On another hand, the Lie groups with invariant metrics, having sectional curva-
ture with constant sign, are involved in remarquable comparison theorems ([1], [2],
[5], [6], [9], [10]). A natural extension of the framework is to characterize the invariant
geometries on Lie groups from partial informations concerning their sectional curva-
ture sign; for example, J. Milnor proved ([10]) that if X is a central element in the
Lie algebra of a Lie group endowed with a left invariant Riemannian metric, then the
sectional curvature of 2-planes containing X is non-negative.
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In this paper, we study boundaries for the sectional curvature of generalized
Heisenberg groups. The main result characterizes these Lie groups, in terms of certain
central directions:

THEOREM. Let G a nilpotent Lie group, endowed with a left invariant Riemannian
metric. Suppose the sectional curvature of the 2-planes, containing one ceniral and
one non-ceniral orthogonal directions, is constant.

Then G is a generalized Heisenberg group.

2 Preliminaries

Let G a real Lie group, L(G) its Lie algebra and g a left invariant Riemannian metric
on G (i.e. the left translations are isometries).

We say G is 2-step nilpotent if [L(G), [L(G), L(G)]] = 0 ; in this case, it has non-
trivial center, denoted by {. We denote by v the orthogonal complement of {. In what
follows, we establish the notation: X,Y € v; Z,Z* € (. For every central element Z,
we define an endomorphism Jz of the subspace v, by

g(JZX’Y) =g([X,Y], 2)

For 2-step nilpotent groups, the geometry of (G, g) is completely determined by the
family of all endomorphisms Jz ([4]).

A 2-step nilpotent group is called genera.hzed Heisenberg group if there exists a
non-null constant a such that

1) J2 = —a?||2|1d
( Z

Ha?=1 , we say G is a standard generalized Heisenberg group.

We denote by K (U, V) the sectional curvature of the 2-plane spanned by the left
invariant vector fields U,V € L(G).

1. PROPOSITION - Let (G,g) a standard generalized Heisenberg gmup Then the
sectional curvature is bounded between —3/4 and 1/2. In particular:

(1) K(Z Z")—O'(u)K(X Z'):_— ; (i) - 2 < K(X,Y)<0;
(iv) - 2 < K(X, Y+z')< H(WOSK(X+22")<4.

Proof. - Let II a 2-plane spanned by the orthonormal system {X +2,Y +2"}.
Then

IXIP+02IP =1, WYIP+02° 1P =1, o(X,Y)+9(Z,2")=0

By direct computation, we derive ([3]) the sectional curvature of II as

K(X+2,Y +2%) = 2OXIPIZ°IP + IV IPIZIP) + o(X, V)o(Z, 2°)-
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3 3
_Z"[X: y]“2 - EQ(JZXl Jz:Y)
Using the Cauchy-Schwartz inequality and relation (2), we obtain
X YII? = 9(x v X, Y) < 11X, Y IXIL YN
Denote p = || X||?, ¢ = [[Y]I?;

B(p,q) = -,li-(p +q - 2pq) + g\/pq(l -p)(1—gq)

a(p,0) = (4~ 330~ pa) - /oI =PYT =)

Using all previous relations we obtain the inequalities

a(p,9) S K(X+2,Y +Z°) < B(p,q)

We study the variation of functions a and 2 on the closed square [0, 1)%; we remark
that o has (—3/4) as minimum value, and § has 1/2 as maximum value. So, the first
part of the proposition is proved.

Properties (i) and (ii) result by replacing X =Y =0 and Y = 0, Z = 0 respectiv-
elly in the formula of sectional curvature. For (iii) we have
3 2
K(X,Y) = =[x, Y|
and, as previously,
X, Y < 11X 1yl

On another hand, there exist linearly independent X,Y € v, such that [X,Y] = 0.
By continuity, the sectional curvature takes all values from the interval [-2, 0].

The same method leads to inequalities (iv) and (v).O

3 Proof of the Theorém

Step I. Let v the orthogonal complement of ¢ in L(G). By hypothesis, there exists a
real constant a, such that for any orthonormal Z € ¢ and X € v, we have K (X,2) =
a. By the previously quoted result of Milnor, we have a > 0.

The Levi-Civita connection of g is

2) VrQ@ = 7{[P, ]~ (adP)'Q ~ (adQ)"P)

where (adP)* is the adjoint of adP, and P,Q are arbitrary elements of L(G). We
denote

S(2,X) = 3(VzX +Vx2)
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A direct computation gives the sectional curvature

K(Z,X) = %{g([[Z, X),2),X)+9(2,[X,[Z, X]))}-

3
=712, X1 +115(Z, X)|* - 9(S(2, 2), (X, X))
Taking into account that Z is central, we derive

(3) K(z,X)=15(2, X)I* - 9(5(2,2), S(X, X))

Step II. From (2) we remark that, for the central element Z, we obtain VzZ = 0,
so S(Z,Z) = 0. In the same manner we derive VzX = VxZ, so S(Z,X) = VzX.
Then, the relation (3) implies |VzX]||> = a. By linearity, we deduce that, for all
Z€e(and X €v,

(4) IVzX|? = allZ]* [IX]’

Step III. We polarise (4), we use (2) and we obtain the relation (1) (with a constant
equal to 4a). As a by product, we have also

(5) lladx Z||” = a

for unitary X, Z as above. If a = 0, then v is a nilpotent ideal of L(G) and L(G) is
an orthogonal sum of v with (. But the center of v is non-trivial, hence the center
of L(G) strictly contains {, which contradicts the choice of (. We deduce a > 0. If
the group G is 2-step nilpotent, then the relation (1) ensures us that G is even a
generalized Heisenberg group.

Suppose now G is k-nilpotent, with k > 2. If dim{ > 2, then there exist X,Y € v
and Z € ¢ such that [X,Y] L Z. Then (5) leads to a = 0, contradiction.

If dim{ = 1, using the nilpotency of G we find non-vanishing X,Y € v with
[X,Y]=0. Aga.m from (5) we derive a = 0, contradiction. D '

4 Comments and further results

(1) In (iii), (iv) and (v) of Proposition 1, the intervals are fully filled, due to the
continuity of the curvature. We don’t know if the upper bound 1/2 is effectively

attained by the sectional curvature, or this estimation may be improved (somewhere
toward 1/4).

(ii) The condition ” G nilpotent” is necessary in the hypothesis of the theorem.
Indeed, consider a 3-dimensional resoluble Lie group with a left invariant Riemannian
metric and an orthonormal basis of left invariant vector fields X,Y, Z, such that
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[X,Y]=X+Z , [X,Z])=[Y,Z)=0. Then the center is spanned by Z, we have
J2=-Iand K(U,2) = -‘1-1- for every U L Z. Our theorem do not apply, because G
1s not nilpotent.

(iii) The theorem remains no longer valid for pinched curvature; indeed, let a
positive constant a and ¢ € (0,a). As in [4], I, p. 649, we can construct 2-step
nilpotents groups, which are not generalized Heisenberg groups, and which have (non-
constant !) sectional curvature K(X,Z) € (a—¢,a+¢) , forevery Z € ¢ and X € v.

(iv) Let G a Lie group with dim¢{ > 2. Then, for every Z,Z" € (, we have
K(Z,2Z") = 0; so, the behaviour of the sectional curvature for ”central” 2-planes
leads not to a result similar to our theorem. In exchange, from relation (4) we derive
the '

COROLLARY. Let G a 2-step nilpotent Lie group with dim(¢ 2> 2 and let a fized
Z* € L(G) . IfK(Z,Z*) =0, for every Z € (, then Z* is a central element.

Counterexamples exist which show that none of the other properties (iii)-(v) of
Proposition 1 characterizes (alone) the generalized Heisenberg groups.

(v) A variation of the proof of the Theorem leads to a partial refinement for the
caracterization of Lie groups with flat left invariant Riemannian metric ({51, [10], [2]):

PROPOSITION. Let G a Lie group with non-trivial center, endowed with a left
invariant Riemannian metric. Suppose that the sectional curvaiure of any 2-plane,
spanned by one central and one non-central orthogonal directions, vanishes. Then G
is @ semi-direct product, with one factor a distinguished abelian subgroup.

(vi) If in the hypothesis of the Theorem we impose the constant be a = 3, then G
becomes a standard generalized Heisenberg group. The important role played by this
constant (see also Proposition 1) is similar to that from the ”sphere” (comparison)
theorems. This unexpected link strengthens the suspicion that the behaviour of the
sectional curvature is directed by some ”universal” constants.
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