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Abstract

In Physics and Biology as well as in other natural sciences we can find models
which generate fractal structures. Such kind of structures identifies systems in
which increasing detail is revealed by increasing magnification, and the newly
revealed structure looks the same as that one can observe at lower magnification.
This implies invariance under changes of the length-scale or self-similarity.

In this paper, we obtain self-similar sets as invariants under random affine
transformations. Some topological properties which prove connections between
self-similar sets are discussed. Sufficient conditions which imply that a set is a
self-similar one are introduced and studied. Finally, we illustrate our ideas with
two relevant computer experiments. By using computer simulation, we obtain
our examples of self-similar sets in R2.

1 Preliminaries "

Let (X, d) be a metric space. Recall that a mapping w: X — X is called contractive
if there exists a constant 0 < r < 1 such that d(w(z),w(y)) < rd(z,y) for every
z,y € X. Any such number r is called a contractivity factor for w.

Let § = {w;,ws,...,wn]} be a finite set of contraction mappings on R”. The
following definition is in order

Definition 1.1 We say that the compact set K C R™ is invariant with respect to S
if

N
K= U w;(K).

i=1

Hutchinson, [4], proves the following result.
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Theorem 1.1 Given a finite set S of contraction mappings on R", there ezisis a
unigue compact set K invariant with respect to S. Furthermore, K is the limit of
various approzimating sequences of sets which can be constructed from S.

In order to make a background for our results in this paper, we need the following
definition, [9).

Definition 1.2 Two metric spaces X and Y are called similar if there is a surjection
mapping w: X — Y and a positive constant r satisfying the equality d(w(z), w(y)) =
rd(z,y) for allz,y € X. Such a mapping is called a similarity.

We shali denote by u,: R® — R"™ the homothety u,(z) = rz (r > 0) and by
n: R® — R" the translation n(z) = z — . We remark that the following statements
are equivalent:

i) w: R® — R” is a similarity;

ii) there exist some homothety 4., translation n, and orthonormal transformation
O such that w = u.nO0.

We will conclude this section with some topological properties suggested by the
considerations given above. For this purpose, let us consider in the following (X, r)
be a general topological space. If z is a point of X, then by N (z) we shall denote the
set of all neighbourhoods of z.

Definition 1.3 X is called self-similar if for any U € r, U C X, there is a set
V C U such that V is similar to X. Moreover, if IntV # @ then X is called strongly
self-similar.

Proposition 1.1 Any strongly self-similar space is self-similar.
Definition 1.4 X is called pointwise self-similar if for any point z € X and for any
U € N(z), there is a set V such that 2 € V C U and V is similar 1o X. Moreover,
if V € N(z) then X is called strongly pointwise self-similar.

From these considerations we get the two results in the following.
Proposition 1.2 If X is pointwise self-similar space then it is self-similar.
Proposition 1.3 Suppose X is strongly pointwise self-similar space. Then the fol-
lowing statements hold:

a) X is pointwise self-similar;

b) X is strongly self-similar.

How could we obtain these self-similar sets? The answer is given in the next
section.
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2 Constructing self-similar sets

In this section, we exhibit a method of constructing self-similar sets. The idea of
this method comes from (1] and its details are given in the following. We recall some
common notions and after that we state our results.

For the following results of this paper, unless mentioned otherwise, we shall con-
sider X = R".

Let w be an affine transformation of X given by w(z) = Tz+bwhere Tisannxn
matrix and b is some fixed vector in X. We shall refer to T as the derivative of w. We
remark that a general affine transformation in X consists of a linear transformation
T, which deforms space relative to the origin, followed by a translation specified by
the vector b.

Let wi: X — X, wi(z) = Tiz + b,, i € {1,2,...,m} be affine transformations of
X. The matrix of the composite function wywg -+ -wm is 1Ty - - - T;,. The matrix of
w” is T™ where

w(z) = wowo-- o uz)

n times

is the n*? iteration of w. So the study of w” is transformed to that of T". Moreover,
after calculation, we get

Proposition 2.1 Suppose I — T is invertible, where I is the n x n identily matriz.
Then the orbit of a point zo under w is the sequence (zi)r>0 defined by the formula

z9 given
ze=Trzo+ (I -T)"Y(I - T, k>1.

The following result can be proved by induction

Lemma 2.1 For each finite sequence, w;,, w;,, ..., w;, from the set {wy,ws,...wn}
and for all z,y € X, we have

lwi, wi, - - - wi, (2) — wiywiy - wi, W = | T3, T, - - iy 2 = T3, Ty - - - T -
Using Lemma 2.1 we find

Theorem 2.1 An affine mapping w is a contraction if and only if its derivative is a
coniraction.

It follows that an affine mapping of X is a contraction if and only if the norm of its
derivative is less than 1. So, any similarity w is affine transformation, [6]. Moreover,
if ||T]] < 1 then w is a contraction mapping on X. If § is a set of affine contractions
on X, then the unique compact invariant K for the w; given by Theorem 1.1 can
be a self-similar set. The existence and the uniqueness of this set follow from the
contraction mapping principle, [7], as follows.

We consider X be a compact metric space. If A C X is a nonempty subset of X
and r a positive number then we put

Ny(A) = {z € X|there is a € A such that d(a,z) < r}.
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As we know, for two nonempty compact subsets A and B of X, the Hausdorfl metric
h is defined as h(A, B) = inf{r]A C N,(B) and B C N,(A)}. Denote by C the
hyperspace of all nonempty compact subsets of X endowed with the Hausdorff metric.
Let S:C — C be defined by

N
S(4) = | J wi(4).
i=1

Then S is a contraction mapping having contractivity factor max; <icnri. Therefore,

according to the contraction mapping principle, there exists exactly one fixed set

under S, that is a set A € C such that S(A) = A. Such a set A can be obtained as

the limit of S*(B) for any B € C. Then we will write A = S(X; {wi]i = 1, N}).
Taking into account Definition 1.1 and Theorem 1.1 we deduce

Theorem 2.2 Suppose X is a compact melric space and let S be a finite set of con-
tracting imbeddings of X. Then the invariant set of X with respect to S is self-similar.

The next section deals with a simulation method of self-similar sets. This simula-
tion method is based on products of random matrices (see Furstenberg and Kesten,

[3))-

3 Illustrations

In this section we will exhibit the results of some numerical experiments. All calcu-
lations were performed on a regular PC with coprocessor and an HP printer. The
computer programs used, [8], were all written in Turbo Pascal version 6.1 and needs
arround 500 K. It takes between 3 and 15 minutes to produce an image. The program
is available upon request from the first author on a 5}-inch floppy disk.

To state our computer algorithm, in the following we deal with the set of affine
mappings

F={z€ X w(z)=Tz+b},

By all means, the pair {X, w(z)} composes a dynamical system.

Let us consider without loss of generality n = 2 and the set 7 = {T,,Th,...,T}}

of (r+ 1) non-singular 2 x 2 matrices which correspond to some affine transformations
of F. Let us also consider W = R", X = T, W the borelians of W, and X the set of

allpartsof X. f T}, = ( :" 2 ) €7, n 21 then we build the sequence (z5)n>0

as follows:

2o given, z; = wy(z), 22 = (w20 w;)(20),....

If we use the method studied in [2] by Corbu and Postolache we obtain the represen-
tation of this sequence with matrices as

2o given
ze41 = T®zg + TO (T To)~Ybs + -+ + (T1 To) ™ by + T~ bo)
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where T(*¥) = T} Ty —y - - - To.

Let be given a probability measure {p-(s), s € W} cx With pz(s) = p; > 0 and
Y zex p=(s) = 1. Moreover, for all s € W we consider the family of applications
w: W x X — W which are (\W® X, W)—measurable, w € F. By these considerations,
we have the following

Definition 3.1 The tuple {(W, W), (X, X), w, p} is called random system with com-
plete connections. : :

Remark 3.1 The sequence (2n),sq, 0btained above, where for each n e¢ random
wn(z) is choosen defines a Markov chain.

The transition probability of the Markov chain in Remark 3.1 is

(41) - ’ P(Z,A) = E IA(wz(z))pz

zeX

for all z € W and A € W. This is the Markov chain attached to the random system
with complete connections, [5].

Let us suppose, without loss of generality, that the matrices T} are positive (the
general case is similar). For practical reasons we have to study the asymptotic be-
haviour of the following product of random matrices T¢*) = T} ..-TyTp. For this

. - . a b\ .. ..
purpose, we consider a positive matrix T = P ) and its decomposition as a

product of a diagonal matrix and a stochastic one as follows:

a b
p=(t 2) p=(F F)
&t = 3

Therefore we have T = D - P. Using this decomposition for T(¥) we have

T®) = DyPiTi_y---To
= DiTi1Ti-z--- T
= DipDg_1Pr_2Ti_3---To

= Dy DpP.

Here Dy, ..., Dy are diagonal matrices, P is a stochastic one and Ty_y = PTj-;.
In general, if we denote by T' the product between a general matrix and a stochastic
one, that is, T' = TP, thus from the componentwise interpretation we get

(4.2) ' mint;; < mint;; < maxt;; < maxt;;.
1,7 LI 1, 5,2
If we denote

k) k) AE) 1—pi
%) = ( a ) ) - Pik Pik
(@ g o PoDe={To g ) A=, )
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then we have

k) — ( h®)p,, h(®) (1 — Pn))
®) (1 - pax) 9®)pa

Based on the inequalities (4.2) and taking into account the positivity of T}, it followss
that § > 0 and ko > 1 exists such that pyx > 6, par > 6 for all k > kg. Then we
obtain

o

Proposition 3.1 In the condilions described above, there ezists the limit

1
1 — (k)
l:hm I loga'®/.

By Proposition 3.1 it follows that if k is large enough then 7°(%) approaches to

kh kg
a matrix with proportional rows T(¥) = ( kh z"-" ) , where h and g are positive

random variables.

Remark 3.2 Similar resulis 1o that in Proposition 3.1 for b(¥), ¢(*) and d(¥) can be
oblained.

The theoretical approach given above, suggest the following procedure for finding
self-similar sets, [1]:

Algorithm 3.1 Let X be a general compact metric space and w;: X — X be con-
traclion mappings with

d(wi(z), wi(y)) < rd(z,y), for all ::,y.'e X,

fori=1,2,...,N, where 0 <r < 1. Let {p1,pa,...,pn} be probabilities with p; > 0
and )" p; = 1. Choose z¢g € X and pick recursively

Ty € {wl(zﬂ—l): w?(zn—l): v |wN(zﬂ—1): }1 fOI" n= 1: 2: ey M
where M is a large inleger and p; = P(z, = wi(zn-1)).

We have used Algorithm 3.1 as basic procedure for obtaining the self-similar sets
included in this paper. In this respect, the twig in Fig. 1 is obtained as invariant set
of just two affine transformations w;: R? — R? (i = 1, 2) as follows

wi(z,y) = (0.81z + 0.011y; 0.03z + 0.41y) + (0.009;0.1)
wa(z,y) = (0.12z + 0.78y; 0.8z + 0.05y) + (0.1;0.21).

We generated vy = (:ro, ¥) € R? as random pomt [7], and we defined a set of points
{va € R?/n =0,1,...,10°} recursively according to

" _ ) wv, with p; =0.76
"1 71 wyv, with p2 =0.24
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If those points from the set which lie in the square {(z,y)/—1 < z,y < 1} are plotted
the result will be similar to Fig. 1.

The self-similar set in Fig. 2 is obtained as invariant set of the following two affine
transformations: w;: R? — R? (i = 1,2)

wy(z,y) = (0.85z — 0.19y; 0.19z + 0.85y) + (0.1;0.1)
wa(z,y) = (0.19z + 0.6y; 0.2z — 0.03y) + (0.1;0.2).

If vo = (20, ¥o) € R? as a random point, and we define the set of points {v, € R?/n =
0,1,...,10%} recursively according to

_J wiv, with p, =0.88
Un+1 =\ wov, with pp=0.12

then the result is similar to Fig. 2.
The resulting pictures in Figs. 1 and 2 respectively appear to be the same no

matter which initial point v is choosen. Also, it is obvious that these sets share the
self-similarity property.
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