
HERMITIAN STRUCTURES AND COMPATIBLE

CONNECTIONS ON A-BUNDLES∗

M. Papatriantafillou

Abstract

Our aim here is to investigate the conditions under which an A-bundle is
provided with generalized (: A-valued) hermitian structures and compatible
connections, in the general case when A is a commutative locally m-convex ∗-
algebra with unit.

We prove that an A-hermitian structure exists if the fibre type of the A-
bundle has an A-hermitian inner product and the base space admits just one
A-valued partition of unity, or, if the structural group of the bundle reduces
to the “A-hermitian product preserving” automorphisms. Next, we endow an
A-bundle with a connection, assuming the existence of one A-partition of unity,
and we prove that this connection and the previous A-hermitian structure are
compatible.
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1 Introduction

Arbitrary locally convex spaces have a very poor geometric structure and this fact
is reflected to the manifolds and vector bundles modelled on them (cf., for instance,
[9, 11]). In particular, they do not have inner products, thus a vector bundle modelled
on a locally convex space is not endowed with a Riemannian structure.

But some locally convex spaces, arising in pure mathematics and in theoretical
physics, have the additional algebraic structure of a (projective finitely generated)
module over a topological algebra A and a number of questions have been answered
by the extension of the usual ring R or C of coefficients to the aforementioned algebra
(see [1] in operator theory, [22] in theoretical physics, [10] in differential topology). In
the case that A is a ∗-algebra, the modules are provided with A-valued inner products
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and norms, defining their topology [17], and they behave like finite dimensional vector
spaces, although, in general, they lack both bases and metric topologies.

On the other hand, manifolds and vector bundles modelled on such modules are
found in various areas (see, for example, [10] in differential topology, [21] in partial
differential equations, [2] in global analysis, [23] in the theory of jets), A usually being
C(X) or C∞(X). For brevity, we call them A-manifolds and A-bundles, respectively.

Continuous A-bundles have been extensively studied (see [5, 6, 7, 8, 14, 16]), while
some differential aspects have appeared in [12, 15, 17], among which the existence of
A-valued Finsler structures. Our aim here is to investigate the conditions under
which an A-bundle is provided with generalized (: A-valued) hermitian structures
and compatible connections, in the general case when A is a commutative locally
m-convex ∗-algebra with unit. In this investigation two obstacles appear: first, A-
manifolds never admit partitions of unity in the classical sense, and, secondly, the
existence of a hermitian structure is not equivalent to the reduction of the structural
group of the bundle to a special subgroup. However, we prove that an A-hermitian
structure exists if the fibre type of the A-bundle has an A-hermitian inner product
and the base space admits just one A-valued partition of unity (Theorem 4.5), or, if
the structural group of the bundle reduces to the “A-hermitian product preserving”
automorphisms (Theorem 4.7). Next, we endow an A-bundle with a connection,
assuming the existence of one A-partition of unity (Theorem 5.3), and we prove
that this connection and the A-hermitian structure of Theorem 4.7 are compatible
(Theorem 5.4).

2 Preliminaries

We recall that a complex algebra A is a ∗-algebra, if it is endowed with a map ∗ : A →
A, so that (i) (za + b)∗ = z̄a∗ + b∗, (ii) (ab)∗ = b∗a∗ and (iii) (a∗)∗ = a, for every
a, b ∈ A, z ∈ C. A ∗-algebra A is called a locally m-convex (abr. lmc) ∗-algebra, if
it is topologized by a family of seminorms that satisfy (i) p(xy) ≤ p(x)p(y) and (ii)
p(x∗) = p(x), for every x, y ∈ A (for details, see [4]).

Throughout the paper, A denotes a commutative lmc) ∗-algebra with unit .
Let P(A) be the category of projective finitely generated A-modules. By defini-

tion, for any M ∈ P(A), there exist M1 ∈ P(A) and m ∈ N, so that M ⊕ M1
∼= Am.

Let τM denote the canonical topology of M , i.e., the relative topology induced on M
by the product topology of Am. Then: (i) τM is independent of either M1 or m;
(ii) (M, τM ) is a topological A-module (namely, the A-module operations are jointly
continuous); (iii) τM makes every A-linear map f : M → N continuous, for any
topological A-module N (for details, see [13]).

In the sequel, every M ∈ P(A) is a topological A-module provided with the
canonical topology. For any M, N ∈ P(A) and x ∈ M , we denote by 0M the zero
element of M , by N (x) the set of open neighbourhoods of x and by LA(M,N) (resp.
SA(M,N)) the set of A-linear (resp. skew-linear) maps f : M → N ; we recall that a
map f : M → N is called skew-linear, if f is additive and f(ax) = a∗f(x), for every
x ∈ M and a ∈ A.
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In P(A) we consider the following differentiation method: Let M, N ∈ P(A),
x ∈ M , U ∈ N (x) and f : U → N . We say that f is A-differentiable at x, if there
exist Lf(x) ∈ LA(M,N) and Sf(x) ∈ SA(M,N), such that the map

φ(h) := f(x + h) − f(x) − Lf(x)(h) − Sf(x)(h)

satisfies the following condition:

∀V ∈ N (0N ) ∃U ∈ N (0M ) : ∀B ∈ N (0A) ∃A ∈ N (0A) :

φ(aU + a∗U) ⊆ aBV + a∗BV, ∀a ∈ A.

We call Df(x) := Lf(x) + Sf(x) the differential of f at x. If Sf(x) = 0 (resp.
Lf(x) = 0), f is called A-holomorphic (resp. A-antiholomorphic) at x.

Let f be A-differentiable at every x ∈ U . Since LA(M,N) ⊕ SA(M,N) ∈ P(A),
A-differentiation may apply to

Df : U → LA(M,N) ⊕ SA(M,N),

inducing the second differential D2f = D(Df) of f , and, successively, the n-th dif-
ferential Dnf of f , for any n ∈ N. We will say that f is an A∞-differentiable (resp.
A∞-holomorphic) map on U , if Dkf exists (resp. Dkf exists and Skf = 0), for every
k ∈ N (for details, we refer the reader to [15]).

3 A-manifolds and A-bundles

Let X be a Hausdorff topological manifold modelled on M ∈ P(A). We say that X is
an A-manifold (resp. Ah-manifold), if its transition functions are A∞-differentiable
(resp. A∞-holomorphic). If X, Y are A-manifolds (resp. Ah-manifolds), we say
that f : X → Y is an A-map (resp. Ah-map), if its local representatives are A∞-
differentiable (resp. A∞-holomorphic). The category of A-manifolds (resp. Ah-
manifolds) and A-maps (resp. Ah-maps) will be denoted by Man(A) (resp. Manh(A)).

Let X ∈ Manh(A) modelled on M . We obtain tangent spaces, by considering
classes of equivalent “curves” in the following way: an A-curve on X is an A-map
α : A → X, with A ∈ N (0A). The A-curves α, β are tangent at x ∈ X, if α(0) =
β(0) = x and there exists a chart (U, φ) at x with D(φ ◦ α)(0) = D(φ ◦ β)(0). We
denote by [(α, x)] the induced equivalence class of α and by T (X,x) the set of such
quivalence classes. If M∗ denotes the abelian group (M, +) provided with the scalar
multiplication

A × M∗ → M∗ : (a, x) → a∗x

and M ⊕ M1 = Am, then

M∗ ⊕ (M1)∗ = (M ⊕ M1)∗ = (Am)∗ = Am
,

within A-module isomorphisms, that is, M∗ ∈ P(A). Let x ∈ X and (U, φ) a chart
at x. The map

φ̄ : T (X,x) → M × M∗ : [(α, x)] → (L(φ ◦ α)(0), S(φ ◦ α)(0)) (1)
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is a bijection establishing an A-module structure on T (X,x). We call T (X,x) the
tangent space of X at x. The tangent bundle T (X) of X, i.e., the discrete union of
all tangent spaces is an A-manifold.

We note here, that if A = C, the tangent bundle introduced above coincides with
the complexified tangent bundle of complex manifolds.

If f : X → Y is an A-map, the differential of f

Tf : T (X) → T (Y ) : [(α, x)] → [(f ◦ α, f(x))]

is an A-map and, for any x ∈ X, the restriction

Txf : T (X,x) → T (Y, f(x)) : [(α, x)] → [(f ◦ α, f(x))]

is an A-linear map.

Let now X ∈ Manh(A), E ∈ Man(A), π : E → X an A-map and M ∈ P(A). We
say that the triplet ` = (E, π,X) is an A-differentiable A-bundle over X of fibre type
M , or, simply, an A-bundle, if the following conditions hold:

i) Ex := π−1(x) ∈ P(A), for every x ∈ X.
ii) There exists a trivializing covering {(Ui, τi)}i∈I , where {Ui}i∈I is an open cov-

ering of X and every τi : π−1(Ui) → Ui ×M is an isomorphism in Man(A), such that
pr1 ◦ τi = π and, for every x ∈ Ui, the restriction

τix := τi|Ex : Ex → {x} × M

is an A-module isomorphism.

One would note here that in the Banach context, for the definition of vector bun-
dles, one more condition is required, namely (VB 3) of [3]. However, in our framework,
the properties of the canonical topology and the A∞-differentiation imply this con-
dition, making A-bundles look like bundles of finite rank (cf. the analogous results
for continuous R-bundles, where R is a topological ring [14] and for differentiable
A-bundles, where A is a commutative unital lmc algebra over R [17, 20]).

4 A-hermitian structures

The involution of the algebra A endows the objects of P(A) with a structure gener-
alizing hermitian inner products on complex vector spaces. In this section we investi-
gate the conditions under which these generalized inner products provide a hermitian
structure on an A-bundle.

We recall that a positive definite A-hermitian inner product on an A-module M
is a map α : M × M → A, satisfying the following conditions:

(i) α is A-linear with respect to the first variable.
(ii) α(y, x) = (α(x, y))∗, for any x, y ∈ M .
(iii) For every x ∈ M , α(x, x) is positive in A, that is,

spA(α(x, x)) := {λ ∈ C : λ · 1A − α(x, x) not invertible } ⊆ [0, +∞).
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(iv) The mapping M → LA(M, A)∗ : x → αx, where αx(y) := α(y, x), for every
y ∈ M , is an isomorphism of A-modules.

For brevity, the pair (M,α) is called a hermitian form.

For every hermitian form (M,α), with M ∈ P(A), α is an A-map and

Lα(x, y)(h, k) = α(h, y), Sα(x, y)(h, k) = α(x, k),

for every (x, y), (h, k) ∈ M × M .

Let us recall that a lmc C∗-algebra is a lmc ∗-algebra, whose seminorms satisfy
the relation p(x∗x) = (p(x))2, for every x ∈ A. Regarding the existence of hermitian
forms, we have

Theorem 4.1 [6] Let A be a complete lmc C∗-algebra with unit and M ∈ P(A).
Then M admits a positive definite A-hermitian inner product α, which is unique
up to an isomorphism, that is, if (M,β) is a hermitian form, then there exists an
A-automorphism f of M , such that β ◦ (f × f) = α. 2

Corrolary 4.2 Let A be a complete lmc C∗-algebra with unit and M a free finitely
generated A-module. If (M,β) is a hermitian form, Then M has an orthonormal
basis with respect to β.

Proof. By definition, M coincides with Am, for some m ∈ N. The canonical basis
{ei}i=1,...,m of AM is orthonormal with respect to the posotive definite A-hermitian
inner product

α : Am × Am → A : ((xi), (yi)) 7→
∑

i

xi(yi)∗.

If f is the A-automorphism of Am with β ◦ (f × f) = α, then {f(ei)}i=1,...,m is the
required basis of Am. 2

Definition 4.3 An A-hermitian structure on the A-bundle ` = (E, π,X) is an A-
map g : E ⊕ E → A, such that, (Ex, gx := g|Ex⊕Ex) is a hermitian form, for every
x ∈ X.

In the subsequent theorems we give sufficient conditions for the existence of A-
hermitian structures. But, we need first the following

Definition 4.4 Let (X,A) ∈ Man(A). An A-partition of unity on X is a family
{(Ui, ψi)}i∈I , where {Ui}i∈I is a locally finite open covering of X and {ψi}i∈I is a
family of A-maps ψi : X → A, such that

(i) supp(ψi) ⊆ Ui, for any i ∈ I.
(ii) For any x ∈ X and any i ∈ I, ψi(x) is positive in A.
(iii)

∑
i ψi(x) = 1, for any x ∈ X.
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In the ordinary (finite dimensional or Banach) case, one assumes that every open
covering of X admits a locally finite refinement with a subordinate partition of unity.
However, such an assumption is too strong. We only need that the bundle has (at
least) one locally finite trivializing covering {(Ui, τi)}i∈I , so that {Ui}i∈I has a sub-
ordinate A-partition of unity. This last condition is proved to hold for a class of
A-manifolds, if A is the algebra C(X) of continuous complex valued functions on a
Hausdorff completely regular topological space X, or its subalgebra C∞(X) of smooth
functions, in the case that X is a compact smooth manifold (see [18], [19]).

Following the classical arguments, one has:

Theorem 4.5 Let ` be an A-bundle of fibre type M ∈ P(A). If (M,α) is an A-
hermitian form and ` has a localy finite trivializing covering with a subordinate A-
partition of unity, then ` is provided with an A-hermitian structure. 2

In the case of a unital commutative complete lmc C∗-algebra, for every M ∈ P(A)
there is a hermitian form (M,α) (Theorem 4.1). Besides, if the base space X has a
locally finite atlas consisting of charts whose image is a sphere with respect to the
A-valued norm defined by α, then X has an A-partition of unity subordinate to this
atlas (see [19] in conjunction with [18]). As a result, we obtain

Theorem 4.6 Let A be a unital commutative complete lmc C∗-algebra. If the A-
bundle ` = (E, π,X) has a localy finite trivializing covering, so that the respective
charts of X are sent to spheres, then ` is provided with an A-hermitian structure. 2

If (M,α) is a hermitian form, we denote by GL(M,α) the group of A-linear
automorphisms f of M satisfying α ◦ (f × f) = α. As usually, if M is the fibre type
of `, we say that the structural group of ` reduces to GL(M,α), if ` has a trivializing
covering {(Ui, τi)}i∈I , with

τjx ◦ τ−1
ix ∈ GL(M,α), ∀i, j ∈ I, x ∈ Ui ∩ Uj . (2)

If (2) holds, it is clear that the formula

s(x) := α ◦ (τix × τix). (3)

defines a hermitian form (Ex, s(x)) independent of the choice of i, and that the induced
map s : E ⊕ E → A locally coincides with α ◦ (τi × τi), hence it is an A-map. As a
result, we have

Theorem 4.7 Let ` be an A-bundle of fibre type M and (M,α) a hermitian form. If
the structural group of ` reduces to GL(M,α), then ` has an A-hermitian structure.
2

If A is a complete C∗-algebra, the converse of Theorem 4.7 is true in the topological
case ([16]). Besides, the reduction of the structural group of a bundle does not depend
on the choice of α (ibid.).
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5 A-connections

In this section, we define A-connections as operators between the sections of certain A-
bundles and we construct such a connection on a bundle having a trivializing covering
with a subordinate A-partition of unity (Theorem 5.3). This connection is compatible
with the hermitian structure obtained in Theorem 4.7 (Theorem 5.4).

Proposition 5.1 Let (X,A) ∈ Manh(A) modelled on M and let ` = (E, π,X) be an
A-bundle of fibre type N . If ˜̀ := (L(TX,E), π̃,X), where

L(TX,E) :=
⋃

x∈X

LA(T (X,x), Ex)

and π̃ : L(TX,E) → X is the natural projection, then ˜̀ admits the structure of an
A-bundle of fibre type P := LA(M,N).

Proof. If {(Ui, φi)}i∈I is an atlas of X and {(Ui, τi)}i∈I a trivializing covering of `,
let

τ̃i : π̃−1(Ui) → Ui × P : f 7→ (π̃(f), τix ◦ f ◦ φ̄−1
i ),

where x = π̃(f) and φ̄i is given by (1). Then {(Ui, τ̃i)}i∈I is a trivializing covering of
˜̀. 2

Definition 5.2 Let ` = (E, π,X) be an A-bundle. We denote by Γ(X,E) and
Γ(X,L(TX,E)) the A-modules of the A-differentiable sections of ` and of ˜̀, respec-
tively. We say that a mapping

D : Γ(X,E) → Γ(X,L(TX,E)),

is an A-connection on `, if it is A-linear and it satisfies the Leibniz condition:

Dfξ = Tf · ξ + f · Dξ,

for any ξ ∈ Γ(X,E) and any A-map f : X → A.
Besides, we say that D is compatible with a hermitian structure g of `, if

gx(Dξ(x)(v), η(x)) + gx(ξ(x), Dη(x)(v)) = Tx(g ◦ (ξ, η))(v),

for every x ∈ X, ξ, η ∈ Γ(X,E) and v ∈ T (X,x).

Theorem 5.3 Let ` be an A-bundle having a locally finite trivializing covering with
a subordinate A-partition of unity. Then ` has an A-connection.

Proof. (i) Assume first that the fibre type of ` is a free finitely generated A-module
Am. Let {(Ui, τi)}i∈I be the locally finite trivializing covering of ` and {(Ui, ψi}i∈I

the subordinate A-partition of unity. For every i ∈ I, we set

εij : Ui → Ei := π−1(Ui) : x 7→ τ−1
i (x, bj) (4)
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where {bj}1≤j≤m is an arbitrary basis of Am. Then {εij}1≤j≤m is an A-different-
iable local frame of ` and every ξ ∈ Γ(Ui, Ei) is written as ξ =

∑
j ξij · εij , where

ξij : Ui → A is an A-map, for every j = 1, ...,m. We set

Di : Γ(Ui, Ei) → Γ(Ui, L(TUi, Ei)) : ξ 7→ Di(ξ) :=
∑

j

(Tξij) · εij .

It is straightforward that Di is a local A-connection and that

D : Γ(X,E) → Γ(X,L(TX,E)) : ξ 7→ Dξ :=
∑

i

ψi · Di(ξ)

is an A-connection on `.
(ii) Suppose now that the fibre type of ` is M ∈ P(A) and let N ∈ P(A) and

m ∈ N with M ⊕ N = Am. We consider the trivial A-bundle `o := (X × N, pr1, X)
and the Whitney sum `⊕`0 = (F, π̄,X). Let `⊕`o be endowed with the A-connection
D̃ : Γ(X,F ) → Γ(X,L(TX,F )), obtained in (i). If I : E → F denotes the canonical
injection and Pr : F → E the canonical projection, we obtain an A-connection D on
`, setting

Dξ : X → L(TX,E) : x 7→ Dξ(x) := Pr ◦ D̃(I ◦ ξ)(x). 2

If A is a complete C∗-algebra, the A-hermitian structures obtained in Theorem
4.7 and the A-connections of the above Theorem 5.3 are compatible. In fact, we have

Theorem 5.4 Let A be a commutative complete lmc C*-algebra with unit and ` an
A-bundle of fibre type M . Suppose that ` has a locally finite trivializing covering
{(Ui, τi)}i∈I admitting a subordinate A-partition of unity and satisfying (2), for a
hermitian form (M,α). Then ` has an A-hermitian structure and a compatible A-
connection.

Proof. (i) Assume first that the fibre type of ` is Am. Let {xj}1≤j≤m be an orthonor-
mal basis of A with respect to α (cf. Cor. 4.2) and, for every i ∈ I, let {εij}1≤j≤m

be the induced local frame of ` (see (4)). Let now g be the A-hermitian structure
of `, constructed in Theorem 4.7, and D the A-connection obtained in Theorem 5.3.
Then, for every i ∈ I,

gx(Diξ(x)(v), η(x)) + gx(ξ(x), Diη(x)(v)) =

=
∑

j

(Txξij(v) · (η(x))∗ + ξij(x)(Txηij(v)∗),

where ξ|Ui =
∑

j ξijeij , η|Ui =
∑

j ηijeij , x ∈ Ui and v ∈ T (X,x). Thus,

gx(Dξ(x)(v), η(x)) + gx(ξ(x), Dη(x)(v)) =

=
∑

i

ψi(x) ·
∑

j

Tx(ξij · (ηij)∗)(v). (5)
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On the other hand,

g ◦ (ξ, η)(x) = g(
∑

j

ξij(x)εij(x),
∑

j

ηij(x)εij(x)) =
∑

j

ξij(x) · ηij(x)∗,

for every (Ui, τi) containing x, consequently,

Tx(g ◦ (ξ, η))(v) =
∑

j

Tx(ξij · (ηij)∗)(v), (6)

implying the required equality.
(ii) Suppose now that the fibre type of ` is M ∈ P(A). Let N ∈ P(A) and m ∈ N

with M ⊕ N ≡ Am. We consider the trivial A-bundle `o = (X × N, pr1, X) and the
sum `⊕ `o. The latter is an A-bundle of fibre type Am, the structural group of which
reduces to GL(M × N,α ⊕ αo), for any positive definite A-hermitian inner product
αo on N . Consider ` and ` ⊕ `o provided with the A-hermitian structures g and g̃,
where

g(x) := α ◦ (τix × τix) ; i ∈ I, x ∈ Ui,

g̃(x) := g(x) ⊕ αo , x ∈ X.

Then, if {xj}1≤j≤n is again an orthonormal basis of A with respect to α ⊕ αo, and,
for every i ∈ I, (Ui, Φi := τi × idN ) is the trivializing pair of `⊕ `o induced by (Ui, τi)
of `, the sections εij(x) := Φ−1

i (x, xj), (x ∈ Ui, j = 1, ..., n) form an orthonormal
A-differentiable frame on Ui. As in (i), we construct an A-connection D̃ on ` ⊕ `o

which is compatible with g̃. Now, setting

D : Γ(X,E) → Γ(X,L(TX,E)) : ξ 7→ Pr(D̃(I ◦ ξ))

(see the proof of Theorem 3.3), we obtain:

gx(Dξ(x)(v), η(x)) + gx(ξ(x), Dη(x)(v)) =

= gx(Pr ◦ D̃(I ◦ ξ)(x)(v), I ◦ η(x)) +

+gx(I ◦ ξ(x), P r ◦ D̃(I ◦ η)(x)(v)) =

= gx(Pr ◦ D̃(I ◦ ξ)(x)(v), η(x)) +

+αo((1 − Pr) ◦ D̃(I ◦ ξ)(x)(v), 0) +

+gx(ξ(x), P r ◦ D̃(I ◦ η)(x)(v)) +

+αo(0, (1 − Pr) ◦ (D̃(I ◦ η)(x)(v)) =

= g̃x(D̃(I ◦ ξ)(x)(v), I ◦ η(x)) +

+g̃x(I ◦ ξ(x), D̃(I ◦ η)(x)(v)) =
= Tx(g̃ ◦ (I ◦ ξ, I ◦ η))(v) =
= Tx(g ◦ (ξ, η))(v),

which completes the proof. 2
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intégration des champs de vecteurs, Analele Stiintifice ale Univ. “Al. I. Cusa”
Iasi, 26 (1980), 141–145.

[12] M. H. Papatriantafillou, Finsler structures on A-bundles, Math. Nachr.
130(1987), 75-85.

[13] M. H. Papatriantafillou, Translation invariant topologies on commutative ∗-
algebras, Period. Math. Hungar. 23 (1991), 185-193.

[14] M. H. Papatriantafillou, A Serre-Swan theorem for bundles of topological modules,
Math. Nachr. 156(1992), 297-305.

[15] M. H. Papatriantafillou, Differentiation in modules over topological ∗-algebras, J.
Math. Anal. Appl. 170(1992), 255-275.

[16] M. H. Papatriantafillou, A Reduction Theorem for Hermitian Structures on A-
Bundles, Boll. U.M.I., (7) 8-A (1994), 1-9.

[17] M. H. Papatriantafillou, Connections on A-bundles, New Developments in Dif-
ferential Geometry, Budapest 1996, 307-315.



Hermitian Structures and Compatible Connections 75

[18] M. H. Papatriantafillou, Partitions of unity on A-manifolds, Intern. J. Math. (in
press).

[19] M. H. Papatriantafillou, Bump functions on A-manifolds (to appear).

[20] E. Vassiliou and M. Papatriantafillou, Connections on A-frame bundles (to ap-
pear).

[21] A. Prastaro, Geometry of PDE’s and Mechanics, World Scientific, London,
(1996).

[22] S. A. Selesnick, Second Quantization, Projective Modules and Local Gauge In-
variance, Intern. J. Theor. Phys. 22(1983), 29-53.

[23] V. V. Shurygin, Manifolds over algebras and their application to the geometry of
jet bundles, Rusian Math. Surveys 48:2(1993), 75-104.

Author’s address:

M. Papatriantafillou
Department of Mathematics
University of Athens
Panepistimiopolis
Athens 157 84, Greece
E-mail address: mpapatr@atlas.uoa.gr


