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Abstract

Poincare-invariant systems with strong coupling are considered. Quantiza-
tions are made in the presence of two-periodic classical field. Dne develops a
scheme of perturbation theory using Bogoliubov group variables and taking into
account the consevations lows.

Doubly periodic solutions for the Lagrange–Euler equation of the (1 + 1)-
dimensional scalar ϕ4 theory are studied. Provided that nonlinear term is small,
the Poincare asymptotic method is used in order to find asymptotic solutions in
the standing wave form. Using the Jacobi elliptic function cn as a zero approxi-
mation, it is proved that one can solve the problem of the main resonance which
appear in the case of a zero mass and one can construct a uniform expansion.
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1 .

1.1 Introduction

We consider self-acting scalar field in the (1+1)–dimensioned space-time with the
following Lagrangian:

L(x) =
1
2
gαβΦαΦβ − g2V

(1
g
Φ

)
, (I.1.1)

xa = (x0, x1) = (t, x), Φα ≡ ∂Φ
∂xα

, gαβ = diag(1,−1).
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The Lagrangian is invariant with respect to the Poincaré group of transformations.
Dimensionless parameter g is assumed to be large. In this case the main effect of
interaction is the generation of a classical field.

Let’s define Bogoliubov transformation as

f(x) = gv(x
′
) + u(x

′
), (I.1.2)

where v(x
′
) is some fixed function, and variables x

′
are connected with x by the in-

verted Poincaré transformation x
′α = Aα

β(φ)(xβ−τβ). Here A0
0 = A1

1 = chφ, A1
0 =

A0
1 = −shφ, τa = (τα, φ), a = 0, 1, 2, α = 0, 1.The number of independent variables

became at 3 variables more in the right part of equation cause τα, which are consid-
ered to be independent. Let’s restrict the choice of the functions u(x

′
) to equalize the

number of variables. We will use the following procedure: let’s choose some space-like
curve C, in which three function Na(x

′
) and normal derivatives Na

n(x
′
) and un(x

′
)

are given, and we demand to be fulfilled of the following conditions:

ω(Na, u) =
∫

C

dλ
(
Na

n(x
′
)u(x

′
) − Na(x

′
)un(x

′
)
)

= 0. (I.1.3)

We can obtain equations, which define group variables as functional of f(x) and fn(x)
on the C in the differential form:

δτa

δf(x)
= −1

g
Qa

b Ñ b
n(x

′
),

δτa

δfn(x)
=

1
g
Qa

b Ñ b(x
′
),

where Qa
b are the solution of the equation:

Qa
b = δa

b − 1
g
Ra

cQc
b.

Here Ña is a linear combination of Na, such that the equations ω(Ña,Mb) = 0 are
true; and Ra

c is a c=number, calculated with a help of v(x
′
) and u(x

′
).

The operators q̂(x) and p̂(x):

q̂(x) =
1√
2

(
fn(x) + i

δ

δf(x)

)
, p̂(x) =

1√
2

(
f(x) − i

δ

δfn(x)

)
,

are defined in the space L of functionals F , where the scalar product is defined as:

< F1|F2 >=
∫

DfDfnF1n[f, fn]F2[f, fn].

The operators p̂ and q̂ are self-conjugated. They satisfy the formal commutation
relation:

[q̂(x), p̂(x
′
)] = iδ(x − x

′
).

So we can treat q̂(x) and p̂(x) as operators of coordinate and momentum and we can
develop the secondary quantization scheme. But straightforward use of this procedure
leads us to the doubling of numbers of possible field states. We use the following
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scheme: we use Bogoliubov transformation (1.2) and, in spite of appearance of exceed
states, we will develop scheme of perturbation theory. Then reduction of states number
will be made, so it will depend on dynamic system equations.

Integrals of motion generated by Lagrangian (1.1) symmetry group are energy-
momentum vector and Lorentz transformation generator:

P0 = β

∫
C

dλ
(1

2
u2(x

′
) − 1

2
u2

λ(x
′
) + V

)
− α

∫
C

(
uλ(x

′
)un(x

′
)
)
,

P1 = −α

∫
C

dλ
(1

2
u2(x

′
) − 1

2
u2

λ(x
′
) + V

)
+ β

∫
C

(
uλ(x

′
)un(x

′
)
)
,

M =
∫

C

λdλ
(1

2
u2

n(x
′
) − 1

2
u2

λ(x
′
) − V

)
.

Here α and β are defining t
′
and x

′
parameters on the C:

t
′
= αλ, x

′
= βλ.

Let us denote:

H =
∫

C

(1
2
u2(x

′
) − 1

2
u2

λ(x
′
) + V

)
, P =

∫
C

(
uλ(x

′
)un(x

′
)
)
.

Then integrals of motion can be represented as series with respect to inverted
powers of coupling constant:

O = g2O−2 + gO−1 + O0 +
1
g
O1 + ... .

Now we can quantize and substitute u(x
′
), uλ(x

′
), un(x

′
) as follows:

u(x
′
) −→ q̂(x), uλ(x

′
) −→ q̂λ(x), un(x

′
) −→ p̂(x).

In the series (4.1) operators O−2 are C-numbers and operators O−1 are linear with
respect to u(x

′
), un(x

′
), ∂

∂u(x′ )
, ∂

∂un(x′ )
. There are not normalizable eigenvectors of

these operators, so it is required to set them to zero for perturbation theory construc-
tion. Let’s explore, if it is possible. Supposing that some boundary conditions are
accomplished, then the following equation is obtained:

Fnn(x
′
) − Fλλ(x

′
) + V

′
(F ) = 0,

thus the operators O−1 are equal to zero.
Here F (x

′
) is connected linearly with a classical component v(x

′
).

Hereinafter we assume F (x) to be solution of the wave equation Ftt−Fxx+V
′
(F ) =

0, and F (x
′
) and Fn(x

′
) on C are the solution of the Cauchy problem on C.
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The number of independent variables has been doubled, due to considering f(x)
and fn(x) as independent. Cause of additional condition (1.3), which connect u(x

′
)

and un(x
′
), the number of independent variables (minus group variables) become

equal (2 ∗∞− 3). To reduce them to (∞− 3), one needs also three conditions. They
are as follows:

ω(Ña, w) = 0, ω(Ma, w) = 0.

Here:
u(x

′
) = w(x

′
) + Ña(x

′
)ra, un(x

′
) = wn(x

′
) + Ña

n(x
′
)ra.

Necessary reduction of the states number can be made in the following way: let’s
suppose that the field condition is defined by functionals of w(x

′
) and wn(x

′
), in

which
δ

δw(x′)
and

δ

δwn(x′)
become as follows:

δ

δw(x′)
−→ δ

δw(x′)
− iwn(x

′
),

δ

δwn(x′)
−→ −iw(x

′
). (I.1.4)

After the reduction of independent variables, it becomes:
(3 group parameters )+(3 variables ra)+ (∞− 3–dimensioned function w space)

The variables ra have not physical sense. They have appeared as a rest of the
state space reduction in the terms of Bogoliubov group variables. Below we will show
that separation of these variables is connected with integrals of motion structure in
the zero-point order, so it is dynamic by nature.

1.2 An example of field variables reduction

Without loss of generality we can consider the case when F (x
′
) satisfy to the boundary

condition Fn(x
′
) = 0 on C.

In that case:

Mα(x
′
) = − 1√

2
eαFλ(x

′
), Mnα(x

′
) =

1√
2
nαFnn(x

′
),

M2(x
′
) = 0, M2n =

1√
2

(
λFnn(x

′
) + Fλ(x

′
)
)
.

Suppose that we chose Na as follows:

Ñα(x
′
) = AnαFnn(x

′
), Ñα

n (x
′
) = BeαFλ(x

′
),

Ñ2(x
′
) = b1λFnn(x

′
) + b2Fλ(x

′
), Ñ2

n(x
′
) = 0,

where ~e is a vector along line C, ~n is a normal vector and b1, b2 are appropriate
numbers (see [2]). We can obtain the following relationships between F and its normal

derivative F (x
′
) = Fnn(x

′
)
∫

FFnn∫
F 2

nn

,

thus the second normal derivative of classical component is proportional to the
function itself:

Fnn(x
′
) = ω2F (x

′
). (I.2.1)
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1.3 Zero-point order with respect to g.

The integrals of motion at the zero-point order with respect to g are:

H0 = inα ∂

∂τα
+ H01 + H02 + H03,

P0 = ieα ∂

∂τα
+ P01 + P02 + P03,

M0 = i
∂

∂τ2
+ i

(
τ0 ∂

∂τ1
+ τ1 ∂

∂τ0

)
+ M01 + M02 + M03,

where

H01 =
1
2

∫ (
P̂ 2(x

′
) + Q̂2

λ(x
′
) + V

′′
(F )Q̂2(x

′
)
)
,

H02 = i

∫ (
wn(x

′
)

δ

δw(x′)
+ wnn(x

′
)

δ

δwn(x′)

)
,

H03 =
1
2

∫
(p2(x

′
) + q2

λ(x
′
) + V

′′
(F )q2(x

′
)) + irc

∂

∂rb

∫
+(

Ñ c
n(x

′
)

δrb

δu(x′)
− Ñ c

nn(x
′
)

δrb

δun(x′)

)
+

rcra

∫ (
Ñ c

n(x
′
)Ña

n(x
′
) − Ñ c

nn(x
′
)Ña(x

′
)
)
,

P01 =
∫

Q̂λ(x
′
)P̂ (x

′
),

P02 = i

∫ (
wn(x

′
)

δ

δw(x′)
+ wλn

δ

δwn(x′)

)
,

P03 =
∫

qλ(x
′
)p(x

′
) + irc

∂

∂rb

∫ (
Ñ c

λ(x
′
)

δrb

δu(x′)
− Ñ c

λn(x
′
)

δrb

δun(x′)

)
+

rcra

∫ (
Ñ c

λ(x
′
)Ña

n(x
′
) − Ñ c

λn(x
′
)Ña(x

′
)
)
,

M01 =
1
2

∫
λ
(
P̂ 2(x

′
) + Q̂2

λ(x
′
) + V

′′
(F )Q̂2(x

′
)
)
,

M02 = i

∫ (
λwn(x

′
)

δ

δw(x′)
+ (λwnn(x

′
) + wλ(x

′
))

δ

δwn(x′)

)
,
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M03 =
1
2

∫
λ
(
p2(x

′
) + q2

λ(x
′
) + V

′′
(F )q2(x

′
)
)

+

irc
∂

∂rb

∫ (
λÑ c

n(x
′
)

δrb

δu(x′)
− (λÑ c

nn(x
′
) + Ñ c

λ(x
′
))

δrb

δun(x′)

)
+

rcra

∫ (
λÑ c

n(x
′
)Ña

n(x
′
) − (λÑ c

nn(x
′
) + Ñ c

λ(x
′
)Ña(x

′
))

)
.

Operators Q̂ and P̂ have sense for coordinates and momentum for the systems
described by variables w, wn. q and p are c-numbers calculated using the same
variables. Explicit expressions for those values can be found in [1].

The operators O0 act at the space like F [w,wn]F [r], so O01 and O02 act at the
space F [w,wn], but operators O03 act at the space F [r]. Those spaces are orthogonal.

H02 is the displacement operator along the normal to C. Being Hamiltonian of
the system described by the operators Q̂(x

′
) and P̂ (x

′
), the operator H01 has the

same sense. It is possible to show that H02 differs from H01 only by the sign, so they
annihilate each to other:

H0 = inα ∂

∂τα
+ H03.

Analogously one can show that the operator P02 is the displacement operator along
C and it is annihilated together with operator P01, which is the system momentum,
and operator P0 is:

P0 = ieα ∂

∂τα
+ P03.

The operator M02 describes the rotation of angle φ and it is compensated by the
Lorentz rotation operator M01, so the operator M0 looks like:

M0 = i
∂

∂τ2
+ i=α ∂

∂τα
+ M03.

The operator O03 contains only exceed variables ra, ∂
∂ra

which can be removed
with the help of an appropriate choice of state vector:

f = exp(αx2
0 + βx2

2 + γx2
2 + µx0x2),

addends that depend on ra commute, average of P03 and M03 are equal zero, average
of H03 can be sat to zero by appropriate renormalization. So those addends can be
removed.

(Here xa are linear combinations of ra, α, β, γ, µ are well chosen numbers, see [1].)
After removing of exceed variables integrals of motion in the zero-point order, one

has:
Pα = i

∂

∂τα
, M = i

∂

∂τ2
+ i=α ∂

∂τα
,
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which satisfy the Poincaré group permutation relations:

[P0, P1] = 0, [M,Pα] = −g0αP1 + g1αP0.

Heisenberg equations

∂Z

∂xα
= i[Pα, Z],

(
x0 ∂

∂x1
+ x1 ∂

∂x0

)
Z = i[M,Z]

for the field ψ(x) are as follows:

∂Z

∂xα
= − ∂Z

∂τα
, (I.3.2a)

(
x0 ∂

∂x1
+ x1 ∂

∂x0

)
Z −

( ∂

∂φ
+ τ0 ∂

∂τ1
+ τ1 ∂

∂τ0

)
Z (I.3.2b)

with a boundary conditions:

ψ|c = q, ψn|c = p.

The solutions of the equations (3.2a) are the functions:

Z = Z(xα − τα),

and solutions of the equations (3.2b) are the functions:

Z = Z
(
Aα

β(φ)
(
xα − τα

))
.

The field operator ψ(x) looks like:

ψ(x) = gF (x
′
) + Φ̂(x

′
) + φ̂a

∂

∂ra
+

1
g
A(x

′
, τ),

here Φ̂(x
′
) is the solution of the wave equation:

Φ̂tt − Φ̂xx + Y (x)Φ̂ = 0

with a boundary condition on the C:

Φ̂ = Q̂(x
′
), Φ̂t = P̂ (x

′
).

The permutation function looks like:

D(x
′
, x

′′
) =

[
ψ(x

′
), ψ(x

′′
)
]

= iδ
(
x

′
− x

′′
)

.
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2 .

We have constructed the procedure of quantization close to a non-trivial classical
field. This field is a solution of nonlinear differential equation:

∂2ϕ(x, t)
∂x2

− ∂2ϕ(x, t)
∂t2

− V ′(ϕ) = 0,

with following boundary conditions:

Ft|∂C = Fx|∂C = 0.

The doubly periodic solutions in the standing wave form satisfy these boundary
conditions. In some theories ( for example, Sine-Gordon ) such solutions are well
known. In other theories exact standing wave solutions are not known.

Our investigation is dedicated to the construction of doubly periodic classical fields
in the (1 + 1)-dimensional ϕ4 theory. Let us consider the Lagrange–Euler equation:

∂2ϕ(x, t)
∂x2

− ∂2ϕ(x, t)
∂t2

− M2ϕ(x, t) − εϕ3(x, t) = 0. (II.1)

We intend to find solutions in the standing wave form:

ϕ(x, t) ≡
∞∑

n=1

∞∑
j=1

Cnj sin(n(x − x0)) sin(j ·ω(t − t0)), (II.2)

where x0 and t0 are constants determined by boundary and initial conditions. The
equation (1) is a translation-invariant one, so, without loss of generality, we can
restrict our consideration to the case of zero x0 and t0. We suppose that the function
ϕ(x, t) is 2π-periodic in space and seek its period in time. Exact standing wave
solutions of this equation are not known.

The purpose of this report is the construction of standing wave solutions of equa-
tion (1) with M = 0, using asymptotic methods. They can only be applied, provided
ε ¿ 1.

We use the Poincaré method,: introducing the new time t̃ ≡ ωt and looking for a
double periodic solution of equation (1) ϕ(x, t̃) and the frequency (in time) ω in the
form of power series of ε:

ϕ(x, t̃, ε) ≡
∞∑

n=0

ϕn(x, t̃)εn,

ω(ε) ≡ 1 +
∞∑

n=1

ωnεn.

After we expand the Lagrange–Euler equation in series of ε powers,we obtain a
sequence of equations. Write out two leading equations:
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1) To zero order of ε the equation in ϕ0:

∂2ϕ0(x, t̃)
∂x2

− ∂2ϕ0(x, t̃)
∂t̃2

= 0, (II.3)

2) To first order of ε the equation in ϕ0, ϕ1 and ω1:

∂2ϕ1(x, t̃)
∂x2

− ∂2ϕ1(x, t̃)
∂t̃2

= 2ω1

∂2ϕ0(x, t̃)
∂t̃2

+ ϕ3
0(x, t̃). (II.4)

The equation (3) has many periodic solutions. If we select as solution for this
equation the function ϕ0(x, t̃) = sin(x) sin(t̃), then the second equation hasn’t periodic
solutions, because the frequency of the external force sin(3x) sin(3t̃) is equal to the
frequency of its own oscillations and it is impossible to vanish this resonance harmonic,
selecting only ω1. We shall show that right selection of not only the frequency ω(ε),
but also the function ϕ0(x, t̃) allows to find a uniform expansion.

The general solution in the standing wave form (2) for equation (3) is the function

ϕ0(x, t̃) =
∞∑

n=1

an sin(nx) sin(nt̃)

with arbitrary an. We have to find such coefficients an such that the function ϕ1(x, t̃)
is a periodic solution for equation (4). If we select ϕ1(x, t̃) as a double sum:

ϕ1(x, t̃) ≡
∞∑

n=1

∞∑
j=1

bnj sin(nx) sin(jt̃)

with arbitrary bnj , then equation (4) can be presented in the form of Fourier series:

R(x, t̃) ≡ ∂2ϕ1(x, t̃)
∂x2

− ∂2ϕ1(x, t̃)
∂t̃2

−

2ω1

∂2ϕ0(x, t̃)
∂t̃2

− ϕ3
0(x, t̃) =

∞∑
n=1

∞∑
j=1

Rnj(a, b) sin(nx) sin(jt̃) = 0.

which is equivalent to the following infinite system of the algebraic equations in Fourier
coefficients of functions ϕ0(x, t̃) and ϕ1(x, t̃):

∀n, j : Rnj(a, b) = 0.

This system has a subsystem of the equations in Fourier coefficients of ϕ0(x, t̃):

∀j ∈ IN : Rjj(a) ≡ 9a3
j + 3a2

ja3j+

aj

(
6
∑∞

s 6=j (2a2
s + asa2j+s) + 3

∑2j−1
s 6=j asa2j−s − 32j2ω1

)
+

+3
∞∑

s 6=j

∞∑
p 6=j

asapaj+s+p+

3
∑∞

s 6=j

∑∞
p 6=j

p 6=2j−s

asapas+p−j +
∑j−2

s=1

∑j−2
p=1 asapaj−s−p = 0.

(II.5)
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We have obtained a necessary and sufficient condition for the existence periodic
solutions for the equation (4): there exist a periodic function ϕ1(x, t̃), satisfying
equation (4), if and only if the coefficients of ϕ0(x, t̃) Fourier series satisfy the system
(5).

The coefficient a1 is a parameter, determining the oscillation amplitude. In fact,
let aj = cja1 and ω1 = cωa2

1; then all polynomials Rjj are proportional to a3
1: Rjj(a) =

a3
1Rjj(c) and, therefore, the coefficient a1 can be selected arbitrarily. Our goal is to

find a real solution and we look for cj ∈ IR.
This system of equations is very difficult to solve. On the one hand all Rjj are

infinite series and number of equations is infinite too. On the other hand each equation
of this system is a nonlinear one. We have restricted ourselves to find a particular
solution. To simplify calculations we assume that the function ϕ0(x, t̃) contains only
odd harmonics. Using Jacobi elliptic functions we have found the analytical form of
the function, which Fourier series obeys this system.

For arbitrary q ∈ (0, 1) let us define the following sequence:

f
def= { ∀n ∈ IN : f2n−1 =

qn−1/2

1 + q2n−1
, f2n = 0 }.

The terms of the sequence f are proportional to Fourier coefficients of the Jacobi
elliptic function cn [1]:

cn(z, k) =
γ

k

∞∑
n=1

f2n−1 cos
(
(2n − 1)

γz

4

)
, where γ ≡ 2π

K
, z ∈ IR. (II.6)

Let us clarify introduced designations and point out some properties of elliptic
cosine:
1) Basic periods of the doubly periodic function cn(z, k) are 4K(k) and 2K(k) +
2ı̇K ′(k), where K(k) is a full elliptic integral, K ′(k) ≡ K(k′) and k′ =

√
1 − k2 .

2) The parameter q in the Fourier expansion can be expressed in the term of elliptic

integrals: q ≡ e−π K′
K .

3) The Fourier-series expansion of cn(z, k) doesn’t include even harmonics. This
expansion is corrected in the following domain of the complex plane: −K ′ < =m z <
K ′, in particular, for z ∈ IR.
4) If z ∈ IR and k ∈ (0, 1), then cn(z, k) ∈ IR.
5) The function cn(z, k) is a solution of the following differential equation:

d2 cn(z, k)
dz2

= (2k2 − 1) cn(z, k) − 2k2 cn3(z, k). (II.7)

The latest property means that sequence of cn(z, k) Fourier coefficients is a solution
of some infinite system of cubic equations.

On the one hand, it is clear from (6) that the Fourier-series expansion for the
function cn3(z, k) is:

cn3(z, k) =
γ3

4k3

∞∑
n=1

F
(3)
j (f) cos

(
j
γz

4

)
, where j = 1, 3, 5, . . . , +∞ ;
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F
(3)
j (f) ≡ 3f3

j + 3f2
j f3j + fj

6
∞∑

s 6=j

(f2
s + fsf2j+s) + 3

2j−1∑
s 6=j

fsf2j−s

 +

+ 3
∞∑

s 6=j

∞∑
p 6=j

fsfpfj+s+p + 3
∞∑

s 6=j

∞∑
p 6=j

p 6=2j−s

fsfpfs+p−j +
j−2∑
s=1

j−2∑
p=1

fsfpfj−s−p

(in all sums we summarize over only odd numbers).
On the other hand, from differential equation (7) it follows that F

(3)
j (f) is pro-

portional to fj , with coefficients of proportionality depending on j:

∀j : F
(3)
j (f) =

(
2(2k2 − 1)

γ2
+

j2

8

)
fj . (II.8)

Thus, the sequence f is a nonzero solution of system (8) at all q ∈ (0, 1). The
following lemma proves the existence of a preferred value of q.

Lemma. There exists a value of parameter q ∈ (0, 1) such that the sequence f is a
real solution of the

system (5); in addition a value of ω1 also is real.
Proof. Inserting the sequence f into system (5) : aj = fj and using system (8),

we obtain:

∀j : Rjj(f) =

{
F

(3)
j (f) + fj

(
6

∞∑
n=1

f2
n − 32j2ω1

)}
=

= fj

{
6

∞∑
n=1

f2
n +

2(2k2 − 1)
γ2

+ j2

(
1
8
− 32ω1

)}
= 0.

the system (5) has nonzero solution if and only if
ω1 =

1
256

,

∞∑
n=1

f2
n =

(1 − 2k2)
3γ2

.

We have obtained the value of ω1. The second equation of this system is equivalent
to the following equation in parameter q:

3
∞∑

n=1

(
qn−1/2

1 + q2n−1

)2

−

(
1
4

+
∞∑

n=1

qn

1 + q2n

)2

+ 2

( ∞∑
n=1

qn−1/2

1 + q2n−1

)2

= 0. (II.9)

This equation has the solution q = 1.42142623201 × 10−2 ± 1 × 10−13 ∈ (0, 1).

.
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Now it is easy to construct the required zero approximation of the function ϕ(x, t̃):

ϕ0(x, t̃) = A
{

cn(α(x − t̃), k) − cn(α(x + t̃), k)
}

.

For arbitrary k ∈ (0, 1) this function is a real solution of equation (4). If α = 2K
π ,

then periods ϕ0(x, t̃) in x and in t̃ are equal to 2π. Using the Fourier-series expansion
for the function cn(z, k) (formula (6)), we obtain the following expansion for the
function ϕ0(x, t̃):

ϕ0(x, t̃) = 2A
γ

k

∞∑
n=1

f2n−1 sin((2n − 1)x) sin((2n − 1)t̃).

If q = 1.42142623201 × 10−2 ± 1 × 10−13, then q is a solution of equation (9) and
the sequence f is a real solution of system (5). The middle value of q corresponds
to k = 0.451075598811 and α = 1.0576653982. All the equations in the system
(5) are homogeneous ones, hence, for these values of parameters, the sequence of

ϕ0(x, t̃) Fourier coefficients is also a solution of the system (5), with ω1 =
γ2

64k2
A2 =

1.0983600974A2.

Thus we have proved that the function

ϕ0(x, t̃) = A
{

cn(α(x − t̃), k) − cn(α(x + t̃), k)
}

,

with k = 0.451075598811 and α = 1.0576653982 is such a standing wave solution of
the equation (3) and that equation (4) has a periodic solution.

2.1 The first approximation

Now it is easy to find this periodic solution ϕ1(x, t̃). Let us designate Fourier coeffi-
cients of ϕ3

0(x, t̃) as Dnj : ϕ3
0(x, t̃) ≡

∑∞
n=1 :

∑∞
j=1 Dnj sin(nx) sin(jt̃).

The equation (4) gives the following result:

ϕ1(x, t̃) ≡
∞∑

n=1

:
∞∑

j=1

bnj sin(nx) sin(jt̃) =

∞∑
n=1

:
∞∑

j=1

j 6=n

Dnj

j2 − n2
sin(nx) sin(jt̃) +

∞∑
n=1

bnn sin(nx) sin(nt̃).

It should be noted that the function ϕ1(x, t̃) with arbitrary diagonal coefficients
bnn is a solution of the equation (4) and that all off-diagonal coefficients of ϕ1(x, t̃)
are proportional to A3.
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2.2 The second approximation

Let us consider the equation of second order for ε:

∂2ϕ2(x, t̃)
∂x2

− ∂2ϕ2(x, t̃)
∂t̃2

= 2ω1

∂2ϕ1(x, t̃)
∂t̃2

+ (2ω2 + ω2
1)

∂2ϕ0(x, t̃)
∂t̃2

+ 3ϕ1(x, t̃)ϕ2
0(x, t̃).

(II.10)
If all diagonal coefficients of ϕ1(x, t̃) are zeros: ∀n : bnn = 0, then ∀j, n : bjn =

−bnj , and the function ϕ1(x, t̃)ϕ2
0(x, t̃) hasn’t diagonal harmonics. Hence, selecting

ω2 = −1
2ω2

1 we obtain a periodic solution of equation (10):

ϕ2(x, t̃) ≡
∞∑

n=1

∞∑
j=1

j 6=n

Hnj

j2 − n2
sin(nx) sin(jt̃) +

∞∑
n=1

hnn sin(nx) sin(nt̃), where

H(x, t̃) ≡ 2ω1

∂2ϕ1(x, t̃)
∂t̃2

− 3ϕ1(x, t̃)ϕ2
0(x, t̃) ≡

∞∑
n=1

∞∑
j=1

Hnj sin(nx) sin(jt̃).

It should be noted that all diagonal coefficients hnn are arbitrary numbers.

2.3 Conclusions

Using massless ϕ4 theory as an example, we show that a uniform expansion of solutions
for quasilinear Klein–Gordon equations can be constructed even in the main resonance
case. In order to construct the uniform expansion we have used the Poincaré method
and the nontrivial zero approximation: the function ϕ0(x, t) = A

{
cn(α(x − ωt), k) −

cn(α(x + ωt), k)
}

,with k = 0.451075598811 and α = 1.0576653982.
Thus, using the Jacobi elliptic function cn instead of the trigonometric function

cos, we have vanished the main resonance and constructed with accuracy O(ε3) a
doubly periodic solution in the standing wave form ϕ(x, ωt) = ϕ0(x, ωt)+ εϕ1(x, ωt)+

ε2ϕ2(x, ωt)+ O(ε3) with the frequency ω = 1+
γ2

64k2
A2ε− γ4

8192k4
A4ε2+ O(ε3) =

1+ 1.0983600974A2ε− 0.6031974518A4ε2+ O(ε3).
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