FINITE HOMOGENEOUS MARKOV CHAIN INDUCED BY A BRANCHING PROCESS IN RANDOM ENVIRONMENT

Sergiu CORBU and Mihai POSTOLACHE

Abstract

In this work, we study a finite Markov chain, on a partition of W = [0, 1], as an approximation of the Markov process associated to a branching process defined by Smith and Wilkinson [18]. We determine the state limit vectors of this Markov chain.

Mathematics Subject Classification: 60J80.

Key words: Markov process, Markov chain, branching process, probability measure.

1 Introduction

Let $E = \{1, 2, ..., r\}$ be a finite set, $(\varepsilon)_{n \ge 1}$ be a sequence of independent and identically distributed E-random variables, defined on a field of probability (Ω, \mathcal{K}, P) , and γ be a discrete distribution on E:

$$q_i > 0$$
, $P(\varepsilon_1 = i) = q_i$, $i \in E$, $\sum_{i \in E} q_i = 1$.

For every ε , and for all $w \in W = [0, 1]$, we associate a generating function of probability

$$\varphi_{\epsilon}(w) = \sum_{i=0}^{\infty} p_i(\varepsilon)w^i, \quad p_i > 0, \quad \sum_{i=0}^{\infty} p_i(\varepsilon) = 1.$$

The sequence $\{\varphi_{\epsilon_n}(w)\}_{n\geq 1}$ has the same distribution as $(\epsilon_n)_{n\geq 1}$ and is called random environment. Consider the matrix $P=(P_{ij})_{i,j}$, where

$$P_{ij}$$
 is the coefficient of w^j in $E[\varphi_{\epsilon_n}(w)]^i$, $i, j \in \mathbb{Z}$.

Editor Gr. Tsagas Proceedings of the Workshop on Global Analysis, Differential Geometry and Lie Algebras, 1998, 29-36

^{@1999} Balkan Society of Geometers, Geometry Balkan Press

Since ε_n are independent, it follows that P_{ij} is random variable independent of n. We have

$$\sum_{j=0}^{\infty} P_{ij} w^j = E[\varphi_{\varepsilon_n}(w)]^i, \quad \sum_{j=0}^{\infty} P_{ij} = 1, \quad \forall i \in \mathbf{Z} \text{ and } w = 1.$$

On the set of integers, we define the sequence of random variables $\{Z_n\}_{n\geq 0}$ as follows

$$Z_{n+1} = \sum_{\ell=1}^{Z_n} \varepsilon_{\ell}$$
, if $Z_n > 0$ and $Z_{n+1} = 0$ if $Z_n = 0$.

Conditioned by $\varepsilon = (\varepsilon_n)_{n\geq 1}$, the sequence $(Z_n)_{n\geq 0}$ defines a Markov chain whose initial probability is $P(Z_0 = i) = \delta_{ij}$, where δ_{ij} is the Kroneker symbol, and the transition matrix P is defined above, called branching process in random environment [18]. This stochastic process represents a natural process of dividing particles, whose life period is given. Independent of the initial particle, each particle gives rise to descendants according to a generating function of probability and so on, each new generation having a different generating function of probability from a family Φ . Z_n represents the sum of all individuals from the generation n.

2 Associated Markov process

Let W = [0, 1] and the family of generating functions of probability $\Phi = \{\varphi_k\}_{k \in E}$

$$\varphi_k: W \to W, \quad \varphi_k(w) = \sum_{i=0}^{\infty} p_i^k w^i, \quad \sum_{i=1}^{\infty} i p_i^k < \infty, \quad k \in E.$$

For given w_0 , fixed but arbitrary in W, we define the W-sequence of random variables $(X_n)_{n\geq 0}$ as $X_{n+1}=\varphi_{\varepsilon_{n+1}}(X_n)$, where $X_0=w_0$. The process X_n is a random product of generating functions of probability from the family Φ , where the random point X_n is defined as

$$X_n = (\varphi_{\varepsilon_n} \circ \cdots \circ \varphi_{\varepsilon_1})(w_0), \quad n \geq 1, \quad X_0 = w_0.$$

Now we are interested to study the convergence in distribution of X_n to a limit probability measure on W, the σ -algebra of Borel subsets of W.

To give an answer to our problem, we define the Markov operator

$$\mathcal{U}f(w) = \sum_{i \in E} q_i f(\varphi_i(w)), \quad w \in W, \quad f \in \mathcal{C}(W).$$

where C(W) is the set of all bounded continuous complex-valued functions on W. The iterares of U are

$$U^{n}f(w) = \sum_{i_{1},\dots,i_{n}\in E} q_{i_{1}}\cdots q_{i_{n}}f[(\varphi_{i_{n}}\circ\cdots\circ\varphi_{i_{1}})(w)]$$
$$= E[f(\varphi^{(n)}(w))],$$

where we put $\varphi^{(n)}(w) = (\varphi_{i_n} \circ \cdots \circ \varphi_{i_1})(w)$.

According to Kaijser [8], and Barnsley and Elton [3], the following result holds.

Theorem 2.1 Suppose 0 < r < 1 and $E\left(\log \frac{|X_1(w') - X_1(w'')|}{|w' - w''|}\right) \le \log r$. Then there exists a probability measure μ such that $\lim_{n \to \infty} \mathcal{U}^n f(w) = \int_W f d\mu$.

Moreover, according to [7], for a random environment ε the sequence Z_n converges a. s. to a random variable defined on $0, 1, 2, \ldots$ and the generating function of X_n converges to $E(\varphi_{\varepsilon_n} \circ \cdots \circ \varphi_{\varepsilon_1}(w))$, $w \in W$. Therefore, if $n \to \infty$, the random variable $\varphi^{(n)}(w) = (\varphi_{\varepsilon_n} \circ \cdots \circ \varphi_{\varepsilon_1})(w)$ is convergent in probability to a random variable $\xi(w)$, for all $w \in [0, 1]$. The sequence $\{X_n(w)\}$ is a Markov process with values in [0, 1], studied by Smith and Wilkinson [18], called dual process associated to the branching process in random environment. This process is a Markov chain with transition probability

$$P(w,A) = \sum_{i \in E} q_i I_A(\varphi_{\varepsilon_i}(w)), \quad \forall w \in W,$$

where $A \in \mathcal{W}$, $I_A(\cdot)$ is the indicator function of the set A and the transition probability after n steps is

$$P^{n}(w;A) = \sum_{i_{1},\ldots,i_{n}\in I} q_{i_{1}}\cdots q_{i_{n}}I_{A}[(\varphi_{i_{n}}\circ\cdots\circ\varphi_{i_{1}})(w)].$$

3 Induced Markov chain

In this section, we shall introduce a finite homogeneous Markov chain to approximate the process $\{X_n\}$. As random environment of this process, we shall consider a family $\Phi = \{\varphi_1, \ldots, \varphi_r\}$ of generating functions of probability. Suppose these functions ordered as follows:

a) $\varphi_1, \ldots, \varphi_r$ are supercritical generating functions of probability, that is $\varphi_i'(1) = m_i > 1$, $i = 1, 2, \ldots, k < r$, hence the fixed points $\bar{w}_1 < \bar{w}_2 < \cdots < \bar{w}_k$ are not 0 and $1 (\varphi_i(\bar{w}_i) = \bar{w}_i)$;

b) $\varphi_{k+1}, \ldots, \varphi_r$ are subcritical and critical generating functions of probability, that is $\varphi_i'(1) = m_i \le 1$, $i = k+1, \ldots, r$, hence they do not admit fixed points on [0, 1]. Using these points, we consider a partition of W as follows

$$S_0 = [0, \bar{w}_1], \quad S_1 = (\bar{w}_1, \bar{w}_2], \quad \cdots, \quad S_{k-1} = (\bar{w}_{k-1}, \bar{w}_k], \quad S_k = (\bar{w}_k, 1].$$

These points, determine on the first bisectrice some squares as in Fig. 1. Consider $A_{ij}^{\ell} = \{\omega; \varphi_{\epsilon(\omega)}^{-1} \in S_j \mid w \in S_i\}$, that is the set of all generating functions of probability who map the point in S_j provided that $w \in S_i$. Of course, the transition probability from S_i to S_j will be

$$q_{ij}(w) = \sum_{A_{ij}^{\ell}} q_{\ell}, \quad i, j \in \{0, 1, \dots, k\}.$$

Since $q_{ij} \geq 0$ and

$$\sum_{i \in E} q_{ij} = \sum_{\ell} \sum_{i \in E} q_{\ell} I_{A_{ij}^{\ell}}(w) = \sum_{\ell} q_{\ell} I_{W}(w) = \sum_{\ell} q_{\ell} = 1,$$

.

it follows that the matrix $Q = (q_{ij})_{i,j}$ is a stochastic one, and $q_{ii} \ge q_i + q_{i+1}$ (see Fig. 1).

Fig. 1

We can easily prove that the transition matrix after n steps is

$$q_{ij}^{(n+1)}(w) = \sum_{\ell} \sum_{i_1,\ldots,i_n} q_{i_1} \cdots q_{i_n} I_{A_{ij}^{\ell}}(\varphi_{i_1} \circ \cdots \circ \varphi_{i_n})(w).$$

We shall consider the following remarkable cases:

1) If $\bar{w}_1 > 0$ ($\varphi_1(0) > 0$), then $q_{i0} = 0$ for every $i \ge 1$, and the transition matrix has the form

$$Q(w) = \begin{pmatrix} q_{00} & q_{01} & \cdots & q_{0k} \\ 0 & q_{11} & \cdots & q_{1k} \\ \cdots & & & & \\ 0 & q_{k1} & \cdots & q_{kk} \end{pmatrix}.$$

In this case, the state S_0 is transient and the states S_1, \ldots, S_k are ergodic.

2) If $\bar{w}_1 = 0$ ($\varphi_1(0) = 0$), then there exists $i \ge 1$ such that $q_{i0} \ne 0$. In this case, we have

$$Q(w) = \begin{pmatrix} q_{00} & q_{01} & \cdots & q_{0k} \\ q_{10} & q_{11} & \cdots & q_{1k} \\ \vdots & & & & \\ q_{k0} & q_{k1} & \cdots & q_{kk} \end{pmatrix}.$$

It follows that all states composes a closed set.

3) If k = r, $\bar{w}_1 \neq 0$, $\bar{w}_k \neq 1$ (all generating functions of probability are supercritical), then

$$Q(w) = \begin{pmatrix} q_{00} & q_{01} & \cdots & q_{0k-1} & 0 \\ 0 & q_{11} & \cdots & q_{1k-1} & 0 \\ \cdots & & & & \\ 0 & q_{k1} & \cdots & q_{kk-1} & q_{kk} \end{pmatrix}.$$

In this case, $q_{00} \cdot q_{kk} \neq 0$, therefore S_0 and S_k are asymptotic transient states, and S_1, \ldots, S_{k-1} are asymptotic ergodic states.

4) If all generating functions of probability are subcritical $(m_i \leq 1, i \in E)$, then the Markov chain has a unique asymptotic absorbant state w = 1. In the case 1), we remark that, S_0 is a "reflectant barrier" while in case 3) S_0 and S_k are reflectant barriers too. The transition matrix $Q = (q_{ij})$ and an initial vector of probabilities define a finite Markov chain on the set of states $\{S_0, S_1, \ldots, S_k\}$ denoted by $(Y_n)_{n>0}$.

If $w_0 \in S_i$, then we may choose as initial vector $p_0 = (0, ..., 1, ..., 0)$ with 1 on the position i and 0 otherwise, and $p_n = p_0 Q_1 Q_2 \cdots Q_n = p_0 Q^{(n)}$ where $Q_n = Q(w_n)$.

To state some properties of the Markov chain $Y = (Y_n)_{n\geq 0}$ and its relation with the Markov chain $X = (X_n)_{n\geq 0}$, we shall suppose the following conditions:

Condition 1 (boundedness). If P(w, A), $w \in W$, $A \in W$, is the transition probability of the Markov chain X, suppose that there exists c > 1 such that

$$\frac{q_{ij}}{c} \leq P(w, S_j) \leq q_{ij}c, \quad w \in S_i, \quad i \neq j.$$

Condition 2 (communication). For all $w \in S_i$, suppose that there exists k such that $P^k(w, S_i) > 0$, where $P^k(\cdot, \cdot)$ is the transition probability in k steps of the chain X_0 .

Using the definition of $P(\cdot, \cdot)$ and q_{ij} , we remark that

$$q_{ij} \leq P(w, S_j), \quad i, j \in \{0, 10, 2, \ldots, k\}.$$

For i = j, if denote by $\Gamma(\varphi_{\ell})$ the graph of generating function of probability φ_{ℓ} , we have

$$r_i = P(w, S_i) = \sum_{i=1}^{n} f(x_i) q_\ell, \quad w \in S_i$$

the sum (*) is for all ℓ from 0 to k such that the intersection between $\Gamma(\varphi_{\ell})$ and $S_i \times S_i$ is not empty.

An important variable in the study of our Markov chain is the moment of the first entrance in a state. Using the transition probabilities q_{ij} of the Markov chain Y, we shall estimate the probability for the Markov chain X to enter in a state S_j if it starts from the point $w \in S_i$, $i \neq j$. We shall denote by q(w, A) the probability that the Markon chain X arrive, for the first time, in $A \in W$ if it starts from $w \notin A$. Suppose $w \in S_i$, $i \neq j$. Then, starting from w, to arrive in S_j for the first time, without passing through an intermediate state S_k , $k \neq i$, $k \neq j$, either it has to pass from w to S_j or to stay two steps in a row to S_i , and then to pass to S_j , or to stay three

steps in a row to S_i , and then to pass to S_j and so on. This remark allows to write

$$q(w, S_j) = P(w, S_j) + \int_{S_i} P(w, du) P(u, S_j) + \int_{S_i} P(w, du_1) \int_{S_i} P(u_1, du_2) P(u_2, S_j) + \cdots, \quad w \in S_i, \quad i \neq j.$$

Theorem 3.1 In the conditions given above, we have

$$\frac{q_{ij}}{c(1-r_i)} \leq q(w,S_j) \leq \frac{cq_{ij}}{1-r_i}, \quad w \in S_i, \quad i \neq j.$$

Proof. By condition 1, we have

$$q(w, S_{j}) \leq c \left[q_{ij} + q_{ij} \int_{S_{i}} P(w, du) + q_{ij} \int_{S_{i}} P(w, du_{1}) \int_{S_{i}} P(u_{1}, du_{2}) + \cdots \right]$$

$$= cq_{ij} \left[1 + P(w, S_{i}) + P^{2}(w, S_{i}) + \cdots \right]$$

$$= \frac{cq_{ij}}{1 - P(w, S_{i})}$$

$$= \frac{cp_{ij}}{1 - r_{i}}.$$

Similarly, we deduce

$$q(w, S_j) \ge \frac{1}{c} \left[q_{ij} + q_{ij} \int_{S_i} P(w, du) + q_{ij} \int_{S_i} P(w, du_1) \int_{S_i} P(u_1, du_2) + \cdots \right]$$

$$= cq_{ij} \left[1 + P(w, S_i) + P^2(w, S_i) + \cdots \right]$$

$$= \frac{p_{ij}}{1 - r_i},$$

where we have used the condition $0 < r_i < 1$.

The finite Markov chain obtained in this manner is nonhomogeneous and, in ou cases, the state limit vectors are convergent as follows:

1)
$$(0, \pi_1, \dots, \pi_k)$$
, $\sum_{i=1}^k \pi_i = 1$;
2) $(\pi_0, \pi_1, \dots, \pi_k)$, $\sum_{i=0}^k \pi_i = 1$;
3) $(0, \pi_1, \dots, \pi_{k-1}, 0)$, $\sum_{i=1}^{k-1} \pi_i = 1$;
4) $(0, 0, \dots, 1)$.

In cases 1), 2), 3) the invariant mesures are concentrated on the attractors of generatin functions of probability, that is the fixed points satisfying $|\varphi'(w)| < 1$. The fixe

points w satisfying $|\varphi'(w)| > 1$ are called repellors. For a generating function of probability, we can see that all fixed points from (0,1) are attractors. A similar result is obtained by Gora [5] for a single function compounded at random with the perturbation of the identity mapping. The invariant measure of the Markov process is concentrated on the mapping's attractors.

References

- [1] K.B. Athreya and P.E. Ney: Branching Processes, Springer-Verlag, Heidelberg and New York, 1972.
- [2] M. Barnsley and S. Demko: Iterated functions system and the global construction of fractals, Proc. R. Soc., London, A399 (1985), 243-275.
- [3] M. Barnsley and J. Elton: A new class of Markov processes for image encoding, Adv. Appl. Prob., 20 (1988), 14-32.
- [4] S. Corbu and M. Postolache: Fractals generated by Möbius transformations and applications, in New Frontiers in Algebra, Groups and Geometries, (Gr. Tsagas (Ed.)), Hadronic Press, 1996, 407.
- [5] P. Gora: Random comparing mappings, small stochastic perturbations and attractors, Z. wahr. verw. Gabiete., 69 (1985), 137-160.
- [6] M. Iosifescu and S. Grigorescu: Dependence with Complete Connections and Its Applications, Cambridge Univ. Press, 1991.
- [7] P. Jagers: Branching Processes with Biological Applications, Wiley, New York, 1975.
- [8] T. Kaijser: A limit theorem for Markov chains in compact metric spaces with applications to products of random matrices, Duke Math. J., 45 (1978), 311-349.
- [9] N. Kaplan: Some result about multidimensional branching processes with random environments, Ann. Prob., 2 (1974), 411-455.
- [10] Y. Kifer: Ergodic Theory of Random Transformations, Birkhäuser, 1986.
- [11] T. Morita: Asymptotic behaviour of one-dimensional random dynamical systems, J. Math. Soc. Japan, 37 (1985), 651-663.
- [12] T. Morita: Hiroshima Math. J., 18 (1988), 15.
- [13] T. Ohno: Asymptopic behaviour of dynamical systems with random parameters, Publ. RIMS Kyoto Univ., 19 (1983), 83-98.
- [14] B. Oksendal: Stochastic Differential Equations, Springer-Verlag, Heidelberg and New York 1995

- [15] V.I. Oseledec: A multiplicative ergodic theorem, Trudii Moscov Mat. Obsc., 19 (1968), 179-210.
- [16] M. Postolache: Random affine transformations and fractal structures, to appear.
- [17] M. Postolache: Numerical Methods (Second Revised Edition), Sirius Publishers, Bucharest, 1994 (in Romanian).
- [18] W. Smith and W. Wilkinson: On branching processes in random environment, Ann. Math. Statistics, 40 (1969), 814-827.

Author's address:

S. Corbu and M. Postolache
Politehnica University of Bucharest
Department of Mathematics I
Splaiul Independentei 313,
77206 Bucharest, Romania
E-mail: mihai@mathem.pub.ro