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Abstract

Lately a big attention has been payed on the higher order geometry. Some
relevant papers are mentioned in the references. R. Miron and Gh. Atana-
siu in [16], [17] studied the geometry of Osc*M. R. Miron in [19] gave the
comprehensive theory of higher order geometry and its application. Here the
transformation group is slightly different from that used in [19] and it will change
the geometry. The adapted basis will have different form. Such an adapted ba-
sis is constructed that Ty, ,Tv,,..., Ty, are mutually orthogonal subspaces of

T*(Osc” M) with respect to the given metric G.
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1. Adapted basis in T(Osc*M) and T*(Osc* M)

Here Osc* M will be defined as a C* manifold so that the transformations of form
(1.1) are allowed. It is formed as a tangent space of higher order of the base manifold
M.

Let E = Osc*M be a (k + 1)n dimensional C> manifold. In a local chart (U, ¢)
a point u € E has the coordinates:

(xa7yla7y2a7 v ,yka) = (y0a7y1a7y2a’ oo 7yka) = (yaa)a
where 2% = y°* and
a,be,dye,...=1,2,....n, «,B,7,0,k,...=0,1,2,... k.
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The following abbreviations will be used:

0 0 0
Oonag = ——, =1,2,....k, 0,=0p,=—— = .
ayaa « 0 axa 8y0a
If in an other chart (U’,¢’) the point u € E has the coordinates (z®, 3 2%, ... y*') |

then in U N U’ the allowable coordinate transformations are given by:

(1) 2 xa/(xl,xZ,...,x”),

yla’ _ (8axa/)y1a — (aOQyOa’)yla’
y2a’ _ (80ay1a’)y1a + (31ay1a/)y2a,
y* = (B0ay® )y + (D1ay® )y* + (D20 )y,

yka — (80ay(k—1)a)y1a + (alay(k—l)a)yZa 4ot (a(kil)ay(k—l)a)yka-
Theorem 1.1. The transformations of type (1.1) form a group.

A nice example of a space E can be obtained if the points (z*) € M, dim M =n
are considered as the points of the curve 2* = z%(t), t € I and y*®, a=1,2,...,k
are determined by:

2) U A
Y t L t = g T
If in U N U’ the equation 2% = z% (z'(t), 22(t), ..., 2™ (t)) is valid, then it is easy to
see that
(3) Yyl =dlz®, P =dPa, ..yt = dFat

satisfy (1.1). In [19] y*@ = %d?m“ and it results that the structure group is different
from (1.1). As from (1.2) and (1.3) it follows:

@) v =y ('), P = (g ),y = (M)

and from the above equation we get (1.1).
Let us introduce the notations:

d*(© Ay

() O4y =0, @Ay =apOay = o5

a=1,2,... k.
The natural basis B* of T*(E) is
B* = {dy’,dy**, ... dy"*}.

The elements of B* are not transformed as tensors ([19], [9]).
The adapted basis B* of T*(E) is given by

(6) B* = {(syOa7 6y1a7 5y2a7 o ,5yka}’



Orthogonal adapted basis of T*(Osc* M) 21

where:
@ ey = da” = dy™,
dy'® = dy'* + Mo dy™,
Oy** = dy** + Mg dy" + My dy™,
5yka _ dyk:a + M(kka_l)bdy(kfl)b + M(kka—Z)bdy(kiz)b NI Méc};zdyob'

Theorem 1.2. The necessary and sufficient conditions that dy*® are transformed
as d-tensor field, i.e.

oyt = —oy**, a=0,1,....k

are given by the following equations:

« a / «@ v 4 «@ v /
8)  METPU0a") = M 00y + MDY Dyt 4
Mfsig)_bl)cﬁaby(“*ﬁ*”a + Doy @
1 < B, a+B<k

The proof is given in [9].
From (1.8), after some calculation, we get:

(@tBa (0) g _ (O g @t (0) 4¢' , (TN atB) (1) 4¢
Mab (O)Aa - (a) Mac/ (O)Ab + < o )M(oz-i-l)c’ (1)Ab et
atf-1 MDY (1) gy (@ +5 (8) gV’
o (a+B—-1)c! b o b -
From (1.5) and (1.8) it follows:
(9) MO = MG @yt P,

This equation is important when the integrability conditions are examined.

The adapted basis B* defined by (1.6) and (1.7) is different from that introduced
in [16], [17], [19]. The advantage of the present basis B* is that the functions M/
can be determined in such a way that the elements of B* are mutually orthogonal
vectors with respect to the given nondegenerated positive definite symmetric metric
tensor.

The natural basis B of T(E) is B = {0pa,O1a;- - -, Oka }--The transformation law
of its elements are given in [19].

Let us denote the adapted basis of T(F) by B, where:

(10) B= {50a351a,52aa~'-75ka} = {5aa}
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and
Soa = Ooa — NOWw — NZoyw — -+ — NO,
01a = O1a — N2y, — -+ — N,
(11) .
5ka = aka .

Theorem 1.3. ([9]) The necessary and sufficient conditions that B be dual to B*
((1.6) and (1.10)) when B is dual to B* i.e.

< O0adPt >= 6560

are the following relations:

a b a b (a+B)b a+1
No((a+ﬁ) — M( +8) M(a+1)c N(ga+ )e
(a+8)b a7 ( +2) — .. _ aplatB)d (a+B-1)
(12) M(a+2) NoTee M(a+5 1)CN b ‘.

Theorem 1.4. ([9]) The necessary and sufficient conditions that 64, with respect to
(1.1) are transformed as d-tensors are the following formulae:

« v ’ ,
(13) N 9,00y = N@HDY 5y @t 4

N{et+8-Decy (P 4 ... 4

(at+B-1)clY
NGV 1)y @Y = Doy T,

The other form of (1.13) is

N (©) gt (@HP Niet®e 0 40 4 (@ T8\ plats—1e (1) 40
aa a o + ﬂ o + ﬂ _ 1 aa C
P A N e G P C AR OIS
a+1 ¢ @ @
From (1.12) and (1.9) we get:
(14) NG = NG (2, o2, yP).

Theorem 1.5. The basis vectors of B are connected with the basis vectors of B by:

da = Ooa + My + My + -+ + M()a kb,

Oa = 01a + M7, b52b + -+ M 5kb7
(15) .

8k:a = (Ska

Proof. From (1.11) and (1.12) it follows (1.15).

Theorem 1.6. The basis vectors of B* are connected with the basis covectors of B*
by :



Orthogonal adapted basis of T*(Osc* M) 23

dyOa — 5y0a
dy'® = 0yle— Npcfoy",
(16) dyza = 5y2a - N12§5y16* Nggéyoea
dyka _ 5yka _ N(kka_l)eay(kfl)e_ L N{ceaayle_ NéceaayOe.

Proof. From (1.7) and (1.12) it follows (1.16).

2. Orthogonal adapted basis in T*(Osc* M)
Let us denote by Ty, = Ty, , 1y, , Ty, - - -, Ty, the subspaces of T*(E) = T* (Osck M)
spanned by {0y°¢}, {0y}, {§y2?}, ..., {dy**} respectively. Then

T*(E) = T{;(] @ T‘};l @ T‘jz @ o @ T‘jkﬂ

dimT*(E) =n(k+1), dimTy, =n, a=0,1,2,....k.

Let us suppose that G is a symmetric nondegenerated positive definite metric
tensor and in the basis B* is given by:

(17) G = gaaﬁbdy(w ® dyﬁb,

where the summation is going over all indices. In the matrix form G can be written
in the following way:

T _ ~
dy® Goa0b  Goalb --- Goakb dy
dy*® J1a0b  Glalb --- Glakb dyt?

(18) a=| . . | .
dy*e Oka0b  Gkald -+  Gkakb dy*®

In the basis B* we have:
(19) G = gub pp0y** @ 5y°°.

If in (2.2) d is substituted by 4, g by g we obtain the matrix representation of G in
the basis B*.

From (1.7) it is clear, that there are so many adapted basis B* of T*(E) as many
functions M g;*’ﬁ )* can be found so that the coordinate transformations of type (1.1)
satisfy (1.8). In this section we shall determine such an adapted basis B* of T*(E) in
which 1y, , TV, , T, , .. ., Ty, are mutually orthogonal subspaces of T*(E) with respect
to the given metric G ((2.1)). This condition will be satisfied if gqq g» = 0, Yo # 5.

From (2.1), (2.3) and (1.16) we get:

(200 Gaa g0y @ 0y” = Gre 5al0y7C = N 1), 807V = oo = Nocoy™) @
(5Z/5d - N(éadfneééé_l)e T Ngg(;y()e)’

a,B,7v,0=0,1,2,... k.
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For the beginning we shall take k = 3. After longer calculation, using the symme-
try of the metric tensor G(gaa 86 = 986 aas Joa 86 = J8b aa), We obtain the coefficients
of dy*® @ 5y’ in the following way:

5y°" @ 6y" : goaor = Goaob — Jif ObNOI({ — Gof ObNgg — g3f ObNS’j
~ N (Goa 10 — Gy 1aN) — Gy 1aNed — s 1aNgs )
(a) —Ni(Joa 2a — 15 2dN(}¢{ — gof sz(i{ — gsf Qng({)
— N3 (Goa 3a — Gif 3aNod — Gaf 3aNgs — Gaf 3aNea ),

5y°* @6y goa s = Goa1p — Gy 1bN5¢{ — gaf 1bN§¢{ — g3f 1bN§’I
(b) — N7 (Goa 24 — 915 2aNod — Gof 2aNod — Gaf 2aNg3 )
3d/= _ 1 - 2f 3f
—N7iy (Goa 3¢ — g1f 3aNos — 25 3aNga — 935 3aNos ),

6y° @ 6y* : goa2s = Goa2s — Jif 2bN01af — Goy QbN(i{ — gsf 2bNg’,f
(c) N3 (Goa 3d — Gif 3aNo? — Gor 3aNy — Gagp 3aN3),
(d) 6y°* @ 6y*® : gou 36 = Goa 36 — Jis 3bN(}({ — gaf 3bN§({ — g3 3bN§{,
Y @6y g = Gia1s — G2y WwNE — g3f N

(e) — N (F1a 24 — oy 2aN13 — Gaf 2aN11)
— N3 (G130 — Gor 3aNT! — Gap 3aNDD),

Y @6Y*  Grla2w = Gra2s — Gof szlgL{ — gsf 2bNi3¢{
(f) N3 (G1a 3d — Gof 3aNT, — Gap 3aN)),
(8) 0y @ 0y™ : g1a 36 = Grasb — Gor 56 N12 — Fap 3 Nis s
5% @y : goase = Goa2o — Ga3f 2 Na)
(h) N34G2 34 — Gay 3aNad ),

(i) 6y%* @ 6y : g2a 36 = G2a 30 — G35 Vot
(3) 03> @ 0y*" : g3a 36 = F3a 3b-

From the above equation we have:

Theorem 2.1. 1Y, is orthogonal to Ty, (g2a 30 = 0) iff

(21) J3f 3bN23¢{ = 24 3b-
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Proposition 2.1. 1Ty, is orthogonal to Ty, (g1a 30 = 0) iff

(22) J1a 3b — Gof SbN12¢{ — g3f SbNiJ: = 0.

Proposition 2.2. IfTYy; is orthogonal to 1y, , then Ty, is orthogonal to Tv;, (91026 =
0) iff
Gra 2o — 925 wN11 — Gag 2w Nyd = 0.

Theorem 2.2. 1Yy s orthogonal to Ty, and Ty, is orthogonal to Ty, iff ij and

ngg are the solutions of the matrix equation
_ _ 2f _
(23) G2v2f  G2b3f Nig | _ | Gra2
g3b2f G3b3f Ni{ J1a 3b
Proposition 2.3. Ty, is orthogonal to Ty, iff
(24) Joa 3b — J1f 3bN01¢{ — gof SbN(i{ — g3f 3bN§{ = 0.

Proposition 2.4. If Ty, is orthogonal to Ty, , then Ty, is orthogonal to Ty, iff

(25) Goa2v — 917 2 Nod — oy NG — Gag 26N = 0.

?oposition 2.5. IfTy, is orthogonal to Ty, and Ty, , then 1Y, is orthogonal to Ty,
i

(26) Goa 15 — Gy 15Nod — Gog 15Ng — s 16N = 0.

Theorem 2.3. Ty, is orthogonal to Ty, , Ty, and Ty, iff N Ngj and Ngj are the

Oa
solutions of the following equation:

_ _ _ 1f _
gib1f Giv2f Giv 3f Noa 9oa 1b
(27) G2b1f G2b2f G2b3f NO%{ = | Goa2v
93b1f 93b2f 93b3f NI 9oa 3b

Theorem 2.4. The necessary and sufficient conditions that the subspaces Ty, , Ty, ,
Ty, and Ty, of T*(Osc* M) formed by {6y°*}, {0y**}, {6y} and {8y} respectively
are mutually orthogonal with respect to the given metric G (given by (2.2)) are the
equations (2.5), (2.7) and (2.11).

Theorem 2.5. When 1Ty, , Ty, , Ty, and Ty, are mutually orthogonal subspaces of
T*(Osc>M), with respect to the metric G, then:

goa0b = GJoaob — Jif ObN(ifng ObN(?Z — gsf ObNSZ,
(28) Jla1b = Jia1b — Jof 1bN12¢{ — g3f 1bN{D)¢{,
92a26 = G2a2b — J3f sz23af,

93a36 = G3a 3b-
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Let us introduce the notations:

gsb Bf --- 9pbkf
Gar=| : ,
Jebps - ﬁgkf?fkf Bb ko
—Bb —~Bb k
= _ g eee g
(29) G = (Ggk) ' = [ —kb Bf “kbkf |
g e g
gaaﬁb
Gopr = | :
gaa kb

From (2.13) it is clear that G g;, and GP* are matrices of type (k—B+1)x (k—3+1)
and G’aﬁk is a matrix of type (k — 5+ 1) x 1. The elements of all three matrices are
submatrices of type n x n.

As in all propositions and theorems of this section it was supposed that k& = 3, so
equations (2.5), (2.7) and (2.11) can be writtten in the form:

(30) N3 = g% g4 3 = G¥ G 3,
NQe g2e 2b g2e 3b 91 % _ _
31 la | — | J 7 Jta = G?G 93,
( ) [ Ni?; :| [ g3e 2b g3e 3b G1a 36 1,23
Nolg gle 1b gle 2b gle 3b gOa b ) )
(32) Nie | =] g>" g*>*» g>® Goazy | =GPGoas.
Ng)g g3€ 1b gBe 2b g3e 3b gOa 3b

The matrices on the right hand side in (2.14), (2.15) and (2.16) are the correspon-
dent inverse matrices which appeare in (2.5), (2.7) and (2.11).
Now we have:

Theorem 2.4°. The necessary and sufficient conditions that the subspaces Ty, , Ty ,
Ty, and Ty, of T*(Osc* M) formed by {6y°*}, {0y**}, {6y} and {8y} respectively
be mutually orthogonal with respect to the given metric G are the equations (2.14),
(2.15) and (2.16).

The main result is the following theorem:

Theorem 2.6. If in T*(Osc* M) the metric tensor G is given by (2.2), then there
exists one and only one adapted basis {5y, 6y', ... 6y**} such that the subspaces
v, 1y, ..., Ty, of T*(Osc* M) are mutually orthogonal. The vectors of such unique
base are determined by (1.16) and the coefficients N are given by:

Ngty

No(éof"l_l)e = Gakéa_lﬂk a=1,2,...k

Naty



Orthogonal adapted basis of T*(Osc* M) 27

References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Antonelli P.L., Miron R., Lagrange and Finsler Geometry. Applications to
Physics and Biology, Kluwer Acad. Publ. FTPH, 76, (1996).

Asanov G.S., Finsler Geometry, Relativity and Gauge Theories, D. Reidel Publ.
Comp., (1985).

Bejancu A., Fundations of direction-dependent gauge theory, Seminarul de
Mecanicé, Univ. Timisoara, 13(1988), 1-60.

Comi¢ 1., The curvature theory of strongly distinguished connection in the recur-
rent K -Hamilton space, Indian Journal of Applied Math., 23(3) (1992), 189-202.

Comié¢ 1., Curvature theory of recurrent Hamilton space with generalized con-
nection, Analele Stiintifice Univ. Al. J. Cuza din Iasi, 37, s.I a. Mat. (1991),
467-476.

Comié L., Curvature theory of generalized second order gauge connections, Pub-

licationes Mathematical Debrecen, 5/1-2 (1997), 97-106.

Comié¢ 1., The curvature theory of generalized connection in Osc* M, Balkan Jour-
nal of Geometry and Its Applications, Vol. 1, No. 1, (1996), 21-29.

Comi¢ 1., The Ricci and Bianchi identities in the recurrent K -Hamilton spaces,
Proc. of the 3rd Congress of Geometry, Thessaloniki, (1991), 137-147.

Comi¢ 1., Kawaguchi H., Integrability conditions in T(Osck M), presented on The
5th International Conference on Diff. Geom. and its Application, Calcutta, India,
(1998).

Ikeda S., On the theory of gravitational field in Finsler space, Tensor N.S.
50(1991), 256—262.

Ikeda S., Some generalized connection structures of the Finslerian gravitation
field-II, Tensor N.S., Vol. 56 (1995), 318-324.

Kawaguchi A., On the Vectors of Higher order and the Extended Affine Connec-
tions, Ann. di Patem. Pura ed Appl. (IV), 55, (1961), 105-118.

Matsumoto M., Foundtions of Finsler Geometry and Special Finsler Spaces, Kai-
seisha Press, Otsu, Japan, (1986).

Miron R., Anastasiei M., The Geometry of Lagrange Space, Theory and Appli-
cations, Kluwer Academie Publishers, 1993.

Miron R., Atanasiu Gh., Compendium sur les espaces Lagrange d’ordre supérieur,
Seminarul de Mecanica 40, Universitatea din Timisoara, (1994).

Miron R. and Atanasiu Gh., Differential Geometry of the k-Osculator Bundle,
Rev. Roum. Math. Pures et Appl., Tom XLI, No. 3-4 (1996), 205-236.



28 Irena Comié

[17] Miron R. and Atanasiu Gh., Higher Order Lagrange Spaces, Rev. Roum. Math.
Pures et Appl., Tom XLI , No. 3-4 (1996), 251-263.

[18] Miron R. and Kawaguchi T., Lagrangian Geometrical Theories and their Ap-
plications to the Physics and Engineering Dynamical Systems, Tensor Soc., (to

appear).

[19] Miron R., The geometry of higher order Lagrange spaces, Applications to me-
chanics and physics, Kluwer Acad. Publ. FTPH, (1996).

[20] Munteanu Gh., Atanasiu Gh., On Miron-connections in Lagrange spaces of sec-
ond order, Tensor N.S., 50(1991), 241-247.

[21] Munteanu Gh., Metric almost tangent structure of second order, Bull. Math. Soc.
Sci. Mat. Roumanie, 34(1), (1990), 49-54.

[22] Opris D., Fibrés vectoriels de Finsler et connexions associées, The Proc. of Mat.
Sem. on Finsler Spaces, Brasov, (1980), 185-193.

Author’s address:

Irena Comic¢
Faculty of Technical Sciences,
21000 Novi Sad,
Yugoslavia.



