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Abstract

§1 recalls known results about symmetry group of a third order PDE. One
determines the symmetry group G (Theorem 2) of the Camassa-Holm equation
(7), and one finds the family of third order PDEs which admits the Lie group
G as symmetry group (Theorem 3). This class contains the Camassa-Holm
equation and the Rosenau-Hyman equation.
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Camassa and Holm derived a new completely integrable dispersive shallow watter
equation that is bi-Hamiltonian and thus possesses an infinite member of conservation
laws in involution. The Camassa-Holm (CH) PDE is obtained by using an asymptotic
expansion directly in the Hamiltonian for Euler’s equations in the shallow watter
regime.

Holm, Marsden and Ratiu [10] have shown that Camassa-Holm equation [6] in
n dimensions describes geodesic motion on the diffeomorphism group of R" with
respect to metric given by the H'! norm of Eulerian fluid velocity. Misiolek [13] has -
shown that the CH equation represents a geodesic flow on the Bott-Virasoro group.
Kouranbaeva [11] has shown that the CH equation (for the case k = 0) is a geodesic
spray of the weak Riemannian metric on the diffeomorphism group of the line or the
circle obtained by the right translation of the H! inner product over the entire group.

In the first part of this article one makes a short presentation of the theory of the
infinitesimal symmetries associated with a third order PDE [5], [14], [16), and in the
second part one applies this theory to the case of the Camassa-Holm PDE. It should
be notice that compared to the paper [9], the present work provides the whole family
of PDEs of order three which are invariant under the same group which preserves the
Camassa-Holm PDE.
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1 Symmetry group of a third order PDE

Let = :R**! R"; n(z,u) = z, z = (z!,...,2"), be the projection map. Let
U CR™*! be an open set and Uy = n(U).
Definition 1. A smooth map s : Uy — U, s(z) = (z, u(a:)) is called local section

of  (on Up).
For the function u, we note

Ofu

u;,..i,(2) = W(m) €Uy 1<i1 <...<ip <, p> 1.

Let consider _
JE(U) - {(t‘su:uiu "':i‘il---l’t)l(""a 'l.l) € U}a
JEU) CR™1xRM x ...x RM*, where N} = %"H%, k > 0, and the projection -

ﬂ'k : Jk(U) — Un, 'i'rk(x;u;uiu---:uil...ik) =z

Convention: for k£ =0, J%(U) = U and #°
Deﬁmtlon 2. Let s : Up — U be a local sectlon of = (over Up). The section j%(s)
of 7* over Uy, called the k-jet of s, is defined as follows: '

jk(s)(z) = (z,u, Uiy, .oy Uiy.in )y T € Up,

61'

ide = 33 P), 0<r <k
Uirody = g az‘r(p) 0<r<k

The space J*(U) is called the kth order jet space. |
Let Q{(U) be the vector space of g-forms on J*(U) with exterior differential d.

In partlcular Q4(U) = QU(U) is the exterior algebra of g-forms on U and Q =
C*(J*(U)) is the algebra of real-functions :

. .f =f(x",.u,u‘°“..., uil...ik)

. on J¥(U). A basis for Q}(U) (as a module C®(J*(U))) consists of the 1-forms
dz’, du, du;,,...,du;, .
For f € C°°(J"(U))- we have

df = f + Y gy O 4y u, +ot Y —g—dus....;,‘.

6u Bui, 1<, <...<ix<n Ouiy..iy

Deﬁmt:on 3. A form w € Q}(U) is called basic if
Cw= Ay, det A LA dede,

where Aj,...j, are .diﬁ'erentiable functions on J k(U ).
We note by Bf(U), the space of the basic ¢-forms.
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Definition 4. The operator D : B}(U) — Bf*.(),

af . of . Bf 81
Df = A e Rl T i.iad | 427,

for f € C=(J*(V)), and
Dw = DAy, ;, Adz A .. Add,

for )
w= A’.__J.‘t" A..AdDe

is called the total exterior derivative on B{(U). _

Convention: Df = D;f dz*, where D;f is the total derivative of f with respect
to ', and

D;; = DiDy, Dija = DiDje.
Let Q3% (U) be the space of (n + 1)-forms, and 8 € Q3*'(V),
0= F(:,u,n,m,m,.)‘uhdt'A_..Adz".
Definition 5. A solution of the equation
=0,

on Up CR™, is a section s : Up — U such that 0 . j3(s) = 0.
In other words, @ determines the PDE

(l) F(z.i,ﬂom'lqt)so.
a solution of which is a function u = u(z) such that
P
F (oue). 31 0). rgent) T ) =0 Vet

We note u® = (u, wj, un, “i.ik)
Definition 6. The PDE (1) is called of mazimal reng if the Jacobi matrix

Jr(z,u®) = (Fpi; Fy; o, Fu Fo.)

has rank 1 whenever F(z,u®) =0.
Then the subset

S = {(z,u™) € JONV)|F(z, u™) = 0}

is a hypersurface.

Definition 7. A symmetry group of PDE (1) is a local transformations Lie group
G acting on an open set U of the associated space of independent and dependent
variables, with the properties:
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(a) if u = f(z,y) is a solution of the equation and if g - f has sense for g € G, then
v=g- f(z,y) is also a solution.
(b) any solution of the equation can be obtain by a DE associated to PDE (hence

any solution is G-invariant g - f = £, Vg € G).
For the determination of the symmetry group of PDE (1) is used the followmg
crilerion of infinitesimal invariance ([14)).

Theorem 1. Let (1) be a PDE of mazimal rank defined on an open set Up. If G
is @ local group of transformations acting on U and
(2) prIX([F(z,u™)) =0 whenever F(z,u™) =0,
for every infinitesimal generator X of G, then G is a symmetry group of the given
equaiion.
Let
[/} a
— a8
X =( (:,u)-a—J +¢(z,u)au

be vector field on U. The first, second and respectively third order prolongations of
the vector field X are

o
DX =X +&—,

(3) Pl'( ; 3 iau'_
pr®X = priVX + @y 0
’Bu,-j ’

0
)y = 2)x d
prdX = prX + &5, -
where

= Di(¢ — ¢*wr) + C*uia = Did — ma Di(¢*),
®ij = Dij(é - C*ua) + CPuize = Dij(4) - ua Dij(C*) — uneDy(¢*) — wa; Di(C*),
®ija = Dija(é — C'wi) + C'uignr = Dija(8) — wiDija(¢') = i Dis(¢')-
—uti Dja(C") — wij Dia(C') = wnng Di(¢") — wini D; (') = wija D (CY).

Proposition. Let be a PDE of the mazimal rank defined on Uy. The set of all
infinitesimal symmetries of the equation forms a Lie algebra on U. Moreover, if this
Lie algebra is finite-dimensional, the symmetry group of the equation is a local Lie
group of transformations acting on U.

Algorithm for finding the symmetry group of PDE (1)

-one considers a vector field X on U and one writes the infinitesimal invariance
condition (2);

-one eliminates any dependence between partial derivatives of the function u,
dstarmined hv the PDE (1):
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-one writes the condition (2) like a polynomial in the partial derivatives of u;
-one equates with zero the coefficients of partial derivatives of u in (2), written

as a polynomial in the derivatives of the function u; it follows a PDEs system with

respect to the unknown functions ¢*, ¢, and this system defines the Lie symmetry
group G of the given PDE.

Every s-parametric subgroup H of the group G determines a family of group-
invariant solutions. The problem of classification of group-invariant solutions reverts
to the problem of classification of Lie subalgebras of Lie algebra g of the group G
([14], 186). For 1-dimensional algebras one considers a general element X, and we
simplify this as much as possible using the adjoint transformations.

Remark. We will compute the adjoint representation Ad G of the underlying Lie
group G, by using the Lie series

o0

() AdleepleX)Y) = Y S adX)'(Y) = ¥ = eX, Y]+ SIX,[X, Y]) -

n=0

In the case n = 2, we note
gl=z, 2=y (' =( =0, @ =07, 3, =@,
Byy = 7%, Byp = DY, By = VY,
P111 = BFFF, @110 = 7Y, Bygp = BTV, Bypy = GYWY

and
3) -
ul® = (“- Uz, Uy, Uzz, Ugy, Uyy, Uzzz, Uzzy, Uzyy, “yw)-

If
0 d 0
X= C(z! Y, U)'é‘E + q(z, v, u)a'y- + ¢(31 Y, u)b‘;l
is the infinitesimal generator of the symmetry group of the PDE
(5) F(z,y,u®) =0,

then the infinitesimal condition (2) becomes

oF oF oF 8F

3z * "5y ”’ L+ 0 T 50t
OF oF oF
Tz Ty vy
(6) + @ - + ¢ Funy + & 8uw+
+ PrTEE oF q,rty_af_ + PV oF + Yy oF = 0.
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2 Symmetry Lie group of Camassa-Holm equation
Let us consider the Camassa-Holm PDE ([6])

(7 Ulgzs + Uzsy + 2UsUze — Juuy —uy = 0.
The Jacobi matrix of the function
F(z,y,u®) = uttze + tgey + 2Uuztze — uu, — Uy
is
Jr =(0,0; uges — 3us;2u;s — 3u,—1;2u,,0,0;4,1,0,0).

Because rankJp = 1, it results that the PDE (7) is of maximal rank.
Let

X = {(z, )z + e, v w5 + 6z 0) 5

be the infinitesimal generator of the symmetry group of the PDE (7). In this case,
the condition (6) turns in

H(uzzs — 3ug) + D% (2uzr — Ju) — BY 4 2u  B™F + ud®*F 4 7%V = (,
On the other hand, the relations (3) implies
O = ¢z + (du — (2 )us — NeUy — Cuui — NulUz Uy,
PV = ¢y — Cyuz + (du = My)uy — Cutizuy — Nyuy,
P = Grr + (2024 = Coz)lUs — Nestly + (Guu — 2zu)ud—
= 2neuusty — Guutd — Nuutduy + (du — 2(z)Use — 20rUzy—
= HulsUzr — Nyl — 2y Uz gy,
D% = ey + (Suy — (oy)uz + (Sus — Ney)uy — Cuyul + (Suu — Cus—
—  Nuy)Usly — Nustd — (e + (Su — Cz — Ty )uzy — Netiyy—
= CutyUss — 20uttyUsy — Ay Ustisy — Nulslyy — Cuulidty — Nuuu-u?,
Y = dyy + (2duy — Myy)uy = CyyUs + (Guu — 200y )] - Auyusuy—
- ’hu"g = Cw"r"z +(6u — 2my Juyy — 2, uzy = 3nyuyuy, —
= Cuusuyy — 20, uyu,,,
and respectively
O™ = Grzs + uz(3bzzu — (eee) — UyNees + 3 (Gruu — Ceru) — SUsuy N+
+ U3 (Suuu = 3euu) = 3ud Uy Nruu — uSCuuu — U Uy Ty + Sttrc($eu—
= Cee) = SuryNer + JusUee(Suu — 3Czu) — Uy UszaNry — BUzuzynry—
= 6uuceCuu — Justyueeuy — Ul Uy Ny — 3u2,(u = SUssticyu+t

+  Urze(du — 3(:) = 3“::,": - 4dusus (y — UyUgreNy — Uz Uzzy Ny,
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Py

=y

Qvyy

Peey + Us(20zyu — (ezy) + Uy(Sreu = Nezy) + 3 (Syun = eyu )+
Usty (205uu = Cozu — 2Meyu).~ Uy Nesu — Walyuu + Uty (Suuu — Tyuu—
Urun) = 20U Neuu — WPty Cuun = Y2 Nuuu + Uee(Syu — 2(ey )+

Uey (2050 = Cox — 202y) = UyyNee = JUgUzzCyu + UyUss(Puu = Nyu—
2eu) + 2uguzy(Suu — 2oy = Nyu) = dUyUzyNey — 2UglyyNeu—
BustyUssuu = 4usttyUey Ny = JUFtgyCuu — UdUseNuu = UJ Uyy uu—
Susetiay(u = 2uZ, N — Upsllyy Ty — Ugesly + Usey(Su — 1y — 2(s)—
2syyNs = UyUzeslu — 2uyUsgy Ny — SUstizryu — 2ustisyyh,

Geyy + Us(Syyu — (oyy) + Uy (20ayu = Neyy) — "3(,,1. + uguy (2¢yuu—
2eyu = Myyu) + vy (Szuu = Meyu) + YU (Suun — Coun = 2yun)—
2uduyyuu = Uy Neuw — U W Nuuy = U2 U Cuun — Urelyy + Uey(26yu—
Ty = Aey) + tyy(Su — 202y) = Quyuzelyu — dusugy(yu+
2ustey(Suu = 2Myu — Cou) + UgUyy(Suw = Cou — 20yu) = Suyuyy ey —
uZtyyCuw = AUz tyuzyCuu = Supuyuy, nuy — vluseCuy = 3uJ ugy Nuu—
UrstlyyCu = 203, Cu — Susylyy Ny = QgeyCy + tzyy(Su = (o — 21y )

UyyyMe = alzyy(u — UstyyyNu = Uy UeeyCu — Suylieyy Ny,

Syyy = Uelyyy + Uy (36yyu — Tyyy) = Supuy(yyu + 3ud (Syuu = Nyyu)-
3usuyCyun + U3 (Suuu — 3nyuu) = UetdCuuu = UdTuuu = SueyCyy+
3uyy (Syu = Myy) = BuzuyyCyu + Suytyy (Suu — 3nyu) — Buyueyyu—
SusuyuyyQuu = 3ujusyCuu = BujuyyNuy = Sugyuyyu — ud, nu—
SuzyyCy + Uyyy(6u = 3my) — Suyugyylu — UsttyyyCu — duytyyy .

155

One substitutes the functions ®*, &, ®** @*** &**¥ and one eliminates any

dependence among the derivatives of the function u, by substituting

Ugpy = =UUger — 2Uglipy + JUUL + Uy

in the above relation. Thus, one finds
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—3ud: — @y + Udssr + Gooy + uz(—3¢ — 3ul: — Suny + (g — N — ueoo—
~(esy + 2620 + 3Udseu + 202yu) + uy(—2s — UNzes — Nezy + Gzru) + uZ(—6ulu—
—9u?npy — 22z — 3uCzou — 2(zyu + Budzuu + Syuu + 46zu) — Usuy(2(y + Sunu+
42022 + 3uneru + Coou + Meyu — 262uu) — Uy (T + Neou) — Uz (4eu + 3uCeuut
+yuu — 20uu — Ubuuu) — U2ty (40u + 3UNzuu + Nyuu + 20zuu — Guuu) = 2uzUd Nouu—
~ud(2uu + UCuuu) = vty (20uu + Uhuuu + Cuuu) = U2 U2 uun + Uee (262 + Judou—
—=3u(zz + Syu — 2ey) = Usy (Czz + 202y +3UNes — 2024 ) — Uyy Nz + Uz Uze(—2(: + 27y +
+2¢y + 6ung — 9u(zy — 3(yu + Juduu) — UyUzz(20z + 3unzu + 2(zu + Nyu — Puu)—
—2uz 2y (202 + 3UNu = Guu + 2(zu + Nyu) — 4UyUzyNzu — 2UzUyyNey — 2uT Uzz(Cu—
—3uny + 3uuu) — Sustytzz(Cuu + Unuu) — U)o Tuy — U3 Usy (474 + 3Unuy + 3Cuu)—
—4uz Uy UsyNyy — "3"!'3'?“ - 3“2:“@: = Quzrtzy(uny + (u) = UzztiyyNu—
=2, My + Uzz2( — u(e — Gy + uny + 3u’nz) — 2uzyyne+
FugUss(—uCu + 3u'ny) + Uytses(—Cu + unu) — 2usUgyyny = 0.

Looking at this condition as a polynomial in the partial derivatives of the function
u, and identifying with the polynom zero, we obtain the following PDEs system

[ (= [ Nyy =0
&= ¢z =0
€ &= < ¢y=0
7}:::0 éuu=0
\ nﬂ:U \ ¢+uqy=oa
for which
( = G
n = Csy+0C:
¢ = -C3ul

is the general solution, where C;,C,,C3 € R.
We get

0 0 5, 0
X=Cl‘5;+025;+03 (y-gg—ua—u) .
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Theorem 2. The Lie algebra g of the infinitesimal transformations associated
with the Camassa-Holm PDE is described by the vector fields

/)
(8) X1 =35
0
x? = %:
0
Xa = y-é— o u-éu—.
Remarks.

1. The structure equations of the Lie algebra g of the symmetry group G are
[xllxﬂ — 0: [X2| x3] = x?l [XS: le =0.
2. If u = f(z,y) is a solution of the PDE (7), then each function

2 f(l? -ely)l
u(2) = f(z!y-t)l
u® = e~tf(z,e"%y), c€ER,

is another solution for the equation.
3. By using the Lie series (4), the adjoint representation AdG of the Lie group G, is
described by the table

Ad | X, X3 Xs
X | X X3 X3
X; x; x, x;-tx:
Xs | X1 | e*X; Xs

Now we shall study the converse of the Theorem 2: given the Lie group G of
transformations, determine the third order PDE which admits G like symmetry group.

The algorithm of determination of PDE ([5], 303), implies the using of a maximal
chain of Lie subalgebras of the algebra g of the Lie group G, in the case in which g
is solvable.

Because in the case of the Camassa-Holm equation, the Lie algebra g is nolvable
we have the next chain of Lie subalgebras of it

{X1} € {X1, X3} C {X), X3, X3}.
Theorem 3. The third order PDE
H(z,y,u®) =0

whose Lie algebra of the infinitesimal symmetries is described by the vectors fields (8),
has the form

(9) h(=2, 2 2e= Doy Dy Dees ey Zew Do) o,
v ' u?' ulu?'ud ut uw? uwd Wl
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Proof. We consider. the condition (6) for each above subalgebras.
1. {X1}: X1 = & si pr®X; = £. The condition (6) implies pr® X (H) =0, ie.,

-8—!i=0.

Oz
It results
H = f(y,u®).

2. {X1,X2}: X2 = & and pr®X; = £ Analogously, we get
| H = g(u®).
3. {X1,X2,X3}: Xs=yg& —ugs,and
r®Xs = Yy —ugs — g — 2y g — Useg — ey

— 3“,, a:;“ — u“’n&: — 2"3:93?2:; — 3“,,,'6;%" _— 3u"y’ﬁ,
which implies

— p Yz Uy Uss Ugy Uyy Uzzz Uszy Usyy Uyyy
H_h(u!uziuiuzlusi uluzlualua)'
Particular cases.
In the paper [9] P.A.Clarkson, E.L.Mansfield and T.J.Priestley studied the sym-
metries of a special class of third order PDE

(10) Uy — EUzzy + 2kuz = UUzez + uu, + Buzuze,

where €, k, a and § are arbitrary constants.
If the PDE (9) is written in the form

=yl (22 Yre Yoy Yyy VYess Usey Ueyy Lyy
| u!—uv(u:usuzauasu:u2|u3:u3)|
then, for
w(C, ...,Cs) =Cs +Cs — 3C; + 2C,C,,

we obtain the Camassa-Holm PDE (the case e =1, a = -3, f=2and k =0 in
(10)). :
For

@(C, ...,Cs) = €Ce + C5 + aCy + BC,C,,
we get a subclass of the class of PDEs (10), for the parameter k = 0. In this case, for
the parameters ¢ = 0, a =1, f# = 3 and k = 0, it results the Rosenau-Hyman PDE,
which is considered in [9] also.
Remark. There exists PDEs of order one or two which admit (8) like infinitesimal
symmetries. For example: the elementary nonlinear wave PDE [14, 300]

Uy = uug,

and the Liouville-Titeica PDE (3]

uu:’ - u:uy = us.
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