INFINITESIMAL SYMMETRIES OF CAMASSA-HOLM EQUATIONS

N. Bîlă and C. Udrişte

Abstract

§1 recalls known results about symmetry group of a third order PDE. One determines the symmetry group G (Theorem 2) of the Camassa-Holm equation (7), and one finds the family of third order PDEs which admits the Lie group G as symmetry group (Theorem 3). This class contains the Camassa-Holm equation and the Rosenau-Hyman equation.

Key-words: symmetry group, infinitesimal symmetries, criterion of infinitesimal invariance, Camassa-Holm equation.

Mathematics Subject Classification: 58G35, 35A30, 22E05

Camassa and Holm derived a new completely integrable dispersive shallow watter equation that is bi-Hamiltonian and thus possesses an infinite member of conservation laws in involution. The Camassa-Holm (CH) PDE is obtained by using an asymptotic expansion directly in the Hamiltonian for Euler's equations in the shallow watter regime.

Holm, Marsden and Ratiu [10] have shown that Camassa-Holm equation [6] in n dimensions describes geodesic motion on the diffeomorphism group of R^n with respect to metric given by the H^1 norm of Eulerian fluid velocity. Misiolek [13] has shown that the CH equation represents a geodesic flow on the Bott-Virasoro group. Kouranbaeva [11] has shown that the CH equation (for the case k=0) is a geodesic spray of the weak Riemannian metric on the diffeomorphism group of the line or the circle obtained by the right translation of the H^1 inner product over the entire group.

In the first part of this article one makes a short presentation of the theory of the infinitesimal symmetries associated with a third order PDE [5], [14], [16], and in the second part one applies this theory to the case of the Camassa-Holm PDE. It should be notice that compared to the paper [9], the present work provides the whole family of PDEs of order three which are invariant under the same group which preserves the Camassa-Holm PDE.

Editor Gr. Tsagas Proceedings of the Workshop on Global Analysis, Differential Geometry and Lie Algebras, 1998, 149-160

^{@1999} Balkan Society of Geometers, Geometry Balkan Press

1 Symmetry group of a third order PDE

Let $\pi: \mathbb{R}^{n+1} \to \mathbb{R}^n$, $\pi(x, u) = x$, $x = (x^1, ..., x^n)$, be the projection map. Let $U \subset \mathbb{R}^{n+1}$ be an open set and $U_0 = \pi(U)$.

Definition 1. A smooth map $s: U_0 \to U$, s(x) = (x, u(x)) is called *local section* of π (on U_0).

For the function u, we note

$$u_{i_1...i_p}(x) = \frac{\partial^p u}{\partial x^{i_1}...\partial x^{i_p}}(x), \ x \in U_0, \ 1 \le i_1 \le ... \le i_p \le n, \ p \ge 1...$$

Let consider

$$J^k(U) = \{(x^i, u, u_{i_1}, ..., u_{i_1...i_k}) | (x^i, u) \in U\},\$$

 $J^k(U) \subset \mathbb{R}^{n+1} \times \mathbb{R}^{N_1} \times ... \times \mathbb{R}^{N_k}$, where $N_k = \frac{(n+k-1)!}{k!(n-1)!}$, k > 0, and the projection

$$\pi^k: J^k(U) \to U_0, \ \pi^k(x, u, u_{i_1}, ..., u_{i_1...i_k}) = x.$$

Convention: for k = 0, $J^0(U) = U$ and $\pi^0 = \pi$.

Definition 2. Let $s: U_0 \to U$ be a local section of π (over U_0). The section $j^k(s)$ of π^k over U_0 , called the k-jet of s, is defined as follows:

$$j^{k}(s)(x) = (x, u, u_{i_{1}}, ..., u_{i_{1}...i_{k}}), x \in U_{0},$$

$$u_{i_1...i_r} = \frac{\partial^r u}{\partial x^{i_1} - \partial x^{i_r}}(p), \ 0 \le r \le k.$$

The space $J^k(U)$ is called the kth order jet space.

Let $\Omega_k^q(U)$ be the vector space of q-forms on $J^k(U)$ with exterior differential d. In particular $\Omega_0^q(U) = \Omega^q(U)$ is the exterior algebra of q-forms on U and $\Omega_k^0 = C^\infty(J^k(U))$ is the algebra of real-functions

$$f = f(x^i, u, u_{i_1}, ..., u_{i_1...i_k})$$

on $J^k(U)$. A basis for $\Omega^1_k(U)$ (as a module $C^{\infty}(J^k(U))$) consists of the 1-forms dx^i , du, $du_{i_1}, ..., du_{i_1...i_k}$.

For $f \in C^{\infty}(J^k(U))$ we have

$$df = \frac{\partial f}{\partial x^i} dx^i + \frac{\partial f}{\partial u} du + \frac{\partial f}{\partial u_{i_1}} du_{i_1} + \ldots + \sum_{1 \le i_1 \le \ldots \le i_k \le n} \frac{\partial f}{\partial u_{i_1 \ldots i_k}} du_{i_1 \ldots i_k}.$$

Definition 3. A form $\omega \in \Omega_k^q(U)$ is called basic if

$$\omega = A_{j_1...j_q} dx^{j_1} \wedge ... \wedge dx^{j_q},$$

where $A_{j_1...j_q}$ are differentiable functions on $J^k(U)$. We note by $\mathcal{B}_k^q(U)$, the space of the basic q-forms. Definition 4. The operator $D: \mathcal{B}_{k}^{q}(U) \to \mathcal{B}_{k+1}^{q+1}(U)$,

$$Df = \left(\frac{\partial f}{\partial x^j} + \frac{\partial f}{\partial u}u_j + \frac{\partial f}{\partial u_{i_1}}u_{i_1j} + \ldots + \sum_{1 \leq i_1 \leq \ldots \leq i_k \leq n} \frac{\partial f}{\partial u_{i_1\ldots i_k}}u_{i_1\ldots i_kj}\right) dx^j,$$

for $f \in C^{\infty}(J^k(U))$, and

$$D\omega = DA_{j_1...j_n} \wedge dx^{j_1} \wedge ... \wedge dx^{j_q},$$

for

$$\omega = A_{j_1...j_q} dx^{j_1} \wedge ... \wedge dx^{j_q},$$

is called the total exterior derivative on $B_1^1(U)$.

Convention: $Df = D_i f dx^i$, where $D_i f$ is the total derivative of f with respect to x^i , and

$$D_{ij} = D_i D_j, \quad D_{ijk} = D_i D_{jk}.$$

Let $\Omega_3^{n+1}(U)$ be the space of (n+1)-forms, and $\theta \in \Omega_3^{n+1}(U)$,

$$\theta = F(x, u, u_l, u_{lk}, u_{ijk}) du \wedge dx^1 \wedge ... \wedge dx^n$$

Definition 5. A solution of the equation

$$\theta = 0$$

on $U_0 \subset \mathbb{R}^n$, is a section $s: U_0 \to U$ such that $\theta \cdot j^3(s) = 0$. In other words, θ determines the PDE

$$(1) F(x, u, u_l, u_{lk}, u_{ijk}) = 0,$$

a solution of which is a function u = u(x) such that

$$F\left(x,u(x),\frac{\partial u}{\partial x^i}(x),\frac{\partial^2 u}{\partial x^i\partial x^k}(x),\frac{\partial^3 u}{\partial x^i\partial x^j\partial x^k}(x)\right)=0,\ \forall x\in U_0.$$

We note $u^{(3)} = (u, u_l, u_{lk}, u_{ijk})$.

Definition 6. The PDE (1) is called of maximal rang if the Jacobi matrix

$$J_F(x, u^{(3)}) = (F_{x^*}; F_{v}; F_{u_i}; F_{u_{ib}}, F_{u_{ijk}})$$

has rank 1 whenever $F(x, u^{(3)}) = 0$.

Then the subset

$$S = \{(x, u^{(3)}) \in J^{(3)}(U) | F(x, u^{(3)}) = 0\}$$

is a hypersurface.

Definition 7. A symmetry group of PDE (1) is a local transformations Lie group G acting on an open set U of the associated space of independent and dependent variables, with the properties:

- (a) if u = f(x, y) is a solution of the equation and if $g \cdot f$ has sense for $g \in G$, then $v = g \cdot f(x, y)$ is also a solution.
- (b) any solution of the equation can be obtain by a DE associated to PDE (hence any solution is G-invariant $g \cdot f = f$, $\forall g \in G$).

For the determination of the symmetry group of PDE (1) is used the following criterion of infinitesimal invariance ([14]).

Theorem 1. Let (1) be a PDE of maximal rank defined on an open set U_0 . If G is a local group of transformations acting on U and

(2)
$$pr^{(3)}X[F(x,u^{(3)})] = 0$$
 whenever $F(x,u^{(3)}) = 0$,

for every infinitesimal generator X of G, then G is a symmetry group of the given equation.

Let

$$X = \zeta^{i}(x, u) \frac{\partial}{\partial x^{i}} + \phi(x, u) \frac{\partial}{\partial u}$$

be vector field on U. The first, second and respectively third order prolongations of the vector field X are

(3)
$$pr^{(1)}X = X + \Phi_i \frac{\partial}{\partial u_i},$$
$$pr^{(2)}X = pr^{(1)}X + \Phi_{ij} \frac{\partial}{\partial u_{ij}},$$
$$pr^{(3)}X = pr^{(2)}X + \Phi_{ijk} \frac{\partial}{\partial u_{ijk}},$$

where

$$\begin{split} \Phi_{i} &= D_{i}(\phi - \zeta^{k}u_{k}) + \zeta^{k}u_{ik} = D_{i}\phi - u_{k}D_{i}(\zeta^{k}), \\ \Phi_{ij} &= D_{ij}(\phi - \zeta^{k}u_{k}) + \zeta^{k}u_{ijk} = D_{ij}(\phi) - u_{k}D_{ij}(\zeta^{k}) - u_{ki}D_{j}(\zeta^{k}) - u_{kj}D_{i}(\zeta^{k}), \\ \Phi_{ijk} &= D_{ijk}(\phi - \zeta^{l}u_{l}) + \zeta^{l}u_{ijkl} = D_{ijk}(\phi) - u_{l}D_{ijk}(\zeta^{l}) - u_{lk}D_{ij}(\zeta^{l}) - \\ &- u_{li}D_{jk}(\zeta^{l}) - u_{lj}D_{ik}(\zeta^{l}) - u_{lkj}D_{i}(\zeta^{l}) - u_{lki}D_{j}(\zeta^{l}) - u_{lji}D_{k}(\zeta^{l}). \end{split}$$

Proposition. Let be a PDE of the maximal rank defined on U_0 . The set of all infinitesimal symmetries of the equation forms a Lie algebra on U. Moreover, if this Lie algebra is finite-dimensional, the symmetry group of the equation is a local Lie group of transformations acting on U.

Algorithm for finding the symmetry group of PDE (1)

-one considers a vector field X on U and one writes the infinitesimal invariance condition (2);

-one eliminates any dependence between partial derivatives of the function u, determined by the PDE (1):

-one writes the condition (2) like a polynomial in the partial derivatives of u;

-one equates with zero the coefficients of partial derivatives of u in (2), written as a polynomial in the derivatives of the function u; it follows a PDEs system with respect to the unknown functions ζ^i , ϕ , and this system defines the Lie symmetry group G of the given PDE.

Every s-parametric subgroup H of the group G determines a family of group-invariant solutions. The problem of classification of group-invariant solutions reverts to the problem of classification of Lie subalgebras of Lie algebra g of the group G ([14], 186). For 1-dimensional algebras one considers a general element X, and we simplify this as much as possible using the adjoint transformations.

Remark. We will compute the adjoint representation Ad G of the underlying Lie group G, by using the Lie series

(4)
$$Ad(exp(\varepsilon X)Y) = \sum_{n=0}^{\infty} \frac{\varepsilon^n}{n!} (adX)^n(Y) = Y - \varepsilon[X, Y] + \frac{\varepsilon^2}{2} [X, [X, Y]] - \dots$$

In the case n=2, we note

$$x^{1} = x, \ x^{2} = y, \ \zeta^{1} = \zeta, \ \zeta^{2} = \eta, \ \Phi_{1} = \Phi^{x}, \ \Phi_{2} = \Phi^{y},$$

$$\Phi_{11} = \Phi^{xx}, \ \Phi_{12} = \Phi^{xy}, \ \Phi_{22} = \Phi^{yy},$$

$$\Phi_{111} = \Phi^{xxx}, \ \Phi_{112} = \Phi^{xxy}, \ \Phi_{122} = \Phi^{xyy}, \Phi_{222} = \Phi^{yyy}$$

and

$$u^{(3)} = (u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}, u_{xxx}, u_{xxy}, u_{xyy}, u_{yyy}).$$

If

$$X = \zeta(x, y, u) \frac{\partial}{\partial x} + \eta(x, y, u) \frac{\partial}{\partial y} + \phi(x, y, u) \frac{\partial}{\partial u},$$

is the infinitesimal generator of the symmetry group of the PDE

(5)
$$F(x, y, u^{(3)}) = 0,$$

then the infinitesimal condition (2) becomes

$$\zeta \frac{\partial F}{\partial x} + \eta \frac{\partial F}{\partial y} + \phi \frac{\partial F}{\partial u} + \Phi^{x} \frac{\partial F}{\partial u_{x}} + \Phi^{y} \frac{\partial F}{\partial u_{y}} +
+ \Phi^{xx} \frac{\partial F}{\partial u_{xx}} + \Phi^{xy} \frac{\partial F}{\partial u_{xy}} + \Phi^{yy} \frac{\partial F}{\partial u_{yy}} +
+ \Phi^{xxx} \frac{\partial F}{\partial u_{xxx}} + \Phi^{xxy} \frac{\partial F}{\partial u_{xxy}} + \Phi^{xyy} \frac{\partial F}{\partial u_{xyy}} + \Phi^{yyy} \frac{\partial F}{\partial u_{yyy}} = 0.$$

2 Symmetry Lie group of Camassa-Holm equation

Let us consider the Camassa-Holm PDE ([6])

(7)
$$uu_{xxx} + u_{xxy} + 2u_xu_{xx} - 3uu_x - u_y = 0.$$

The Jacobi matrix of the function

$$F(x, y, u^{(3)}) = uu_{xxx} + u_{xxy} + 2u_xu_{xx} - 3uu_x - u_y$$

is

$$J_F = (0,0; u_{xxx} - 3u_x; 2u_{xx} - 3u, -1; 2u_x, 0, 0; u, 1, 0, 0).$$

Because $rankJ_F = 1$, it results that the PDE (7) is of maximal rank.

Let

$$X = \zeta(x, y, u) \frac{\partial}{\partial x} + \eta(x, y, u) \frac{\partial}{\partial y} + \phi(x, y, u) \frac{\partial}{\partial u}$$

be the infinitesimal generator of the symmetry group of the PDE (7). In this case, the condition (6) turns in

$$\phi(u_{xxx} - 3u_x) + \Phi^x(2u_{xx} - 3u) - \Phi^y + 2u_x\Phi^{xx} + u\Phi^{xxx} + \Phi^{xxy} = 0.$$

On the other hand, the relations (3) implies

$$\Phi^{x} = \phi_{x} + (\phi_{u} - \zeta_{x})u_{x} - \eta_{x}u_{y} - \zeta_{u}u_{x}^{2} - \eta_{u}u_{x}u_{y},$$

$$\Phi^{y} = \phi_{y} - \zeta_{y}u_{x} + (\phi_{u} - \eta_{y})u_{y} - \zeta_{u}u_{x}u_{y} - \eta_{u}u_{y}^{2},$$

$$\Phi^{xx} = \phi_{xx} + (2\phi_{xu} - \zeta_{xx})u_{x} - \eta_{xx}u_{y} + (\phi_{uu} - 2\zeta_{xu})u_{x}^{2} -$$

$$- 2\eta_{xu}u_{x}u_{y} - \zeta_{uu}u_{x}^{3} - \eta_{uu}u_{x}^{2}u_{y} + (\phi_{u} - 2\zeta_{x})u_{xx} - 2\eta_{x}u_{xy} -$$

$$- 3\zeta_{u}u_{x}u_{xx} - \eta_{u}u_{y}u_{xx} - 2\eta_{u}u_{x}u_{xy},$$

$$\Phi^{xy} = \phi_{xy} + (\phi_{uy} - \zeta_{xy})u_{x} + (\phi_{ux} - \eta_{xy})u_{y} - \zeta_{uy}u_{x}^{2} + (\phi_{uu} - \zeta_{ux} -$$

$$- \eta_{uy})u_{x}u_{y} - \eta_{ux}u_{y}^{2} - \zeta_{y}u_{xx} + (\phi_{u} - \zeta_{x} - \eta_{y})u_{xy} - \eta_{x}u_{yy} -$$

$$- \zeta_{u}u_{y}u_{xx} - 2\eta_{u}u_{y}u_{xy} - 2\zeta_{u}u_{x}u_{xy} - \eta_{u}u_{x}u_{yy} - \zeta_{uu}u_{x}^{2}u_{y} - \eta_{uu}u_{x}u_{y}^{2},$$

$$\Phi^{yy} = \phi_{yy} + (2\phi_{uy} - \eta_{yy})u_{y} - \zeta_{yy}u_{x} + (\phi_{uu} - 2\eta_{uy})u_{y}^{2} - 2\zeta_{uy}u_{x}u_{y} -$$

$$- \eta_{uu}u_{y}^{3} - \zeta_{uu}u_{x}u_{y}^{2} + (\phi_{u} - 2\eta_{y})u_{yy} - 2\zeta_{y}u_{xy} - 3\eta_{u}u_{y}u_{yy} -$$

$$- \zeta_{u}u_{x}u_{yy} - 2\zeta_{u}u_{y}u_{xy},$$

and respectively

$$\begin{split} \Phi^{xxx} &= \phi_{xxx} + u_x(3\phi_{xxu} - \zeta_{xxx}) - u_y\eta_{xxx} + 3u_x^2(\phi_{xuu} - \zeta_{xxu}) - 3u_xu_y\eta_{xxu} + \\ &+ u_x^3(\phi_{uuu} - 3\zeta_{xuu}) - 3u_x^2u_y\eta_{xuu} - u_x^4\zeta_{uuu} - u_x^3u_y\eta_{uuu} + 3u_{xx}(\phi_{xu} - \zeta_{xx}) - 3u_{xy}\eta_{xx} + 3u_xu_{xx}(\phi_{uu} - 3\zeta_{xu}) - 3u_yu_{xx}\eta_{xu} - 6u_xu_{xy}\eta_{xu} - \\ &- (u_x^2u_{xx}\zeta_{uu} - 3u_xu_yu_{xx}\eta_{uu} - 3u_x^2u_{xy}\eta_{uu} - 3u_{xx}^2\zeta_{u} - 3u_{xx}u_{xy}\eta_{u} + \\ &+ u_{xxx}(\phi_{u} - 3\zeta_{x}) - 3u_{xxy}\eta_{x} - 4u_xu_{xxx}\zeta_{u} - u_yu_{xxx}\eta_{u} - 3u_xu_{xxy}\eta_{u}, \end{split}$$

$$\begin{split} \Phi^{xxy} &= \phi_{xxy} + u_x(2\phi_{xyu} - \zeta_{xxy}) + u_y(\phi_{xxu} - \eta_{xxy}) + u_x^2(\phi_{yuu} - 2\zeta_{xyu}) + \\ &+ u_x u_y(2\phi_{xuu} - \zeta_{xxu} - 2\eta_{xyu}) - u_y^2\eta_{xxu} - u_x^3\zeta_{yuu} + u_x^2u_y(\phi_{uuu} - \eta_{yuu} - 2\zeta_{xy}) + \\ &- 2\zeta_{xuu}) - 2u_x u_y^2\eta_{xuu} - u_x^3u_y\zeta_{uuu} - u_x^2u_y^2\eta_{uuu} + u_{xx}(\phi_{yu} - 2\zeta_{xy}) + \\ &+ u_xy(2\phi_{xu} - \zeta_{xx} - 2\eta_{xy}) - u_{yy}\eta_{xx} - 3u_xu_{xx}\zeta_{yu} + u_yu_{xx}(\phi_{uu} - \eta_{yu} - 2\zeta_{xu}) + 2u_xu_{xy}(\phi_{uu} - 2\zeta_{xu} - \eta_{yu}) - 4u_yu_{xy}\eta_{xu} - 2u_xu_{yy}\eta_{xu} - \\ &- 2\zeta_{xu}) + 2u_xu_xy(\phi_{uu} - 2\zeta_{xu} - \eta_{yu}) - 4u_yu_{xy}\eta_{xu} - 2u_xu_{yy}\eta_{xu} - \\ &- 3u_xu_yu_{xx}\zeta_{uu} - 4u_xu_yu_{xy}\eta_{uu} - 3u_x^2u_{xy}\zeta_{uu} - u_y^2u_{xx}\eta_{uu} - u_x^2u_{yy}\eta_{uu} - \\ &- 3u_{xx}u_{xy}\zeta_{u} - 2u_{xy}^2\eta_{u} - u_{xx}u_{yy}\eta_{u} - u_{xxx}\zeta_{y} + u_{xxy}(\phi_{u} - \eta_{y} - 2\zeta_{x}) - \\ &- 2u_{xyy}\eta_{x} - u_yu_{xxx}\zeta_{u} - 2u_yu_{xxy}\eta_{u} - 3u_xu_{xxy}\zeta_{u} - 2u_xu_{xyy}\eta_{u}, \end{split}$$

$$\begin{split} \Phi^{xyy} &= \phi_{xyy} + u_x(\phi_{yyu} - \zeta_{xyy}) + u_y(2\phi_{xyu} - \eta_{xyy}) - u_x^2\zeta_{yyu} + u_xu_y(2\phi_{yuu} - 2\zeta_{xyu} - \eta_{yyu}) + u_y^2(\phi_{xuu} - 2\eta_{xyu}) + u_xu_y^2(\phi_{uuu} - \zeta_{xuu} - 2\eta_{yuu}) - 2u_x^2u_y\zeta_{yuu} - u_y^3\eta_{xuu} - u_xu_y^3\eta_{uuu} - u_x^2u_y^2\zeta_{uuu} - u_xx\zeta_{yy} + u_xy(2\phi_{yu} - \eta_{yy} - 2\zeta_{xy}) + u_{yy}(\phi_{xu} - 2\eta_{xy}) - 2u_yu_xx\zeta_{yu} - 4u_xu_xy\zeta_{yu} + 2u_xu_xy(\phi_{uu} - 2\eta_{yu} - \zeta_{xu}) + u_xu_yy(\phi_{uu} - \zeta_{xu} - 2\eta_{yu}) - 3u_yu_yy\eta_{xu} - u_x^2u_yy\zeta_{uu} - 4u_xu_yu_xy\zeta_{uu} - 3u_xu_yu_y\eta_{uu} - u_y^2u_xx\zeta_{uu} - 3u_y^2u_xy\eta_{uu} - u_xxu_yy\zeta_{u} - 2u_xy\zeta_{u} - 3u_xyu_y\eta_{u} - 2u_xxy\zeta_{y} + u_xyy(\phi_{u} - \zeta_{x} - 2\eta_{y}) - u_yyy\eta_x - 2u_xu_xyy\zeta_{u} - u_xu_yyy\eta_{u} - 2u_xu_xy\zeta_{u} - 3u_xu_xy\eta_{u}, \end{split}$$

$$\begin{split} \Phi^{yyy} &= \phi_{yyy} - u_x \zeta_{yyy} + u_y (3\phi_{yyu} - \eta_{yyy}) - 3u_x u_y \zeta_{yyu} + 3u_y^2 (\phi_{yuu} - \eta_{yyu}) - \\ &- 3u_x u_y^2 \zeta_{yuu} + u_y^3 (\phi_{uuu} - 3\eta_{yuu}) - u_x u_y^3 \zeta_{uuu} - u_y^4 \eta_{uuu} - 3u_{xy} \zeta_{yy} + \\ &+ 3u_{yy} (\phi_{yu} - \eta_{yy}) - 3u_x u_{yy} \zeta_{yu} + 3u_y u_{yy} (\phi_{uu} - 3\eta_{yu}) - 6u_y u_{xy} \zeta_{yu} - \\ &- 3u_x u_y u_{yy} \zeta_{uu} - 3u_y^2 u_{xy} \zeta_{uu} - 6u_y^2 u_{yy} \eta_{uu} - 3u_{xy} u_{yy} \zeta_u - 3u_{yy}^2 \eta_u - \\ &- 3u_{xyy} \zeta_y + u_{yyy} (\phi_u - 3\eta_y) - 3u_y u_{xyy} \zeta_u - u_x u_{yyy} \zeta_u - 4u_y u_{yyy} \eta_u. \end{split}$$

One substitutes the functions Φ^x , Φ^y , Φ^{xx} , Φ^{xx} , Φ^{xxy} , and one eliminates any dependence among the derivatives of the function u, by substituting

$$u_{xxy} = -uu_{xxx} - 2u_xu_{xx} + 3uu_x + u_y$$

in the above relation. Thus, one finds

$$-3u\phi_{x} - \phi_{y} + u\phi_{xxx} + \phi_{xxy} + u_{x}(-3\phi - 3u\zeta_{x} - 3u\eta_{y} + \zeta_{y} - 9u^{2}\eta_{x} - u\zeta_{xxx} -$$

$$-\zeta_{xxy} + 2\phi_{xx} + 3u\phi_{xxu} + 2\phi_{xyu}) + u_{y}(-2\zeta_{x} - u\eta_{xxx} - \eta_{xxy} + \phi_{xxu}) + u_{x}^{2}(-6u\zeta_{u} -$$

$$-9u^{2}\eta_{u} - 2\zeta_{xx} - 3u\zeta_{xxu} - 2\zeta_{xyu} + 3u\phi_{xuu} + \phi_{yuu} + 4\phi_{xu}) - u_{x}u_{y}(2\zeta_{u} + 6u\eta_{u} +$$

$$+2\eta_{xx} + 3u\eta_{xxu} + \zeta_{xxu} + 2\eta_{xyu} - 2\phi_{xuu}) - u_{y}^{2}(\eta_{u} + \eta_{xxu}) - u_{x}^{3}(4\zeta_{xu} + 3u\zeta_{xuu} +$$

$$+\zeta_{yuu} - 2\phi_{uu} - u\phi_{uuu}) - u_{x}^{2}u_{y}(4\eta_{xu} + 3u\eta_{xuu} + \eta_{yuu} + 2\zeta_{xuu} - \phi_{uuu}) - 2u_{x}u_{y}^{2}\eta_{xuu} -$$

$$-u_{x}^{4}(2\zeta_{uu} + u\zeta_{uuu}) - u_{x}^{3}u_{y}(2\eta_{uu} + u\eta_{uuu} + \zeta_{uuu}) - u_{x}^{2}u_{y}^{2}\eta_{uuu} + u_{xx}(2\phi_{x} + 3u\phi_{xu} -$$

$$-3u\zeta_{xx} + \phi_{yu} - 2\zeta_{xy}) - u_{xy}(\zeta_{xx} + 2\eta_{xy} + 3u\eta_{xx} - 2\phi_{xu}) - u_{yy}\eta_{xx} + u_{x}u_{xx}(-2\zeta_{x} + 2\eta_{y} +$$

$$+2\phi_{u} + 6u\eta_{x} - 9u\zeta_{xu} - 3\zeta_{yu} + 3u\phi_{uu}) - u_{y}u_{xx}(2\eta_{x} + 3u\eta_{xu} + 2\zeta_{xu} + \eta_{yu} - \phi_{uu}) -$$

$$-2u_{x}u_{xy}(2\eta_{x} + 3u\eta_{xu} - \phi_{uu} + 2\zeta_{xu} + \eta_{yu}) - 4u_{y}u_{xy}\eta_{xu} - 2u_{x}u_{yy}\eta_{xu} - 2u_{x}^{2}u_{xx}(\zeta_{u} -$$

$$-3u\eta_{u} + 3u\zeta_{uu}) - 3u_{x}u_{y}u_{xx}(\zeta_{uu} + u\eta_{uu}) - u_{y}^{2}u_{xx}\eta_{uu} - u_{x}^{2}u_{xy}(4\eta_{u} + 3u\eta_{uu} + 3\zeta_{uu}) -$$

$$-4u_{x}u_{y}u_{xy}\eta_{uu} - u_{x}^{2}u_{yy}\eta_{uu} - 3u_{xx}^{2}u\zeta_{u} - 3u_{xx}u_{xy}(u\eta_{u} + \zeta_{u}) - u_{xx}u_{yy}\eta_{u} -$$

$$-2u_{xy}^{2}\eta_{u} + u_{xxx}(\phi - u\zeta_{x} - \zeta_{y} + u\eta_{y} + 3u^{2}\eta_{x}) - 2u_{xyy}\eta_{x} +$$

$$+u_{x}u_{xxx}(-u\zeta_{u} + 3u^{2}\eta_{u}) + u_{y}u_{xxx}(-\zeta_{u} + u\eta_{u}) - 2u_{x}u_{xyy}\eta_{u} = 0.$$

Looking at this condition as a polynomial in the partial derivatives of the function u, and identifying with the polynom zero, we obtain the following PDEs system

$$\begin{cases} \zeta_x = 0 \\ \zeta_y = 0 \\ \zeta_u = 0 \\ \eta_x = 0 \\ \eta_u = 0 \end{cases} \qquad \begin{cases} \eta_{yy} = 0 \\ \phi_x = 0 \\ \phi_y = 0 \\ \phi_{uu} = 0 \\ \phi + u\eta_y = 0, \end{cases}$$

for which

$$\begin{cases} \zeta = C_1 \\ \eta = C_3 y + C_2 \\ \phi = -C_3 u, \end{cases}$$

is the general solution, where $C_1, C_2, C_3 \in R$.

We get

$$X = C_1 \frac{\partial}{\partial x} + C_2 \frac{\partial}{\partial y} + C_3 \left(y \frac{\partial}{\partial y} - u \frac{\partial}{\partial y} \right).$$

Theorem 2. The Lie algebra g of the infinitesimal transformations associated with the Camassa-Holm PDE is described by the vector fields

(8)
$$X_{1} = \frac{\partial}{\partial x},$$

$$X_{2} = \frac{\partial}{\partial y},$$

$$X_{3} = y \frac{\partial}{\partial y} - u \frac{\partial}{\partial u}.$$

Remarks.

1. The structure equations of the Lie algebra g of the symmetry group G are

$$[X_1, X_2] = 0$$
, $[X_2, X_3] = X_2$, $[X_3, X_1] = 0$.

2. If u = f(x, y) is a solution of the PDE (7), then each function

$$u^{(1)} = f(x - \varepsilon, y),$$

$$u^{(2)} = f(x, y - \varepsilon),$$

$$u^{(3)} = e^{-\varepsilon} f(x, e^{-\varepsilon} y), \varepsilon \in R,$$

is another solution for the equation.

3. By using the Lie series (4), the adjoint representation AdG of the Lie group G, is described by the table

Ad	X1	X ₂	X ₃
<i>X</i> ₁	<i>X</i> ₁	X ₂	X ₃
X ₂	X ₁	X ₂	X3-eX2
X ₃	X ₁	e'X2	X,

Now we shall study the converse of the Theorem 2: given the Lie group G of transformations, determine the third order PDE which admits G like symmetry group.

The algorithm of determination of PDE ([5], 303), implies the using of a maximal chain of Lie subalgebras of the algebra g of the Lie group G, in the case in which g is solvable.

Because in the case of the Camassa-Holm equation, the Lie algebra g is solvable, we have the next chain of Lie subalgebras of it

$$\{X_1\} \subset \{X_1, X_2\} \subset \{X_1, X_2, X_3\}.$$

Theorem 3. The third order PDE

$$H(x,y,u^{(3)})=0$$

whose Lie algebra of the infinitesimal symmetries is described by the vectors fields (8), has the form

(9)
$$h\left(\frac{u_x}{u}, \frac{u_y}{u^2}, \frac{u_{xx}}{u}, \frac{u_{xy}}{u^2}, \frac{u_{yy}}{u^3}, \frac{u_{xxx}}{u}, \frac{u_{xxy}}{u^2}, \frac{u_{xyy}}{u^3}, \frac{u_{yyy}}{u^3}\right) = 0.$$

Proof. We consider the condition (6) for each above subalgebras.

1. $\{X_1\}$: $X_1 = \frac{\partial}{\partial x}$ si $pr^{(3)}X_1 = \frac{\partial}{\partial x}$. The condition (6) implies $pr^{(3)}X_1(H) = 0$, i.e.,

$$\frac{\partial H}{\partial x} = 0.$$

It results

$$H=f(y,u^{(3)}).$$

2. $\{X_1, X_2\}$: $X_2 = \frac{\partial}{\partial y}$ and $pr^{(3)}X_2 = \frac{\partial}{\partial y}$. Analogously, we get

$$H=g(u^{(3)}).$$

3. $\{X_1, X_2, X_3\}$: $X_3 = y \frac{\partial}{\partial y} - u \frac{\partial}{\partial u}$, and

$$pr^{(3)}X_3 = y \frac{\partial}{\partial y} - u \frac{\partial}{\partial u} - u_x \frac{\partial}{\partial u_x} - 2u_y \frac{\partial}{\partial u_y} - u_{xx} \frac{\partial}{\partial u_{xx}} - 2u_{xy} \frac{\partial}{\partial u_{xy}} - u_{xy} \frac{\partial}{\partial u_{xy}} - 3u_{yy} \frac{\partial}{\partial u_{xyy}} - 3u_{yyy} \frac{\partial}{\partial u_{xyy}} - 3u_{yyy} \frac{\partial}{\partial u_{xyy}},$$

which implies

$$H = h\left(\frac{u_x}{u}, \frac{u_y}{u^2}, \frac{u_{xx}}{u}, \frac{u_{xy}}{u^2}, \frac{u_{yy}}{u^3}, \frac{u_{xxx}}{u}, \frac{u_{xxy}}{u^2}, \frac{u_{xyy}}{u^3}, \frac{u_{yyy}}{u^3}\right).$$

Particular cases.

In the paper [9] P.A.Clarkson, E.L.Mansfield and T.J.Priestley studied the symmetries of a special class of third order PDE

(10)
$$u_y - \varepsilon u_{xxy} + 2ku_x = uu_{xxx} + \alpha uu_x + \beta u_x u_{xx},$$

where ε , k, α and β are arbitrary constants.

If the PDE (9) is written in the form

$$u_{y} = u^{2} \varphi \left(\frac{u_{x}}{u}, \frac{u_{xx}}{u}, \frac{u_{xy}}{u^{2}}, \frac{u_{yy}}{u^{3}}, \frac{u_{xxx}}{u}, \frac{u_{xxy}}{u^{2}}, \frac{u_{xyy}}{u^{3}}, \frac{u_{yyy}}{u^{3}} \right),$$

then, for

$$\varphi(C_1,...,C_8)=C_6+C_5-3C_1+2C_1C_2,$$

we obtain the Camassa-Holm PDE (the case $\varepsilon = 1$, $\alpha = -3$, $\beta = 2$ and k = 0 in (10)).

For

$$\varphi(C_1, ..., C_8) = \varepsilon C_6 + C_5 + \alpha C_1 + \beta C_1 C_2,$$

we get a subclass of the class of PDEs (10), for the parameter k=0. In this case, for the parameters $\varepsilon=0$, $\alpha=1$, $\beta=3$ and k=0, it results the Rosenau-Hyman PDE, which is considered in [9] also.

Remark. There exists PDEs of order one or two which admit (8) like infinitesimal symmetries. For example: the elementary nonlinear wave PDE [14, 300]

$$u_y = uu_x$$

and the Liouville-Titeica PDE [3]

$$uu_{xy}-u_xu_y=u^3.$$

References

- [1] N.BÎLĂ -Symmetry Lie groups of PDE of surfaces with constant Gaussian curvature, to appear in University "Politehnica" of Bucharest-Scientific Bulletin, Series A, 61, 3-4(1999).
- [2] N.BÎLĂ -Lie groups applications to minimal surfaces PDE, Proceedings of the Workshop on Global Analysis, Differential Geometry and Lie Algebras, BSG Proceedings 3(1999), Geometry Balkan Press, Editor: Gr. Tsagas, 197-205.
- [3] N.BÎLĂ -Symmetry groups and Lagrangians associated to Titeica surfaces, to appear.
- [4] N.BÎLĂ -Symmetries of PDEs system appearing in solar physics and contact geometry, to appear.
- [5] G.BLUMAN, J.D.COLE -Similarity Methods for Differential Equations, Springer-Verlag, New York, Inc., 1974.
- [6] R.CAMASSA, D.D.HOLM -An integrable shallow water equation with peaked solitons, Phys. Rev. Kett. 71(1993), 1661-1664.
- [7] P.A.CLARKSON, E.L.MANSFIELD -Symmetry reductions and exact solutions of shallow water wave equations, Acta Appl. Math. 39(1995), 245-276.
- [8] P.A.CLARKSON, P.R.GORDOA, A.PICKERING -Multicomponent equations associated to nonisospectral scattering problems, Inverse problems, 13, 6(1997), 1463-1476.
- P.A.CLARKSON, E.L.MANSFIELD, T.J.PRIESTLEY -Symmetries of a class of nonlinear third order partial differential equations, Mathematical and Computer Modelling, 25, 8-9(1997), 195-212.
- [10] D.D.HOLM, J.E.MARSDEN, T.S.RATIU The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math. 1998, to appear.
- [11] S.KOURANBAEVA The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, 1998, preprint.
- [12] P.W.MICHOR, T.S.RATIU On the geometry of the Virasoro-Bott group, Journal of Lie Theory, 8, 2(1998), 293-309.
- [13] G.MISIOLEK -A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys. 24(1998), 203-208.
- [14] P.J.OLVER -Applications of Lie Groups to Differential Equations, Gradu-ate Texts in Math., 107, Springer-Verlag, New York, Inc. 1986.
- [15] P.J.OLVER, P.ROSENAU Group invariant solutions of differential equations, SIAM J. Appl. Math., 47, 2(1987), 263-278.

- [16] D.OPRIŞ, I.BUTULESCU Metode geometrice în studiul sistemelor de ecuații diferențiale, Editura Mirton, Timișoara, 1997.
- [17] S.STEINBERG -Symmetry methods in differential equations, Technical Report no.367, Sept., 1979.
- [18] C.UDRIŞTE, N.BÎLĂ -Symmetry Lie groups of the Monge-Ampère equation, Balkan Journal of Geometry and Its Applications, 3, 2(1998), 121-133.
- [19] C.UDRIŞTE, N. BÎLĂ -Symmetry group of Titeica surfaces PDE, Balkan Journal of Geometry and Its Applications, 4, 1(1999), in press.
- [20] G.VRĂNCEANU -Lecții de geometrie diferențială, Editura Didactică și Pedagogică, București, 1976.

Author's address:

C. Udriste and N. Bîlă

Politehnica University of Bucharest
Department of Mathematics I

Splaiul Independenței 313,

77206 Bucharest, Romania

E-mail: udriste@mathem.pub.ro