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Abstract

The present paper gives a brief description of the general DPW method
for harmonic maps and presents aspects regarding its extension to the tangent
group case. This is exemplified considering the harmonicity of maps from a
Riemannian surface to the homogeneous space TS2 = TSU(2)/TU(1) via their
lifts to the tangent space TSU(2).
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1 The general DPW method

During the last decade, the methods which determine harmonic maps from Rieman-
nian surfaces to symmetric spaces were enriched by the DPW method - a construction
which proved its efficiency in various applicative areas: H-surfaces (CMC-surfaces),
minimal surfaces, surfaces of constant Gaussian curvature, Willmore surfaces etc.

The prerequisites for the general DPW method are ([7]):
1. A Riemannian compact simply connected surface M of genus g ≥ 1 and D ∈

{C, D1} its universal cover, where D1 = {z ∈ C| | z |< 1}.
2. A compact connected semisimple Lie group G with its Lie algebra L(G) = g.
3. An automorphism σ ∈ Aut(G) of order m ≥ 2 with the fixed point set Gσ ⊂

K ⊂ Gσ
0 , gσ = L(K) n=k, where we denoted the induced map of σ on g by the same

symbol.
4. A solvable subgroup B ⊂ KC which provides an Iwasawa decomposition for the

complexified group KC

KC = K · B, K ∩ B = {e} (1)
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and the corresponding splitting of the associated Lie algebras

kC = k ⊕ g, g = L(B). (2)

The goal of the general DPW method is to construct all the harmonic maps

f : M→N = G/K = π(G),

where π is the projection π : G→G/K.
The main features of this construction will be briefly described below.

Considering the Cartan decomposition for the case m = 2,

g = k ⊕ p, p = Ker(σ + Id), k = Ker(σ − Id), (3)

the following commutation relations hold true

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k. (4)

The tangent bundle (TN, π,N) of the symmetric space N can be canonically iden-
tified with the subbundle ([p], pr1, N) ⊂ (N × g, pr1, N) via the vector bundle id-
isomorphism

τ : TN→[p], τ(Xx) = (x, β(Xx)),

where for any Xx = d
dt |t=0 exp tξ.x ∈ TxN ⊂ TN , β(Xx) = Adg ◦ πp ◦ Adg−1(ξ),

πp being the canonical projection induced by (3). It can be shown ([3]) that the

Levi-Civita connection
N

∇ of TN is just the flat connection followed by projection on

the fibers of [p],

β(
N

∇
Xx

Y ) = π[p]x
(

flat

∇
Xx

(β(Y )))), (5)

where π[p]x
= Adg ◦ πp, x = ĝ, Xx ∈ TxN, Y ∈ X (N). The relation (5) can be

written briefly β ◦
N

∇ = π[p] ◦ d ◦ β.

For M simply connected, any map f : M→G/K lifts to F : M→G, f = π ◦F , and
the g-valued 1-form α = F−1dF ∈ Λ1(M, g) splits relative to (3), α = α0 + α1. Also,
the splitting TMC = T ′M ⊕T ′′M of TMC into its (1,0) and (0,1) tangent subspaces,
induces the decompositions

N

∇ = ∇′ + ∇′′, d = ∂ + ∂̄, αi = α′
i + α′′

i, i = 0, 1, (6)

and hence α = α′
1 + α0 + α′′

1 .
It is non-trivial to show that the harmonicity of f rewrites ∇′′∂f = 0, relation

which using (5) becomes, in terms of α:

∂α′
1 + [α′′

0 ∧ α′
1] = 0. (7)

This condition, together with the Maurer-Cartan equations

dα +
1
2
[α ∧ α] = 0, (8)



On the DPW method for the tangent group 3

which represent the integrability condition of the equation in F :

α = F−1dF, (9)

provide the system (equivalent to (7) and (8)):{
dα0 + 1

2 [α0 ∧ α0] = −[α′
1 ∧ α′′

1 ],
∂̄α′

1 + 1
2 [α0 ∧ α′

1] = 0.
(10)

These form a set of iff conditions for the existence and harmonicity (up to G-
translations) of the function f , constructed ultimately as the projection of the lifted
frame F produced by the pair of forms α0 ∈ Λ1(M, k) and α1 ∈ Λ1(M, p) via (9).
Also, the system (10) turns out to be equivalent to the integrability conditions dαλ +
1
2 [αλ ∧ αλ] = 0 of the ”loopified” form

αλ = λ−1α′
1 + α0 + λα′′

1 , (11)

whose associated system
F̃−1dF̃ = αλ (12)

can be integrated to produce ”the extended lift”

F̃ : M→ΛGσ,

unique up to a gauge transformation H : M→K. We denoted by

ΛGσ
n={h | h : S1→G,h(e2πi/mλ) = σh(λ),∀λ ∈ S1 ≡ U(1)},

the group of G-valued twisted loops.

In fact, for M simply connected (practically for M = D), the harmonicity of f is
equivalent to the existence of a holomorphic map f̃ : M→ΛGσ/K which is provided
by a ΛGσ-translation of a 1-form

θη = λ−1η + λη̄ ∈ ΛpC;

this map is related to f via f̃ |λ=1= f . The whole family of maps

f̃λ
n=f̃(·)(λ) : M→G/K, ∀λ ∈ S1

obtained from such holomorphic forms are harmonic [7].
The procedure which constructs (mod emerging singularities), the harmonic func-

tions f from pC-valued holomorphic 1-forms, is called the Weierstrass representation
of harmonic maps and is described below.

1. For M simply connected domain, the space of harmonic maps

H = {f : M→G/K | f harmonic, f(0) = eK}
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is in bijective correspondence with the factorized set of extended lifts

H′ = {F̃ : M→ΛGσ | F̃ (0) = k ∈ K, F̃−1dF̃ = αλas in (11)}/ ∼,

where
F̃1 ∼ F̃2 ⇔ F̃2 = F̃1 · H, H : M→K. (13)

2. The vector space of ”holomorphic potentials”

P = {µ | µ =
∑

k≥−1 λkµk, µ2i ∈ Λ1
hol(M, kC),

µ2i−1 ∈ Λ1
hol(M, pC), i ∈ N, λ ∈ S1}

provides the harmonic maps of H′ in the following way: the solution g : M→ΛGσ
C

of the system
g−1dg = µ, g(0) = e (14)

is spited by Iwasawa decomposition

g = Φb+, Φ(0) = e

providing the family of loops Φ : M→ΛGσ, which prove to be - for each λ ∈ S1,
extended lifts Φ = F̃ whose equivalence classes (mod (13)) lie in H′ and provide thus
corresponding harmonic functions in H.

The map µ ∈ P W→[Φ] ∈ H′ is called the Weierstrass representation for harmonic

maps, and any harmonic map in H ≡ H′ originates from some holomorphic potential.
Moreover, the loops of ΛGσ are shown to be subject to a special ”dressing” action

(with positive-power holomorphic based loops - [7]) which induces a corresponding
action on H; as a consequence, the fibers of the Weierstrass map are the orbits of the
action on P of the based holomorphic gauge group:

G0 = {h : M→ΛGσ | hz̄ = 0, h(0) = e, h extends holo to D1}.

For non-based loops (free from the condition h(0) = e), the induced action on H
produces new harmonic maps from a given one. As a co-result, it can be shown that
any harmonic map is provided by holomorphic potentials µ ∈ P which have no even
powers in λ.

For example, the Weierstrass representation scheme can be applied to finite har-
monic maps [7], which are shown to emerge from holomorphic potentials of the form

µk =
∑

|j+1|≤2k

λ2k+jξj ∈ P, k ∈ N.

A remarkable fact is that the ”meromorphic potentials”

Pm = {ξ = λ−1η, η ∈ Λ1
mero(M, pC)}

provide also by means of the Weierstrass representation all the harmonic maps f :
M→G/K.
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A central question is to obtain the exact form of meromorphic potentials which
provide the extended frames F̃ (z, z̄, λ). This goal is accomplished by solving ”the
∂̄-problem” [2] and applying a generalization of the Grauert theorem, to obtain the
global holomorphic loop g̃ given by the relation:

F̃ = g̃w−1
+ .

Then the holomorphic potential is ξ = g̃−1dg̃ ∈ P and the meromorphic potential is
ξ = g̃−1

− dg̃− ∈ Pm - obtained from the negative loop g̃− given by the further Birkhoff
decomposition of g̃:

g̃ = g̃−g̃+,

where g̃± ∈ Λ±GC
σ and

Λ+Gσ
C = {g ∈ ΛGσ

C | g(0) = e, g extends holomorphically to D1},
Λ−Gσ

C = {g ∈ ΛGσ
C | g(∞) = e, g extends holomorphically to C \ D1}.

2 The tangent group case

The main decompositions of the DPW procedure described in the first section can
be extended to general connected Lie groups which admit a faithful representation
and the DPW procedure itself - for homogeneous locally symmetric spaces [4]. As a
particular case, we shall discuss the homogeneous reducible space N = T (G/K) =
TG/TK, where G is a connected Lie group, K ⊂ G is a closed subgroup and g = k⊕p
is a splitting which satisfies (4). Then one has Tg = T k ⊕ Tp.

A function f : D→N = TG/TK can be lifted to a frame F : D→TG, which is
harmonic if it minimizes the energy action:

δ

∫
| dF | dV = 0,

with the norm provided by the metric on T ∗D ⊗ F−1TG. In the given case, for TG
endowed with a metric produced by a scalar product on its semidirect sum Lie algebra
L(TG) = g s g ([12]), the Euler-Lagrange equations write:

[ad(F−1Fx)]∗(F−1Fx) + [ad(F−1Fy)]∗(F−1Fy) =

= (F−1Fx)x + (F−1Fy)y, ∀(x, y) ∈ D. (15)

For an invariant metric on TG, the relations (15) become

∂(F−1Fz̄) + ∂̄(F−1Fz) = 0, (16)

where ∂ = ∂
∂z , z = x + iy and coincide with the ones derived in [14]. The bi-invariant

metrics have on the Lie algebra L(TG) = g s g (called also ”the inflation of g”, [1])
the form:

Γ =
(

P Q
Q 0

)
, Q, P : g × g→R
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with Q,P invariant bilinear forms on g and Q non-degenerate. If G admits an in-
variant metric, TG belongs to the general family of groups whose Lie algebras form
the smallest class of Lie algebras which contain the simple and abelian groups and
which is stable under direct sum and double extension, i.e., the family of groups which
posses an invariant metric ([10]). In particular, L(TG) is a trivial double extension
by an algebra endowed with an invariant metric Q; namely, we have an isomorphism
of Lie algebras

L(TG) = g s g
φ

≈ g ⊕ {0} ⊕ g∗, where :

φ(ξ, η) = (ξ, η∗), η∗(a) = Q(η, a),∀a ∈ g.

The double extension is endowed with the corresponding metric:

Γ∗((x, a∗), (y, b∗)) = a∗(y) + b∗(x) + P (x, y).

As a particular case, for Q invariant metric on G, TG admits also the metric:

Γr,s =
(

rQ sQ
sQ 0

)
, r /∈ {0,−s}, r, s ∈ R

and we have the following result:
Proposition. The harmonicity equations of a mapping

F : D→TG ≡ Gng

have the form: {
∂̄Az + ∂Az̄ = 0
∂̄az + ∂az̄ = 0 , (17)

where TG is identified with the semidirect product group Gng via the isomorphism
φ : TG→Gng,

φ(Xg) = (g, v), v = Lg−1 ∗Xg,∀Xg ∈ TgG,

where (Az, az) = (g−1gz, vz + [g−1gz, v]).
Remarks. 1. The equations (17) have the detailed form:{

∆g = 1
2 (gz̄g

−1g + gzg
−1gz̄)

∆v = 1
2{[vz̄, g

−1gz] + [vz, g
−1gz̄]}.

(18)

2. The first set of equations in (17) represent exactly the harmonicity condition for
the map pr1 ◦ φ ◦ F ; in particular, for G compact and semisimple, all the harmonic
projections of this form can be determined by the DPW method [7].

For the general group case (e.g. G non-compact) certain results were obtained
([4]) towards an extended DPW method, namely:
• the Birkhoff and Iwasawa decompositions for loop groups - when the map takes
values into the coset manifold of connected Lie group which admits a faithful repre-
sentation and
• the equivalent characterization of harmonicity in terms of loopified forms, for maps
into homogeneous reductive spaces.
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In the tangent group case, a faithful representation of G induces canonically one
for TG; taking as example a semisimple group G, for the tangent-group complex loops
the Iwasawa-type decomposition is given by the following result:
Theorem 1. Any element g̃ ∈ ΛGσ

C can be decomposed

g̃ = gmg+,

where 
g ∈ ΛTGσ = {φ ∈ ΛGσ

C | φ(λ) ∈ G,∀λ ∈ S1},
g+ ∈ Λ+TGC

σ ,

m ∈ Λ
m

GC
σ ⊂ ∪

µ∈Λ
m

GC
σ

(Λ−
+(µ)G

C
σ) · µ

with the following notations:

Λ−TGC
σ = {φ ∈ ΛTGC

σ | φ(∞) = e, φ extends holo to C \ D1},
Λ−

+(µ)G
C
σ = {φ ∈ Λ+GC

σ | µφµ−1 ∈ Λ−GC
σ}

and where Λ
m

GC
σ is the middle-term loop-space of the loop-Iwasawa decomposition for

the semisimple group case [9].

Also, under the same assumptions, holds the Birkhoff-type decomposition given
by the following theorem:
Theorem 2. Any element g̃ ∈ ΛGσ

C can be decomposed as

g̃ = g−Dg+,

where {
g± ∈ Λ±TGC

σ ,
D ∈ ΛgC

σ = {φ ∈ ΛTGC
σ | φ(λ) ∈ gC ≡ {e}ngC / TGC}.

3 Application - the case N = TS2

Remark firstly that TS2 is a symmetric space, since S2 = G/K with G = SU(2),K =
Gσ = U(1) ≡ S1, for σ = Ad[diag(i,−i)]. Then N ≡ TS2 = TG/TK [1] is a
symmetric space and hence homogeneous, so that the harmonic maps f : D→TS2

can be characterized in terms of ”loopified forms” [4]; any such harmonic map admits
a lift to TG = TSU(2).
The lift F : D→TSU(2) ≡ SU(2)nsu(2) splits locally into two maps: the first map

F1 = g : D→SU(2)

projects to S2 and is the lift of the normal Gauss field of a CMC-surface; the second
one,

F2 = v : D→su(2),

where su(2) ≡ R3 ([5]), is subject to a system of linear PDE’s of second order

∆v = [vz, B] + [vz̄, A]
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with the constraints Az̄ − Bz = [A, B], which are exactly the integrability conditions
of the system: {

A = g−1gz ,
B = g−1gz̄ .

The group TG is endowed with a metric of the form Γ =
(

0 K
K 0

)
, where K is

the unique metric (up to a multiplicative constant), produced by the nondegenerate
Killing form on g = su(2); the Euler-Lagrange equations of the lift split into two parts
(18).
The DPW method determines completely the first component F1 of the lift of the
harmonic maps f : D→N , from the meromorphic and the holomorphic potentials [6].
Namely, the meromorphic potentials which determine F1 = g have the form:

ξ = λ−1

(
0 a(z)
g(z)0

)
dz ∈ Pm, λ ∈ S1,

with a, b : D→C special meromorphic functions ([5]).
Also, remark that since the Lie group SU(2) is connected and semisimple, the

extended Iwasawa and Birkhoff decompositions are applicable and that the decom-
posed complex loops take practically values into the semidirect product TGC =
(TSU(2))C ≡ SL(2, C)nsl(2, C).

4 Conclusions

In the first section was briefly presented the DPW method, which determines all
the harmonic maps from Riemann surfaces to symmetric spaces ([7]); in the second
section, the main results which extend the DPW method ([4, 9]) specialize to homoge-
neous reducible spaces corresponding to the tangent group case. In the third section
the specific case TS2 is discussed in relation with the basic DPW method ([5, 6, 7]).
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