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Abstract

Let (M, g) be a compact Riemannian manifold of dimension n. The aim of
the present paper is to prove that the dimension of the vector space K1(M, R)
of the Killing vector fields is not a topological invariant.
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1 Introduction

Let (M, g) be a compact Riemannian manifold of dimension n. The study of the ex-
istence of Killing vector fields on the manifold is an important problem of Differential
Geometry.

The aim of the present paper is to generalize the results [6, 7]. We also have proved
that the old conjecture ”The dimension of the vector space K1(M, R) of the Killing
vector fields on a compact Riemannian manifold (M, g) is a topological invariant” is
not true.

The whole paper contains five sections. Each of them is analyzed as follows. The
second section deals with the fibre bundles over a compact Riemannian manifold
(M, g) and differential operators on the cross sections of these fibre bundles. The
Killing vector fields can be considered as special cross sections of the tangent bundle
T (M) over (M, g). In the third section we study the dim

(
K1(M, R)

)
with respect

to the Riemannian metric g on M . The existence of one-parameter family of trans-
formations on (M, g) which is related to the Riemannian metric g is contained in
the fourth section. The last section gives a negative answer to the above mentioned
conjecture, that is, dim

(
K1(M, R)

)
is not topological invariant.
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2 .

Let (M, g) be a compact orientable Riemannian manifold without boundary of dimen-
sion n. We denote by TM and T ∗M the tangent and cotangent bundle respectively
over the manifold M . These two bundles are isomorphic with respect to the Rieman-
nian metric g on M . Therefore we only consider the cotangent bundle T ∗M over M
and the results on it can be transferred on the tangent bundle TM .

Let C∞ (T ∗M) be the cross sections on T ∗M . We must notice that each exterior
1-form is a cross section on T ∗M . The Laplace operator ∆ = dδ + δd is a second
order elliptic differential operator on C∞(T ∗M), that is:

∆ = dδ + δd : C∞(T ∗M) 7→ C∞(T ∗M),

∆ = dδ + δd : α 7→ ∆(α) = dδ(α) + δd(α),

where d and δ are the first order differential operators defined by

d : C∞(T ∗M) 7→ C∞(Λ2T ∗M),

δ : C∞(T ∗M) 7→ C∞(M),

where C∞(Λ2T ∗M) and C∞(M) are the cross sections on Λ2T ∗M and the differential
functions on M respectively.

These differential operators are related by

〈α, δβ〉 = 〈dα, β〉 , ∀α ∈ C∞(T ∗M) , ∀β ∈ C∞(Λ2T ∗M),

where 〈 , 〉 is the global inner product on C∞(ΛqT ∗M), q = 1, 2 and defined by

〈γ, δ〉 =
∫
M

〈γ, δ〉xdM(x), ∀γ, δ ∈ C∞(ΛqT ∗M),

where 〈γ, δ〉x is the inner product on ΛqT ∗
x M induced by the metric g on M and dM

is the measure on M for each x ∈ M .
Let (x1, . . . , xn) be a local coordinate system on the chart (U, ϕ) and let {e1, . . . , en}

be the associated local orthonormal frame on U . If α is 1-form on M , which is a cross
section on T ∗M , that is α ∈ C∞(T ∗M), then α with respect to the local system can
be characterized by

α(ei) = αi, i = 1, 2, . . . , n.

The following formulas are known:

(dα)ij = ekl
ij∇kαl, δα = −∇lα

l, (1)

(∆α)i = −∇k∇kαi + εk
i

(
∇l∇kαl −∇k∇lα

l
)
, (2)

where

εkl
ij =

 1 if (i, j) is even permutation of (k, l),
−1 if (i, j) is odd permutation of (k, l),
0 if (i, j) is not permutation of (k, l),
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and

εk
i =

{
1, if k = i;
0, if k 6= i.

If α is an 1-form, then we have:

1
2
∆|α|2 = (α, ∆α) − |∇α|2 +

1
2
Q1(α), (3)

where

|α| is the local norm of α, (4)
|∇α|2 = ∇kαi∇kαi and (5)
Q1(α) = −2Rklα

kαl. (6)

Let α be an 1-form. To this 1-form we can associate a vector field, denoted by v(α),
which in the local system (x1, . . . , xn , e1, . . . , en) can be expressed as follows:

v(α) : v(α)i = gikαk, (7)

where (gik) is the inverse matrix of (gik) obtained by the metric g on M . The relation
(7) gives an isomorphism between the vector space

Λ1(M,R) ≡ D1(M,R) and D1(M,R)

of 1-forms D1(M,R) and vector fields D1(M,R) respectively.
Therefore it is equivalent to substitute the notion of 1-form by the notion of vector

field and conversely.

3 .

Let α be an 1-form. This is called Killing 1-form, if its covariant derivative ∇α is a
2-form, that means:

∇α ∈ C
(
Λ2T ∗M

)
. (8)

In the local system (x1, . . . , xn, e1, . . . , en) ∇α can be expressed as follows:

∇iαj + ∇jαi = (∇α)ij + (∇α)ji = 0. (9)

If we apply Ricci’s formula for α, then we have:

∇l∇kαl −∇k∇lα
l = −ανRl

νkl = −ανRkν . (10)

From the relations (9) and (10) we obtain that the 1-form α = (αi) satisfies the
equations:

gjk∇j∇kαi + Rν
i αν = 0. (11)
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Hence, if we consider the second order elliptic differential operator D on the cross
sections on Λ1(M,R) , that means:

D : C∞ (
Λ1(M,R)

)
7→ C∞ (

Λ1(M,R)
)
,

D : α 7→ D(α), (12)

which in the local system (x1, . . . , xn, , e1, . . . , en) can be expressed as follows:

D(α)i = gjk∇j∇kαi + Rν
i αν = 0. (13)

The Kern(D), that is

Kern(D) =
{
α ∈ C∞ (

Λ1(M,R)
)
|D(α) = 0

}
consists of the Killing 1-forms. Since

Λ1(M,R) = D1(M,R) ≡ D1(M,R),

we conclude that the vector space K1(M,R), where K1(M,R) is the vector space of
the Killing vector fields on M , is isomorphic onto Kern(D), that is

K1(M,R) ≡ Kern(D).

For any point x ∈ M , we define:

p(x) = Sup
{
R(α, α) = Rklα

kαl|α unit vector in TxM
}

and (14)
r = max{p(x)|x ∈ M}. (15)

Theorem 3.1 Let (M, g) be a compact orientable Riemannian manifold of dimension
n without boundary. If p(x) ≤ 0 and if there exists a point x0 ∈ M such that p(x0) < 0,
then Kern(D) = { 0 }. If r = 0, then

dim (Kern(D)) = dim
(
K1(M,R)

)
≤ n .

Proof. It is known that
(α, ∆α) = αi(∆α)i , (16)

which by means of (2) and Ricci’s formula

∇l∇kαl −∇k∇lα
l = −ανRl

νkl = −ανRkν (17)

takes the form:
(α, ∆α) = −2Q1(α). (18)

The formula (3) by means of (18) becomes:

1
2
∆|α|2 = −|∇α|2 −

3
2
Q1(α). (19)
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If we integrate (19) on M we obtain:

2
∫
M

|∇α|2 dM = −3
∫
M

Q1(α) dM, (20)

which by virtue of (6) takes the form:∫
M

|∇α|2 dM = 3
∫
M

Rklα
kαl dM. (21)

Since we have:

|∇α|2 ≥ 0, (22)
p(x) =

(
Rklα

kαl
)
x
≤ 0, ∀x ∈ M \ {x0} and p(x0) < 0, (23)

we conclude that
|∇α|2 = 0 , αx , (24)

which implies α = 0 on M and therefore

dim (Kern(D)) = dim
(
K1(M,R)

)
= 0.

If r = 0, the formula (21) becomes:∫
M

|∇α|2 dM = 3
∫
M

Rklα
kαl dM, (25)

which implies |∇α|2 = 0 and therefore ∇α = 0, that means α is a parallel vector field.
Hence every Killing vector field on M is parallel. We take the curve c(t) in M whose
tangent at each point x ∈ c(t) is the vector αx . Therefore we obtain:

α(t) = c(t) =
n∑

i=1

fi(t)ei

and since α(t) is parallel we conclude that the functions fi(t) are constants and hence
dim

(
K1(M,R)

)
≤ n . 2

4 .

An one-parameter group of differential transformations of M is a mapping

F : R × M 7→ M , F : (t, P ) 7→ F (t, P ) = ϕt(P )

which satisfies the following conditions:

(i) For each t ∈ R, ϕt is a transformation of M ,
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(ii) For all t, s ∈ R and P ∈ M , ϕs+t(P ) = ϕt (ϕs(P )) .

It is known that each one-parameter group of transformations induces a vector
field X as follows. Let P be a point of M . We denote by XP the tangent vector of
the curve f(t) = ϕt(P ), when t ∈ R. This is called the orbit of P at P = ϕt(P ). The
orbit f(t) = ϕt(P ) is an integral curve of X starting at P .

The inverse is also true, that means a vector field X on M determines an one-
parameter group of differentiable transformations of M . We consider a local coordi-
nate system (xl, . . . , xn) in a neighborhood U of P0 such that

x1(P0) = · · · = xn(P0) = 0.

The vector field X on U can be written:

X = λ1(x1, . . . , xn)
∂

∂x1
+ · · · + λn(x1, . . . , xn)

∂

∂xn
. (26)

We construct the following system of ordinary linear differential equations:

df i

dt
= λi

(
f1(t), . . . , fn(t)

)
, i = 1, . . . , n. (27)

By the fundamental theorem of systems of linear differential equations, there exists a
unique set of functions

f1 = f1(t, x1, . . . , xn), . . . , fn = fn(t, x1, . . . , xn), (28)

defined for x = (x1, . . . , xn) with |xi| < δ, i = 1, . . . , n and for |t| < ε, which form a
solution of this system for each fixed x and satisfy the initial conditions:

f i(0, x1, . . . , xn) = xi , i = 1, . . . , n. (29)

The set ϕt =
{
f1 = f1(t, x1, . . . , xn), . . . , fn = fn(t, x1, . . . , xn)

}
for |t| < ε and for

all (x1, . . . , xn) ∈ U , such that:

U = {(x1, . . . , xn)||xi| < δ, i = 1, . . . , n} ,

defines a local one-parameter group of local transformations on Iε ×U , which can be
extended to an one-parameter group of transformations on the manifold M .

If the vector field X on the Riemannian manifold (M, g) is Killing, with respect
to the metric g, then the one-parameter group of differentiable transformations are
isometries with respect to the Riemannian metric g.

From the above we have proved the theorem:

Theorem 4.1 Let (M, g) be a compact orientable Riemannian manifold of dimension
n without boundary. If p(x) ≤ 0 and if there is a point x0 ∈ M such that p(x0) < 0,
then there exists no one-parameter family of isometries on M .
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If r = 0 , then every Killing vector field X is parallel, that means:

X = c1e1 + · · · + cnen, (30)

where
e1 =

∂

∂x1
, · · · , en =

∂

∂xn
(31)

and c1, . . . , cn are real constants. The system of ordinary linear differential equations
(27) takes the form:

df1

dt
= c1 ,

df2

dt
= c2 , · · · , dfn

dt
= cn , (32)

which by integration gives:

f1(t, x1, . . . , xn) = c1t + k1 , . . . , fn(t, x1, . . . , xn) = cnt + kn , (33)

where k1, . . . , kn are constants of integrations.
If we take under the consideration the conditions (29), then we obtain:

f1(0, x1, . . . , xn) = k1 = x1, . . . , f
n(0, x1, . . . , xn) = kn = xn . (34)

Therefore the 1-parameter group of local transformations is defined by:

{c1t + x1, . . . , cnt + xn} . (35)

Each transformation has the property:

ϕt : U 7→ U, ϕt : (x1, . . . , xn) 7→ (c1t + x1, . . . , cnt + xn), (36)

which is an isometry.
From the above we have the theorem:

Theorem 4.2 Let (M, g) be a compact orientable Riemannian manifold of dimension
n without boundary. If r = 0, then there are no one-parameter families of isometries
determined by (36).

5 .

Let (M, g) be a compact orientable Riemannian manifold of dimension n. Let H1(M,R)
be the vector space of harmonic 1-forms on (M, g). Then the dimH1(M,R) = b1,
is the first Betti number, which is a topological property of M , that means , it is
independent of the Riemannian metric g on M .

There was the following conjecture.

Conjecture 5.1 Let (M, g) be a compact Riemannian manifold of dimension n.
Let K1(M,R) be the vector space of the Killing vector fields on (M, g). Is the
dim K1(M,R) a topological invariant?
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This conjecture is not true. This is a consequence of the following theorem.

Theorem 5.1 The dimension of K1(M,R) is not a topological invariant on the com-
pact manifold M .

Proof. There are constants β(n) > γ(n) depending only on the dimension n of
the compact manifold M ([3]) such that M admits a complete metric g with Ricci
curvature p(g) satisfying the inequalities:

−β(n) < p(g) < −γ(n). (37)

The inequalities (37), by means of (8) imply dim
(
K1(M,R)

)
= 0. This is valid for

every compact manifold M . Hence dim
(
K1(M,R)

)
= 0 for a metric g, satisfying the

inequalities (37), is not a topological invariant. 2

Theorem 5.2 Let M be a compact manifold without boundary. There is a Rieman-
nian metric g on M such that there exists no one-parameter family of isometries on
M with respect to the metric g.

Proof. There exists a metric g on M such that its Ricci curvature p(g) satisfies
the inequalities:

−β(n) < p(g) < −γ(n),

where β(n) > γ(n) are constants depending only on the dimension n of M . Hence
there is not a Killing vector field on (M, g). From this we conclude that there exists
no one-parameter family of isometries of (M, g). 2

Theorem 5.3 Let M be a compact manifold of dimension n ≥ 3. We consider a
Riemannian metric g on M with the property p(g) < 0. Then the group of isometries
I(M) of (M, g) is finite.

Proof. There exists no one-parameter family of isometries of (M, g). From this
we conclude that I(M) is finite. This geometric restriction is sharp ([3]). If M is
a compact manifold of dimension n ≥ 3 and G is a subgroup of Diff(M), then
G = I(M), where I(M) is the group of isometries on M with respect to a metric g
with the property p(g) ≤ 0 if G is finite.

Let (M, g) be a differential manifold of dimension n. We denote by H(M) the
space of all Riemannian metrics on the manifold M . The set H(M) can be become a
metric space with metric d defined by:

d : H(M) × H(M) 7→ IR+, d : (g1, g2) 7→ d(g1, g2),

where d(g1, g2) is the minimal distance between (M, g1) and (M, g2) for all isometric
embeddings in any metric space M . 2

It has been proved the following theorem ([3]):

Theorem 5.4 Let (M, g) be a compact manifold. The subset Λ(M) of H(M) with the
property Λ(M) = {g ∈ H(M) | g Riemannian metric with Ricci curvature p(g) < 0}.

Then Λ(M) is dense in the set of all metrics H(M) with respect to the metric d.



Relation between topology and the Killing vector fields 123

Now, we can prove the following theorems:

Theorem 5.5 Let M be a compact manifold of dimension n. There is an infinite
number of metrics, whose set denoted by Λ(M) such that dimK1(M, g) = 0, ∀g ∈
Λ(M). As a matter of fact Λ(M) is dense in the set of all metrics H(M) with respect
to the metric d.

Proof. Let g be a Riemannian metric with negative Ricci curvature. Then we
have:

dim K1(M, g) = 0. (38)

Since g ∈ Λ(M) and the subset Λ(M) is dense in H(M) with respect to the above
mentioned metric d we conclude that (38) is valid for all metrics of Λ(M). 2

Theorem 5.6 Let M be a compact manifold of dimension n. There is a set, denoted
by Λ(M), of infinite number of Riemannian metric on M such that the group of
isometries I(M, g) for every g ∈ Λ(M) is finite.

Proof. It is known that, for every metric g on M with the property dimK1(M,R) =
0, the group of isometries of (M, g) is finite. From this and Theorem 5.4 the theorem
follows. 2
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