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Abstract

The aim of the paper is to give an abstract definition of a linear connection on
modules with differentials over associative algebras and to study its properties.
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1 Introduction

This paper continues the ideas from some previous works [8, 9] and we keep all the
definitions and the notations used there.

Consider an associative algebra A over a field k and (A,M) a module, which can
be a left, right or bi-module We denote as Z(A) the center of A.

For two left modules (A′,M ′) and (A,M), a contravariant morphism of left module
is a couple (ϕ, ψ), where ϕ : A → A′ is a morphism of algebras such that ϕ(Z(A)) ⊂
Z(A′) and ψ : M ′ → A′⊗Z(A) M is a morphism of left A′-module. We say that ψ(m′)
is the ψ-decomposition of m′.

Contravariant morphisms of right module and bi-module are defined in an analo-
gous way. According to [9, Theorem 1], the left modules (right modules, respectively
bimodules) (A,M) with A an object from A and the contravariant morphisms of the
corresponding module are the objects and the morphisms of a category Ml

A (Mr
A,

respectively Mb
A).

A left module (A,M) is a left module with arrow (l.m.w.a.) if a morphism of left
module pM : M → Der(A) is given, called an anchor. We denote pM (m)(a) = [m,a]M
for every m ∈ M and a ∈ A. In an analogous way, the right module with arrow
(r.m.w.a.), respectively bimodule with arrow (b.w.a.) are defined.
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Let (A′,M ′) and (A,M) be l.m.w.a.’s. A contravariant morphism of left module
(ϕ,ψ) is a morphism of l.m.w.a. if it is a contravariant morphism of left module and
for every X ′ ∈ M ′ which has the ψ-decomposition

ψ(X ′) =
∑

i

a′
i ⊗Z(A) Xi,

and a ∈ A, the condition [X ′, ϕ(a)] =
∑
i

a′
iϕ ([Xi, a]) is fulfilled.

The morphism of r.m.w.a. and of b.m.w.a. can be defined in an analogous way.
A preinfinitesimal left module (p.l.m.) is a l.m.w.a. (A,M) together with a bracket

[·, ·]M : M × M → M which is k-bilinear, antisymmetric and

[X, aY ]M = [X, a]M Y + a [X,Y ]M , (∀)X,Y ∈ M, a ∈ A.

Let (A′,M ′) and (A,M) be p.l.m.’s. A contravariant morphism of l.m.w.a. (ϕ,ψ)
is a morphism of p.l.m. if it is a contravariant morphism of left module and for every
x′, y′ ∈ M ′ which have the ψ-decompositions

ψ(X ′) =
∑

i

a′
i ⊗Z(A) Xi , ψ(Y ′) =

∑
α

b′α ⊗Z(A) Yα,

then the following condition is fulfilled:

ψ ([X ′, Y ′]M ) =
∑
α

[X ′, b′α]M ⊗Z(A) Yα−
∑
i

[Y ′, a′
i]M ⊗Z(A) Xi+∑

i,α

a′
ib

′
α ⊗Z(A) [Xi, Yα]M .

In an analogous way the morphism of p.l.m. and of p.b.m. can be defined. The
definitions are correct; it can be checked up as in [6, Lemmas 4.1, 4.2].

Let (A′, M ′) and (A,M) be p.l.m.’s and (A′,M ′)
(ϕ,ψ)−→ (A,M) a morphism of

l.m.w.a.. The curvature of (ϕ,ψ) is the map K : M ′ × M ′ → A′ ⊗Z(A) M defined by

K(X ′, Y ′) = ψ ([X ′, Y ′]M )−
∑
α

[X ′, b′α]M ⊗Z(A) Yα+∑
i

[Y ′, a′
i]M ⊗Z(A) Xi−

∑
i,α

a′
ib

′
α ⊗Z(A) [Xi, Yα]M .

It is clear that (ϕ, ψ) is a morphism of preinfinitesimal module iff K vanish. The
curvature of a morphism of r.m.w.a. (or b.m.w.a.) of two p.r.m.’s (respectively
p.b.m.’s) can be defined in a similar way. It vanishes iff it is a morphism of p.r.m.
(p.b.m. respectively). In the case of commutative algebras the definition agrees with
[6, Proposition 4.1].

In the case of A = A′, a morphism of left A-module ψ0 : M ′ → M induces
a morphism ψ : M ′ → A ⊗Z(A) M , ψ(X ′) = 1A ⊗Z(A) ψ0(X ′). If (A,M ′) and
(A,M) are l.m.w.a.’s and [X ′, ϕ(a)] = ϕ ([ψ0(X ′), a]), then we say that ψ is a strong
morphism of A-l.m.w.a.. It induces a morphism of l.m.w.a. as above. The curvature
of a strong morphism of A-l.m.w.a. as above is K0(X ′, Y ′) = [ψ(X ′), ψ(Y ′)]M −
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ψ ([X ′, Y ′]M ′). An infinitesimal left module (i.l.m.) is a p.l.m. (A,M), such that the
anchor pM : M → Der(A) is a morphism of p.i.m. with a vanishing curvature (i.e.
pM ([X,Y ]M )−

[
pM (X), pM (Y )

]
Der(A)

= 0). A left Lie pseudoalgebra (l.L.p.a.) is an

i.l.m. which has the property J (X,Y, Z)
def
= [[X,Y ], Z]+ [[Y,Z], X]+ [[Z,X], Y ] = 0.

J is called the Jacobi map.
In an analogous way we can define the infinitesimal right module (i.r.m.), the

infinitesimal bimodule (i.b.m.), the right Lie pseudoalgebra (r.L.p.a.) and the Lie
bi-pseudoalgebra (L.b.p.a.).

All these modules, together with their morphisms, are the objects and the mor-
phisms of some categories, called as in [6] categories of modules with differentials.
Almost all the results from [6], stated for the associative and commutative algebras,
can be extended with care for associative algebras.

2 Linear connections on modules with differentials

The linear connection defined here differs from that defined in [10] or [3], being closed
to the linear connection defined in the classical differential geometry by the Koszul
conditions.

Definition 2.1 Let A be a associative k-algebra, (A,L) a left module and (A,M) a
module with arrow.

A linear left M -connection on L is an A-module morphism

∇ : M → EndkL, (1)

denoted as ∇(X)(s) = ∇Xs, such that:

∇(X)(u · s) = [X,u]M · s + u · ∇(X)(s) , X ∈ M, s ∈ L, u ∈ A. (2)

A linear right M -connection on L is an A-module morphism

∇ : M → EndkL (3)

such that:

∇(X)(s · u) = s · [X,u]M + ∇(X)(s) · u , X ∈ M, s ∈ L, u ∈ A. (4)

A linear bilateral M -connection on L is an A-module morphism

∇ : M → EndkL (5)

such that:

∇(X)(u · s · v) = [X,u]M · s · v + ∇(X)(s) · u + u · s · [X, v]M , (6)
X ∈ M, s ∈ L, u ∈ A. (7)

We call a left, right or bilateral M -connection as a linear M -connection. We call
as Koszul conditions the above conditions on ∇.
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It is easy to see that if ∇1 and ∇2 are two linear M -connections on L , then
D = ∇1 −∇2 : M → EndAL , for a left M -connection, D = ∇1 −∇2 : M → EndLA

for a right M -connection and D = ∇1 − ∇2 : M → End ALA for a bilateral M -
connection.(The positions of the algebra denotes the kind of the module: left, right
or bilateral) Conversely, given L : M → EndAL and ∇1 a linear M -connection on
L, then ∇2 = ∇1 + D is a linear left M -connection on L. Analogous statements are
valid for left and bilateral case.

Consider now a preinfinitesimal module (A,M). The map

D : M × M → Der A , D(X,Y ) = [pMX, pMY ]Der:A − pM [X,Y ]M

belongs to Hom2
A(M,Der(A)), where (A,Der A) is the Lie pseudoalgebra of the

derivations on A. D is an anchor for an module with arrow on (A,M × M) which is
trivial iff (A,M) is an infinitesimal module. In this particular case, if ∇ : M → EndkL
is a linear left (right, bilateral) M -connection on the module (A,L), then, denoting
as

R(X,Y ) = [∇X ,∇Y ]EndkL −∇[X,Y ]M , (8)

we have R(X,Y ) ∈ EndAL (R(X,Y ) ∈ EndLA and R(X,Y ) ∈ EndALA respec-
tively).

If (A,M) is a preinfinitesimal module, ∇ is a left (right, bilateral) M -connection
on L and we define R using the formula (8), then R has the property:

R(X,Y )(u · s) = [D(X,Y ), u]M×M · s + u · R(X,Y )s,
(∀)(X,Y ) ∈ M × M, s ∈ L, u ∈ A,

thus R is a linear left (right, bilateral) M × M -connection on L .
Let (A,L) be a module with arrow and ∇ a linear L-connection on L. The formula

[X,Y ]L = ∇XY −∇Y X , (∀)X,Y ∈ L (9)

defines a bracket on L, which makes (A,L) a preinfinitesimal module.

Definition 2.2 For a linear L-connection ∇ on the preinfinitesimal module (A,L),
we say that

T (X,Y ) = ∇XY −∇Y X − [X,Y ]L , (∀)X,Y ∈ L

is the torsion of ∇.

Notice that T ∈ Hom2
A(L,L) (left, right or bilateral, according to L) and the

relation (9) holds true iff T = 0̇.
As remarked above, a linear L-connection on the module with arrow (A,L) defines

a bracket on L. In order to make an inverse construction, a supplementary structure
is given usually on L. For example, the following construction is an extension of the
Levi Civita connection on a (pseudo-)Riemannian manifold.

Definition 2.3 We call a pseudo-Riemannian metric on the module (A,L) an A-
bilinear, symmetric and non-degenerate map g : L×L → A (i.e. (∀)X ∈ L, g(X,Y ) =
0, (∀)Y ∈ L then X = 0).
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Moreover, if g is strict (i.e. (∀)X ∈ L, g(X,X) = 0 implies X = 0 ), then we say
that g is a Riemannian metric.

If (A,L1) is a module with arrow and ∇ is a linear L1-connection on L, then we
say that ∇ is a metric connection if the following relation holds true:

[X, g(Y,Z)]L = g(∇XY,Z) + g(Y,∇XZ) , (∀)X ∈ L1, Y, Z ∈ L.

It is easy to see that a (pseudo-)Riemannian metric g induces an injective mor-
phism of A-module γ ∈ Hom1

A(L,L∗), where L∗ is the dual of L related to A.

Proposition 2.1 Let (A,L) be a preinfinitesimal module, g be a (pseudo) Rieman-
nian metric on L and suppose that γ is isomorphism.

Then there is a unique linear L-connection on L which is metric and has a van-
ishing torsion.

Proof. As the classical Levi Civita connection, the formula:

g(∇XY,Z) = [X, g(Y,Z)]L + [Y, g(Z,X)]L − [Z, g(X,Y )]L+

g([X,Y ], Z) + g([Z,X], Y ) − g([Y,Z], X) .

gives uniquely ∇. 2

Notice that some other classical constructions in the differential geometry can be
generalized in an analogous manner.

Let ψ :M1 → M2 be an A-module with arrow morphism and ∇2 be a linear M2-
connection on the module (A,L). Then ∇1

X = ∇2
ψ(X) is a linear M1-connection on

L .
Notice that if a linear Der A-connection exists on the module (A,L), then, for ev-

ery module with arrow (A,M), there is a linear M -connection on L. This observation
can be extended as follows:

Proposition 2.2 Let (A′, L′)
(ϕ,ψ)−→ (A,L) be a morphism of module with arrow,

(A,L1) be a module and ∇ : L × L1 → L1 be a linear L-connection on L1.
Then there is a linear L′-connection ∇ on the module (A′, A′ ⊗A L1).

Proof. We make the proof only for left connections. The cases of right and bilateral
connections are analogous.

For every X ′ ∈ L′ such that

ψ(X ′) =
∑

i

a′
i ⊗A Xi ∈ A′ ⊗A L

and every
∑

α v′α ⊗A zα ∈ A′ ⊗A L1, we define

∇X′(
∑
α

v′
α ⊗A Zα) =

∑
i,α

(v′αai
) ⊗A ∇XiZα +

∑
α

[X ′, v′α]L′ ⊗A Zα.

It is routine to prove that ∇ does not depend on the tensor decompositions and to
check the Koszul conditions (1) and (2). 2
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We say that the linear L′-connection ∇ given by the Proposition above is (ϕ,ψ)-
associated with ∇ .

Consider now a morphism of A−module with arrow f : L → L1, where (A,L) is
a preinfinitesimal module and ∇ is a linear L1-connection on L. If we define

T∇(X,Y ) = ∇f(X)Y −∇f(Y )X − [X,Y ]L , (∀)X,Y ∈ L ,

then T∇ ∈ Hom2
A(L,L) is called the f -torsion of ∇, according to [3]. Taking L = L1

and f = idL then T∇ is precisely the torsion of ∇. Generally, T∇ is in fact the torsion
of the linear L-connection ∇̃XY = ∇f(X)Y , (X,Y ∈ L), on L.

Consider, moreover, a morphism of module (A′, L′)
(ϕ,ψ)→ (A,L) and denote

T∇

(∑
i

u′
i ⊗A Xi ,

∑
i

u′
i ⊗A Xi

)
=

∑
i,j

(u′
iv

′
j) ⊗A T∇(Xi, Yj), (10)

(∀)
∑

i

(ui ⊗A Xi),
∑

j

(vj ⊗A Yj) ∈ A′ ⊗A L.

It is easy to see that T∇ ∈ Hom2
A′(A′ ⊗A L,A′ ⊗A L ) and the definition does not

depend on the tensor decompositions.
The following result is an extension of [3, Proposition 1.14] in the case of pre-

infinitesimal modules. It is a characterization of the morphism of preinfinitesimal
module without using explicitly the tensor decompositions. Actually it is good only
for preinfinitesimal modules that admit linear connections.

Proposition 2.3 Let ∇ be a linear L-connection on the preinfinitesimal module

(A,L), (A′, L′) be a preinfinitesimal module and (A′, L′)
(ϕ,ψ)→ (A,L) be a morphism

of module with arrow. Denote:

ψ̃(X ′, Y ′) = ψ ([X ′, Y ′]L′) −∇X′(ψ(Y ′)) + ∇Y ′(ψ(X ′)) + T∇ (ψ(X ′), ψ(Y ′)) ,

(∀)X ′, Y ′ ∈ L′ , where ∇ is the L′-connection (ϕ,ψ)-associated with ∇, given by
Proposition 2.2. Then we have:

1. ψ̃ ∈ a2 (L, A′ ⊗A L) ;

2. The following assertions are equivalent:

(a) ψ is a morphism of preinfinitesimal module;

(b) ψ̃ = 0.

Proof. It suffices to prove that ψ̃ = K, where K is given by

K : L′ × L′ → A′ ⊗A L,

K(X ′, Y ′) = ψ([X ′, Y ′]L′) − χ(X ′, Y ′) , (∀)X ′, Y ′ ∈ L′.
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We make the proof only for left connections. The cases of right and bilateral
connections are analogous. Indeed, we have:

ψ̃(X ′, Y ′) = ψ ([X ′, Y ′]L′)−
∑
i,j

a′
ib

′
j ⊗A ∇XiYj−

∑
j

[
X ′, b′j

]
L′ ⊗A Yj+∑

i,j

a′
ib

′
j ⊗A ∇Yj Xi+

∑
i

[Y ′, a′
i]L′ ⊗A Xi+∑

i,j

a′
ib

′
j ⊗A

(
∇XiYj −∇Yj Xi − L(Xi, Yj)

)
= K(X ′, Y ′).2

As in [3], using a linear L-connection ∇, the formula which gives the bracket of
the pull-back of modules with:differentials, defined in [8], can be easily written as:

[X ′ ⊕ C, Y ′ ⊕ D]L∗ = [X ′, Y ′]L′ ⊕
(
∇X′D −∇Y ′C − T∇ (C,D)

)
(∀)X ′ ⊕ C, Y ′ ⊕ D ∈ L∗.
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