LINEAR CONNECTIONS ON MODULES WITH DIFFERENTIALS

Paul Popescu and Marcela Popescu

Abstract

The aim of the paper is to give an abstract definition of a linear connection on modules with differentials over associative algebras and to study its properties.

AMS Subject Classification: 18F15, 16D90, 53B15.
Key words: left, right and bilateral module, module with differentials, linear connection.

1 Introduction

This paper continues the ideas from some previous works $[8,9]$ and we keep all the definitions and the notations used there.

Consider an associative algebra A over a field k and (A, M) a module, which can be a left, right or bi-module We denote as $Z(A)$ the center of A.

For two left modules $\left(A^{\prime}, M^{\prime}\right)$ and (A, M), a contravariant morphism of left module is a couple (φ, ψ), where $\varphi: A \rightarrow A^{\prime}$ is a morphism of algebras such that $\varphi(Z(A)) \subset$ $Z\left(A^{\prime}\right)$ and $\psi: M^{\prime} \rightarrow A^{\prime} \otimes_{Z(A)} M$ is a morphism of left A^{\prime}-module. We say that $\psi\left(m^{\prime}\right)$ is the ψ-decomposition of m^{\prime}.

Contravariant morphisms of right module and bi-module are defined in an analogous way. According to [9, Theorem 1], the left modules (right modules, respectively bimodules) (A, M) with A an object from \mathcal{A} and the contravariant morphisms of the corresponding module are the objects and the morphisms of a category $\mathcal{M}_{A}^{l}\left(\mathcal{M}_{A}^{r}\right.$, respectively \mathcal{M}_{A}^{b}).

A left module (A, M) is a left module with arrow (l.m.w.a.) if a morphism of left module $p^{M}: M \rightarrow \operatorname{Der}(A)$ is given, called an anchor. We denote $p^{M}(m)(a)=[m, a]_{M}$ for every $m \in M$ and $a \in A$. In an analogous way, the right module with arrow (r.m.w.a.), respectively bimodule with arrow (b.w.a.) are defined.

[^0]Let $\left(A^{\prime}, M^{\prime}\right)$ and (A, M) be l.m.w.a.'s. A contravariant morphism of left module (φ, ψ) is a morphism of l.m.w.a. if it is a contravariant morphism of left module and for every $X^{\prime} \in M^{\prime}$ which has the ψ-decomposition

$$
\psi\left(X^{\prime}\right)=\sum_{i} a_{i}^{\prime} \otimes_{Z(A)} X_{i}
$$

and $a \in A$, the condition $\left[X^{\prime}, \varphi(a)\right]=\sum_{i} a_{i}^{\prime} \varphi\left(\left[X_{i}, a\right]\right)$ is fulfilled.
The morphism of r.m.w.a. and of b.m.w.a. can be defined in an analogous way.
A preinfinitesimal left module (p.l.m.) is a l.m.w.a. (A, M) together with a bracket $[\cdot, \cdot]_{M}: M \times M \rightarrow M$ which is k-bilinear, antisymmetric and

$$
[X, a Y]_{M}=[X, a]_{M} Y+a[X, Y]_{M} \quad, \quad(\forall) X, Y \in M, a \in A
$$

Let $\left(A^{\prime}, M^{\prime}\right)$ and (A, M) be p.l.m.'s. A contravariant morphism of l.m.w.a. (φ, ψ) is a morphism of p.l.m. if it is a contravariant morphism of left module and for every $x^{\prime}, y^{\prime} \in M^{\prime}$ which have the ψ-decompositions

$$
\psi\left(X^{\prime}\right)=\sum_{i} a_{i}^{\prime} \otimes_{Z(A)} X_{i} \quad, \quad \psi\left(Y^{\prime}\right)=\sum_{\alpha} b_{\alpha}^{\prime} \otimes_{Z(A)} Y_{\alpha}
$$

then the following condition is fulfilled:

$$
\begin{aligned}
\psi\left(\left[X^{\prime}, Y^{\prime}\right]_{M}\right)=\sum_{\alpha}\left[X^{\prime}, b_{\alpha}^{\prime}\right]_{M} \otimes_{Z(A)} Y_{\alpha}-\sum_{i}\left[Y^{\prime}, a_{i}^{\prime}\right]_{M} \otimes_{Z(A)} X_{i}+ \\
\sum_{i, \alpha} a_{i}^{\prime} b_{\alpha}^{\prime} \otimes_{Z(A)}\left[X_{i}, Y_{\alpha}\right]_{M}
\end{aligned}
$$

In an analogous way the morphism of p.l.m. and of p.b.m. can be defined. The definitions are correct; it can be checked up as in [6, Lemmas 4.1, 4.2].

Let $\left(A^{\prime}, M^{\prime}\right)$ and (A, M) be p.l.m.'s and $\left(A^{\prime}, M^{\prime}\right) \xrightarrow{(\varphi, \psi)}(A, M)$ a morphism of l.m.w.a.. The curvature of (φ, ψ) is the map $K: M^{\prime} \times M^{\prime} \rightarrow A^{\prime} \otimes_{Z(A)} M$ defined by

$$
\begin{gathered}
K\left(X^{\prime}, Y^{\prime}\right)=\psi\left(\left[X^{\prime}, Y^{\prime}\right]_{M}\right)-\sum_{\alpha}\left[X^{\prime}, b_{\alpha}^{\prime}\right]_{M} \otimes_{Z(A)} Y_{\alpha}+ \\
\sum_{i}\left[Y^{\prime}, a_{i}^{\prime}\right]_{M} \otimes_{Z(A)} X_{i}-\sum_{i, \alpha} a_{i}^{\prime} b_{\alpha}^{\prime} \otimes_{Z(A)}\left[X_{i}, Y_{\alpha}\right]_{M}
\end{gathered}
$$

It is clear that (φ, ψ) is a morphism of preinfinitesimal module iff K vanish. The curvature of a morphism of r.m.w.a. (or b.m.w.a.) of two p.r.m.'s (respectively p.b.m.'s) can be defined in a similar way. It vanishes iff it is a morphism of p.r.m. (p.b.m. respectively). In the case of commutative algebras the definition agrees with [6, Proposition 4.1].

In the case of $A=A^{\prime}$, a morphism of left A-module $\psi_{0}: M^{\prime} \rightarrow M$ induces a morphism $\psi: M^{\prime} \rightarrow A \otimes_{Z(A)} M, \psi\left(X^{\prime}\right)=1_{A} \otimes_{Z(A)} \psi_{0}\left(X^{\prime}\right)$. If $\left(A, M^{\prime}\right)$ and (A, M) are l.m.w.a.'s and $\left[X^{\prime}, \varphi(a)\right]=\varphi\left(\left[\psi_{0}\left(X^{\prime}\right), a\right]\right)$, then we say that ψ is a strong morphism of A-l.m.w.a.. It induces a morphism of l.m.w.a. as above. The curvature of a strong morphism of A-l.m.w.a. as above is $K_{0}\left(X^{\prime}, Y^{\prime}\right)=\left[\psi\left(X^{\prime}\right), \psi\left(Y^{\prime}\right)\right]_{M}-$
$\psi\left(\left[X^{\prime}, Y^{\prime}\right]_{M^{\prime}}\right)$. An infinitesimal left module (i.l.m.) is a p.l.m. (A, M), such that the anchor $p^{M}: M \rightarrow \operatorname{Der}(A)$ is a morphism of p.i.m. with a vanishing curvature (i.e. $\left.p^{M}\left([X, Y]_{M}\right)-\left[p^{M}(X), p^{M}(Y)\right]_{\operatorname{Der}(A)}=0\right)$. A left Lie pseudoalgebra (1.L.p.a.) is an i.l.m. which has the property $\mathcal{J}(X, Y, Z) \stackrel{\text { def }}{=}[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0$. \mathcal{J} is called the Jacobi map.

In an analogous way we can define the infinitesimal right module (i.r.m.), the infinitesimal bimodule (i.b.m.), the right Lie pseudoalgebra (r.L.p.a.) and the Lie bi-pseudoalgebra (L.b.p.a.).

All these modules, together with their morphisms, are the objects and the morphisms of some categories, called as in [6] categories of modules with differentials. Almost all the results from [6], stated for the associative and commutative algebras, can be extended with care for associative algebras.

2 Linear connections on modules with differentials

The linear connection defined here differs from that defined in [10] or [3], being closed to the linear connection defined in the classical differential geometry by the Koszul conditions.

Definition 2.1 Let A be a associative k-algebra, (A, L) a left module and (A, M) a module with arrow.

A linear left M-connection on L is an A-module morphism

$$
\begin{equation*}
\nabla: M \rightarrow \operatorname{End}_{k} L \tag{1}
\end{equation*}
$$

denoted as $\nabla(X)(s)=\nabla_{X} s$, such that:

$$
\begin{equation*}
\nabla(X)(u \cdot s)=[X, u]_{M} \cdot s+u \cdot \nabla(X)(s), X \in M, s \in L, u \in A \tag{2}
\end{equation*}
$$

A linear right M-connection on L is an A-module morphism

$$
\begin{equation*}
\nabla: M \rightarrow \operatorname{End}_{k} L \tag{3}
\end{equation*}
$$

such that:

$$
\begin{equation*}
\nabla(X)(s \cdot u)=s \cdot[X, u]_{M}+\nabla(X)(s) \cdot u, X \in M, s \in L, u \in A \tag{4}
\end{equation*}
$$

A linear bilateral M-connection on L is an A-module morphism

$$
\begin{equation*}
\nabla: M \rightarrow \operatorname{End}_{k} L \tag{5}
\end{equation*}
$$

such that:

$$
\begin{align*}
\nabla(X)(u \cdot s \cdot v) & =[X, u]_{M} \cdot s \cdot v+\nabla(X)(s) \cdot u+u \cdot s \cdot[X, v]_{M} \tag{6}\\
X & \in M, s \in L, u \in A \tag{7}
\end{align*}
$$

We call a left, right or bilateral M-connection as a linear M-connection. We call as Koszul conditions the above conditions on ∇.

It is easy to see that if ∇^{1} and ∇^{2} are two linear M-connections on L, then $D=\nabla^{1}-\nabla^{2}: M \rightarrow E n d_{A} L$, for a left M-connection, $D=\nabla^{1}-\nabla^{2}: M \rightarrow E n d L_{A}$ for a right M-connection and $D=\nabla^{1}-\nabla^{2}: M \rightarrow E n d_{A} L_{A}$ for a bilateral M connection.(The positions of the algebra denotes the kind of the module: left, right or bilateral) Conversely, given $L: M \rightarrow E n d_{A} L$ and ∇^{1} a linear M-connection on L, then $\nabla^{2}=\nabla^{1}+D$ is a linear left M-connection on L. Analogous statements are valid for left and bilateral case.

Consider now a preinfinitesimal module (A, M). The map

$$
\mathcal{D}: M \times M \rightarrow \operatorname{Der} A, \mathcal{D}(X, Y)=\left[p^{M} X, p^{M} Y\right]_{\text {Der:A }}-p^{M}[X, Y]_{M}
$$

belongs to $\operatorname{Hom}_{A}^{2}(M, \operatorname{Der}(A))$, where $(A, \operatorname{Der} A)$ is the Lie pseudoalgebra of the derivations on A. \mathcal{D} is an anchor for an module with arrow on $(A, M \times M)$ which is trivial iff (A, M) is an infinitesimal module. In this particular case, if $\nabla: M \rightarrow E n d_{k} L$ is a linear left (right, bilateral) M-connection on the module (A, L), then, denoting as

$$
\begin{equation*}
R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]_{E n d_{k} L}-\nabla_{[X, Y]_{M}}, \tag{8}
\end{equation*}
$$

we have $R(X, Y) \in E n d_{A} L\left(R(X, Y) \in E n d L_{A}\right.$ and $R(X, Y) \in E n d_{A} L_{A}$ respectively).

If (A, M) is a preinfinitesimal module, ∇ is a left (right, bilateral) M-connection on L and we define R using the formula (8), then R has the property:

$$
\begin{gathered}
R(X, Y)(u \cdot s)=[\mathcal{D}(X, Y), u]_{M \times M} \cdot s+u \cdot R(X, Y) s \\
(\forall)(X, Y) \in M \times M, s \in L, u \in A
\end{gathered}
$$

thus R is a linear left (right, bilateral) $M \times M$-connection on L.
Let (A, L) be a module with arrow and ∇ a linear L-connection on L. The formula

$$
\begin{equation*}
[X, Y]_{L}=\nabla_{X} Y-\nabla_{Y} X,(\forall) X, Y \in L \tag{9}
\end{equation*}
$$

defines a bracket on L, which makes (A, L) a preinfinitesimal module.
Definition 2.2 For a linear L-connection ∇ on the preinfinitesimal module (A, L), we say that

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]_{L},(\forall) X, Y \in L
$$

is the torsion of ∇.
Notice that $T \in \operatorname{Hom}_{A}^{2}(L, L)$ (left, right or bilateral, according to L) and the relation (9) holds true iff $T=\dot{0}$.

As remarked above, a linear L-connection on the module with arrow (A, L) defines a bracket on L. In order to make an inverse construction, a supplementary structure is given usually on L. For example, the following construction is an extension of the Levi Civita connection on a (pseudo-)Riemannian manifold.

Definition 2.3 We call a pseudo-Riemannian metric on the module (A, L) an A bilinear, symmetric and non-degenerate map $g: L \times L \rightarrow A$ (i.e. $(\forall) X \in L, g(X, Y)=$ $0,(\forall) Y \in L$ then $X=0)$.

Moreover, if g is strict (i.e. $(\forall) X \in L, g(X, X)=0$ implies $X=0$), then we say that g is a Riemannian metric.

If $\left(A, L_{1}\right)$ is a module with arrow and ∇ is a linear L_{1}-connection on L, then we say that ∇ is a metric connection if the following relation holds true:

$$
[X, g(Y, Z)]_{L}=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right),(\forall) X \in L_{1}, Y, Z \in L
$$

It is easy to see that a (pseudo-)Riemannian metric g induces an injective morphism of A-module $\gamma \in \operatorname{Hom}_{A}^{1}\left(L, L^{*}\right)$, where L^{*} is the dual of L related to A.

Proposition 2.1 Let (A, L) be a preinfinitesimal module, g be a (pseudo) Riemannian metric on L and suppose that γ is isomorphism.

Then there is a unique linear L-connection on L which is metric and has a vanishing torsion.

Proof. As the classical Levi Civita connection, the formula:

$$
\begin{gathered}
g\left(\nabla_{X} Y, Z\right)=[X, g(Y, Z)]_{L}+[Y, g(Z, X)]_{L}-[Z, g(X, Y)]_{L}+ \\
g([X, Y], Z)+g([Z, X], Y)-g([Y, Z], X)
\end{gathered}
$$

gives uniquely ∇.
Notice that some other classical constructions in the differential geometry can be generalized in an analogous manner.

Let $\psi: M_{1} \rightarrow M_{2}$ be an A-module with arrow morphism and ∇^{2} be a linear $M_{2^{-}}$ connection on the module (A, L). Then $\nabla_{X}^{1}=\nabla_{\psi(X)}^{2}$ is a linear M_{1}-connection on L.

Notice that if a linear $\operatorname{Der} A$-connection exists on the module (A, L), then, for every module with arrow (A, M), there is a linear M-connection on L. This observation can be extended as follows:

Proposition 2.2 Let $\left(A^{\prime}, L^{\prime}\right) \xrightarrow{(\varphi, \psi)}(A, L)$ be a morphism of module with arrow, $\left(A, L_{1}\right)$ be a module and $\nabla: L \times L_{1} \rightarrow L_{1}$ be a linear L-connection on L_{1}.

Then there is a linear L^{\prime}-connection $\bar{\nabla}$ on the module $\left(A^{\prime}, A^{\prime} \otimes_{A} L_{1}\right)$.
Proof. We make the proof only for left connections. The cases of right and bilateral connections are analogous.

For every $X^{\prime} \in L^{\prime}$ such that

$$
\psi\left(X^{\prime}\right)=\sum_{i} a_{i}^{\prime} \otimes_{A} X_{i} \in A^{\prime} \otimes_{A} L
$$

and every $\sum_{\alpha} v_{\alpha}^{\prime} \otimes_{A} z_{\alpha} \in A^{\prime} \otimes_{A} L_{1}$, we define

$$
\bar{\nabla}_{X^{\prime}}\left(\sum_{\alpha} v_{\alpha}^{\prime} \otimes_{A} Z_{\alpha}\right)=\sum_{i, \alpha}\left(v_{\alpha a_{i}}^{\prime}\right) \otimes_{A} \nabla_{X_{i}} Z_{\alpha}+\sum_{\alpha}\left[X^{\prime}, v_{\alpha}^{\prime}\right]_{L^{\prime}} \otimes_{A} Z_{\alpha} .
$$

It is routine to prove that $\bar{\nabla}$ does not depend on the tensor decompositions and to check the Koszul conditions (1) and (2).

We say that the linear L^{\prime}-connection $\bar{\nabla}$ given by the Proposition above is (φ, ψ) associated with ∇.

Consider now a morphism of A-module with arrow $f: L \rightarrow L_{1}$, where (A, L) is a preinfinitesimal module and ∇ is a linear L_{1}-connection on L. If we define

$$
T_{\nabla}(X, Y)=\nabla_{f(X)} Y-\nabla_{f(Y)} X-[X, Y]_{L},(\forall) X, Y \in L
$$

then $T_{\nabla} \in \operatorname{Hom}_{A}^{2}(L, L)$ is called the f-torsion of ∇, according to [3]. Taking $L=L_{1}$ and $f=i d_{L}$ then T_{∇} is precisely the torsion of ∇. Generally, T_{∇} is in fact the torsion of the linear L-connection $\widetilde{\nabla}_{X} Y=\nabla_{f(X)} Y,(X, Y \in L)$, on L.

Consider, moreover, a morphism of module $\left(A^{\prime}, L^{\prime}\right) \xrightarrow{(\varphi, \psi)}(A, L)$ and denote

$$
\begin{gather*}
\bar{T}_{\nabla}\left(\sum_{i} u_{i}^{\prime} \otimes_{A} X_{i}, \sum_{i} u_{i}^{\prime} \otimes_{A} X_{i}\right)=\sum_{i, j}\left(u_{i}^{\prime} v_{j}^{\prime}\right) \otimes_{A} T_{\nabla}\left(X_{i}, Y_{j}\right) \tag{10}\\
(\forall) \sum_{i}\left(u_{i} \otimes_{A} X_{i}\right), \sum_{j}\left(v_{j} \otimes_{A} Y_{j}\right) \in A^{\prime} \otimes_{A} L
\end{gather*}
$$

It is easy to see that $\bar{T}_{\nabla} \in \operatorname{Hom}_{A^{\prime}}^{2}\left(A^{\prime} \otimes_{A} L, A^{\prime} \otimes_{A} L\right)$ and the definition does not depend on the tensor decompositions.

The following result is an extension of [3, Proposition 1.14] in the case of preinfinitesimal modules. It is a characterization of the morphism of preinfinitesimal module without using explicitly the tensor decompositions. Actually it is good only for preinfinitesimal modules that admit linear connections.

Proposition 2.3 Let ∇ be a linear L-connection on the preinfinitesimal module $(A, L),\left(A^{\prime}, L^{\prime}\right)$ be a preinfinitesimal module and $\left(A^{\prime}, L^{\prime}\right) \xrightarrow{(\varphi, \psi)}(A, L)$ be a morphism of module with arrow. Denote:

$$
\widetilde{\psi}\left(X^{\prime}, Y^{\prime}\right)=\psi\left(\left[X^{\prime}, Y^{\prime}\right]_{L^{\prime}}\right)-\bar{\nabla}_{X^{\prime}}\left(\psi\left(Y^{\prime}\right)\right)+\bar{\nabla}_{Y^{\prime}}\left(\psi\left(X^{\prime}\right)\right)+\bar{T}_{\nabla}\left(\psi\left(X^{\prime}\right), \psi\left(Y^{\prime}\right)\right)
$$

$(\forall) X^{\prime}, Y^{\prime} \in L^{\prime}$, where $\bar{\nabla}$ is the L^{\prime}-connection (φ, ψ)-associated with ∇, given by Proposition 2.2. Then we have:

1. $\widetilde{\psi} \in a_{2}\left(L, A^{\prime} \otimes_{A} L\right)$;
2. The following assertions are equivalent:
(a) ψ is a morphism of preinfinitesimal module;
(b) $\widetilde{\psi}=0$.

Proof. It suffices to prove that $\widetilde{\psi}=K$, where K is given by

$$
\begin{gathered}
K: L^{\prime} \times L^{\prime} \rightarrow A^{\prime} \otimes_{A} L \\
K\left(X^{\prime}, Y^{\prime}\right)=\psi\left(\left[X^{\prime}, Y^{\prime}\right]_{L^{\prime}}\right)-\chi\left(X^{\prime}, Y^{\prime}\right),(\forall) X^{\prime}, Y^{\prime} \in L^{\prime} .
\end{gathered}
$$

We make the proof only for left connections. The cases of right and bilateral connections are analogous. Indeed, we have:

$$
\begin{gathered}
\widetilde{\psi}\left(X^{\prime}, Y^{\prime}\right)=\psi\left(\left[X^{\prime}, Y^{\prime}\right]_{L^{\prime}}\right)-\sum_{i, j} a_{i}^{\prime} b_{j}^{\prime} \otimes_{A} \nabla_{X_{i}} Y_{j}-\sum_{j}\left[X^{\prime}, b_{j}^{\prime}\right]_{L^{\prime}} \otimes_{A} Y_{j}+ \\
\sum_{i, j} a_{i}^{\prime} b_{j}^{\prime} \otimes_{A} \nabla_{Y_{j}} X_{i}+\sum_{i}\left[Y^{\prime}, a_{i}^{\prime}\right]_{L^{\prime}} \otimes_{A} X_{i}+ \\
\sum_{i, j} a_{i}^{\prime} b_{j}^{\prime} \otimes_{A}\left(\nabla_{X_{i}} Y_{j}-\nabla_{Y_{j}} X_{i}-L\left(X_{i}, Y_{j}\right)\right)=K\left(X^{\prime}, Y^{\prime}\right) . \square
\end{gathered}
$$

As in [3], using a linear L-connection $\bar{\nabla}$, the formula which gives the bracket of the pull-back of modules with:differentials, defined in [8], can be easily written as:

$$
\begin{gathered}
{\left[X^{\prime} \oplus C, Y^{\prime} \oplus D\right]_{L^{*}}=\left[X^{\prime}, Y^{\prime}\right]_{L^{\prime}} \oplus\left(\bar{\nabla}_{X^{\prime}} D-\bar{\nabla}_{Y^{\prime}} C-\bar{T}_{\nabla}(C, D)\right)} \\
(\forall) X^{\prime} \oplus C, Y^{\prime} \oplus D \in L^{*}
\end{gathered}
$$

References

[1] C. de Barros Opérateurs infinitésimaux sur l'algèbre des formes différentielles extérieures, C.R. Acad. Sci. Paris, t.261, 1965, 4594-4597.
[2] W.Greub, S.Halperin, R.Vanstone Connections, Curvature and Cohomology, Vol.I, Academic press, New York, 1972.
[3] P.J. Higgins, K. Mackenzie Algebraic construction in the category of Lie algebroids, J. Algebra, 129, 1990, 194-230.
[4] K.Mackenzie Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Series, Vol. 124, Cambridge Univ. Press, Camb Acad Press ,1967.
[5] K.Mackenzie Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc. 27, 1995, 97-147.
[6] P. Popescu On the geometry of relative tangent spaces, Rev. roum. math. pures appl. 37, 1992, 8, 727-733.
[7] P. Popescu Almost Lie structures, derivations and R-curvature on relative tangent spaces, Rev. roum. math. pures appl. 37, 1992, 9, 779-789.
[8] P. Popescu Categories of modules with differentials, Journal of Algebra, 185, 1996, 50-73.
[9] P.Popescu A contravariant approach on (non)commutative geometry, Proc. Workshop on Global Analysis, Differential Geometry and Lie Algebras, December, 13-16, 1995, Thessaloniki, Balkan Press Publ., 1997, 71-74.
[10] J. Pradines Théorie de Lie pour les groupoides differentiables. Calcul différentiel dans la catégorie des groupoides infinitésimaux, C.R.Acad.Sci.Paris Sér. A Math. 264, 1967, 245-248.

Authors' address:
Marcela Popescu and Paul Popescu
Department of Mathematics,
University of Craiova,
11, Al.I.Cuza St., Craiova, 1100, Romania.
e-mail paul@udjmath2.sfos.ro

[^0]: Editor Gr.Tsagas Proceedings of the Workshop on Global Analysis, Differential Geometry and Lie Algebras, 1996, 70-77
 © 1999 Balkan Society of Geometers, Geometry Balkan Press

