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Abstract

The extended reduction of a vector bundle to a vector subbundle is defined
by the authors in a previous paper. Using a splitting, defined in [4] and called
a Finsler splitting,

a certain reduction of a vector bundle is also considered. The aim of this
paper is to investigate the possibility that the result remains valid in the case
when a restricted prolongation of a vector bundle, defined in this paper, is
considered instead. As it is shown in the paper, the answer is negative in the
general case.
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1 Introduction

The reductions of vector bundles and the F-splitting are studied by the authors in
[4], [5] and [6], where the extension of order r of a linear group is defined and the
following result is proved:

Theorem 1.1 [6, Theorem 2.2] Let ξ′ be a vector subbundle of the vector bundle ξ
and r ≥ 1. Then:

1)Every Finsler splitting of the inclusion i : ξ′ → ξ defines a canonical reduction
of the structural group Gr

0m,n of OG0ξ
′(ξ)r to Hr

0m,n, the reduced principal bundle
being OH0ξ

′(ξ)r.
2)Every reduction of the structural group Gr

0m,n of OG0ξ
′(ξ)r to Hr

0m,n is such
that Hr

0m,n is the structural group of OH0ξ
′(ξ)r and it is induced by a Finsler splitting,

as above.

The aim of this paper is to investigate the possibility that the result remains valid
in the case when the reduction mentioned in the above theorem is replaced by a
restricted prolongation, defined in the third section of the paper. We show that in
the general case the answer is negative.
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2 Reductions of vector bundles

This section contains the principal notions concerning reductions of vector bundles
and the algebraic form of the reduction, as in [6].

Let ξ = (E, π,M) be a vector bundle with the fibre F ∼= IRn, G ⊂ GLn(IR)
be a Lie subgroup and ξ′ = (E′, π′, M) be a vector subbundle with the fibre type
F ′ ∼= IRk ⊂ IRn. Let us denote by L(ξ) = (L(E), p,M) the principal bundle of the
frames of the vector bundle ξ and by Lξ′(ξ) = π′∗L(ξ) = (π′∗L(E) = LE′(E), p1, E

′)
the induced principal bundle, which is also the principal bundle of frames of the vector
bundle π′∗ξ

not.= ξ′(ξ) = (π′∗(E) = E′(E), π1, E
′). Notice that a Finsler splitting of

the inclusion i : ξ′ → ξ is a left splitting of the inclusion morphism (π′)∗ξ′
(π′)∗i→ (π′)∗ξ

(see [5].)
Let us suppose that the structural group GLn(IR) of the principal bundle L(ξ)

is reducible to the subgroup G, and denote as L(ξ)G the reduced principal bundle.
There is a local trivial bundle ξG, associated with the principal bundle L(ξ)G, defined
by the left action of G on F .

Definition 2.1 [6] We say that the bundle ξG is the G-reduced bundle of ξ. If H is a
subgroup of G and there is a reduction of the structural group G of L(ξ)G to H, we
say in an analogous way that ξH is a H-reduced bundle of ξG.

Notice that a reduction of the structural group G of L(ξ)G to H is also a reduction
of the structural group GLn(IR) of L(ξ) to H.

Example 2.1 Let G0 ⊂ GLn(IR) be the subgroup of automorphisms which leave
invariant the vector subspace F ′ ∼= IRk of IRn. We have:

G0 =
{(

A C
0 B

)
;A ∈ GLk(IR), B ∈ GLn−k(IR), C ∈ Mk,n−k(IR)

}
. (1)

The principal bundle L(ξ)G0 always exists and it consists of all the frames of L(ξ)
which extend frames on ξ′; these frames are called frames on ξ adapted to ξ′.

For the same G0 as above, we can consider the principal bundle Lξ′(ξ)G0 , which
also consists of frames on Lξ′(ξ) which extend frames on ξ′(ξ′), called as frames on
ξ′(ξ), adapted to ξ′(ξ′).

Example 2.2 Let G0 be as above, F ′′ ∼= IRn−k a vector subspace of F , so that
F = F ′ ⊕ F ′′ and H0 ⊂ G0 the subgroup of the elements which leave invariant the
vector subspaces F ′ and F ′′. We have:

H0 =
{(

A 0
0 B

)
; A ∈ GLk(IR), B ∈ GLn−k(IR)

}
. (2)

The principal bundle L(ξ)H0 always exists and it is a reduction of L(ξ)G0 , which
corresponds to a reduction of the structural group G0 of L(ξ)G0 to the structural
group H0 of L(ξ)H0 . It consists of frames of L(ξ)G0 which are also adapted to another
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subbundle ξ′′ = (E′′, π′′, M) of ξ. It follows that in every point x ∈ M we have the
direct sum of the vector spaces Ex = E′

x ⊕ E′′
x . A such reduction is also called a

Whitney sum of the vector bundles ξ′ and ξ′′ and it is denoted by ξ′ ⊕ ξ′′. This
is equivalent with a left splitting S of the inclusion morphism i : ξ′ → ξ, when
ξ′′ = kerS.

In the case of the principal bundle Lξ′(ξ), a reduction of the group G0 of Lξ′(ξ)G0

to H0 is equivalent with a left splitting S of the inclusion i′ = π′∗i : π′∗ξ′
not.= ξ′(ξ′) →

π′∗ξ
not.= ξ′(ξ), called a Finsler splitting in [5]. In this case ξ′(ξ) has an H0-reduction

as Whitney sum ξ′(ξ) = ξ′(ξ′) ⊕ kerS.

It is well known that the reduction of the structural group G of a principal bundle
P to a subgroup H ⊂ G is equivalent with the existence of a global section in a fibre
bundle associated to P , which has the fibre G/H, with the natural action of G on
G/H [1, pg.57, Propzition 5.6].

Proposition 2.1 [6, Proposition 1.1]There is a canonical identification

G0/H0
∼= Mk =

{(
0 P
0 In−k

)
; P ∈ Mk,n−k(IR)

}
, (3)

the classes being at left, such that the left action ¯ of the group G0 on Mk is the
adjunction:(

E G
0 F

)
¯

(
0 P
0 In−k

)
=

(
E G
0 F

)
·
(

0 P
0 In−k

)
·
(

E G
0 F

)−1

=

=
(

0 (E · P + G) · F−1

0 In−k

)
. (4)

Since the vector subbundle ξ′ is given, the reduction of the group GLn(IR) to G0

implies that the G0-reductions of the vector bundles L(ξ) and Lξ′(ξ) are uniquely de-
fined. It follows that considering the bundles with the fibres GLn(IR)/G0, associated
with the principal bundles of frames L(ξ) and Lξ′(ξ), the sections in these bundles,
which correspond to the reductions of GLn(IR) to G0, are uniquely defined by ξ′.

In the case of the Example 2.2, the reductions of the structural group G0 to
H0 implies that the H0-reductions of the principal bundles L(ξ)G0 and Lξ′(ξ)G0 are
equivalent with sections in the bundles F1 and F2 which are associated with these
principal bundles and have as fibres G0/H0.

3 The restricted prolongation of a subgroup of the
linear group

Definition 3.1 If G ⊂ GLn(IR) is a Lie subgroup then we denote by A(G) the real
subalgebra of the matrices of Mn(IR) generated by G.
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It is obvious that A(G) is also a Lie subalgebra of Mn(IR).

Example 3.1 1. In the case of G0 and H0 given by formulas (1) and (2), the
subalgebras A(G0) and A(H0) have the form:

A(G0) =
{(

A C
0 B

)
; A ∈ Mk(IR), B ∈ Mn−k(IR), C ∈ Mk,n−k(IR)

}
,

(5)

A(H0) =
{(

A 0
0 B

)
; A ∈ Mk(IR), B ∈ Mn−k(IR)

}
. (6)

2. In the case of orthogonal groups we have A(SO(n)) = A(O(n)) = Mn(IR) for
n ≥ 3. For n = 2 we have A(O(2)) = M2(IR) and

A(SO(2)) =
{(

a −b
b a

)
; a, b ∈ IR

}
.

3. In the case of the subgroup Sp(n; IR)∩O(2n) (according to [7, Example 10, Pg.
25] which is the real form of the unitary complex group U(n)):

Sp(n; IR) ∩ O(2n) =
{(

A −B
B A

)
; A,B ∈ Mn(IR), AtA + BtB = In

}
,

we have, for n ≥ 1:

A(Sp(n; IR) ∩ O(2n)) =
{(

A −B
B A

)
; A,B ∈ Mn(IR)

}
.

4. In the case of the real form of the complex general linear group GLn(C) ⊂
GL2n(IR)

GLn(C) =
{(

A −B
B A

)
∈ GL2n(IR); A,B ∈ Mn(IR)

}
,

we also have:

A(GLn(C)) =
{(

A −B
B A

)
;A, B ∈ Mn(IR)

}
.

Let G ⊂ GLn(IR) be a subgroup. Let us denote by G1
m,n the Lie subgroup of

GL(m + n, IR) which consists of the matrices which have the form:(
Ai

j 0
0 Ba

b

)
,
(
Ai

j

)
∈ GLm(IR), (Ba

b ) ∈ G.

We define now the restricted prolongation of order r ∈ IN∗ (or r-prolongation) of the
group G1

n,m, denoted by Ḡr
n,m, as being the set of the elements which have the form:

a = (Ai
j1 , A

i
j1j2 , . . . , A

i
j1j2···jr

; Ba
b , Ba

bj1 , . . . , B
a
bj1···jr−1

), (7)
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where the components are symmetric in the indices {jk} ⊂ {1, . . . ,m},
(
Ai

j

)
∈

GLm(IR), (Ba
b ) ∈ G and, in addition as the extended prolongation defined in [6],

the matrices B, considered fixing the j-indices, belong to the algebra A(G). In other
words, considering the components in as components of linear maps in canonical bases
a : (A,B) = ((A1(·), A2(·, ·), . . . , Ar(·, . . . , ·), B0(·), B1(·, ·), . . . , Br−1(·, ·, . . . , ·))) and
fixing v1, . . . , vp ∈ IRm, then the map u → Bp(u, v1, . . . , vp) defines an endomorphism
in A(G).

The composition law for elements which have the form (7) is like a composition
of linear maps. In order to make it explicitly, let us consider

a : (A,B) = (A1(·), A2(·, ·), . . . , Ar(·, . . . , ·);B0(·), , B1(·, ·), . . . , Br−1(·, ·, . . . , ·))

B0(·), , B1(·, ·), . . . , Br−1(·, ·, . . . , ·))

and b : (C,D). Then b · a : (A′, B′), where:

A′
1(u) = C1A1(u)

A′
2(u1, u2) = C1A2(u1, u2) + C2(A1(u1), A1(u2))

A′
3(u1, u2, u3) = C1A3(u1, u2, u3) + C2(A2(u1, u2), A1(u3))+

+C2(A1(u1), A2(u2, u3) + C2(A2(u1, u3), A1(u2)) + C3(A1(u1), A1(u2), A1(u3))
· · · · · · · · ·
B′

0(u) = D0B0(u)
B′

1(v, u1) = D0B1(v, u1) + D1(B0(v), A1(u1))
B′

2(v, u1, u2) = D0B2(v, u1, u2) + D1(B1(v, u1), A1(u2))+
+D1(B0(v), A2(u1, u2)) + D1(B1(v, u2), A1(u1)) + D2(B0(v), A1(u1), A1(u2))
· · · · · · · · ·

(8)
Using the coordinates, the expressions are the same as in [2, pag. 70].
It is easy to see that Ḡr

n,m is a Lie group. In fact, Ḡr
n,m is a Lie subgroup of Gr

n,m,
and the structural functions of the bundle OGξr, given by the formula:

ϕUU ′(u) = (
∂xi′

∂xi
(x), . . . ,

∂rxi′

∂xi1 · · · ∂xir
(x), ga′

a (x), . . . ,
∂r−1ga′

a

∂xj1 · · · ∂xjr−1
(x)) (9)

belong to the group Ḡr
n,m, thus it is defined a reduction OḠξr which correspond to a

reduction of the structural group Gr
n,m to the subgroup Ḡr

n,m.
Considering a fibered manifold µ = (T, s,M), then a principal bundle OḠµ(ξ)r

over the base T is induced as well. In the sequel we consider ξ′ = (E′, π1,M) a
vector subbundle of ξ and consequently OḠξ′(ξ)r = i∗OḠξr, where i : E′ → E is the
inclusion.

In the sequel we study the reductions of the structural group Ḡr
0m,n of the principal

bundle OḠ0ξ
′(ξ)r, with G0 given by the formula (1), to the subgroup H̄r

0m,n, where
H0 is given by the formula (2). These reductions can be related to geometrical Ḡ0-
objects, as done in [6] for extended reductions.

In the case of extended prolongations it can be proved that there is a canonical
isomorphism Gr

0m,n/Hr
0m,n

∼= G0/H0. According to [1, pg.57, Propzition 5.6] it is
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an essential fact that the conclusion of theorem 1.1 be valid. We shall see that in
the case of r-prolongations there is not a equivalence of Ḡr

0m,n/H̄r
0m,n and G0/H0.

It implies that in the general case there are reductions of the group Ḡr
0m,n of the

principal bundle OḠ0ξ
′(ξ)r to the subgroup H̄r

0m,n which do not come from a Finsler
splitting. We study in detail only the case r = 2. The general case is analogous, but
the calculus is more complicated.

Now we state the main theorem of this paper.

Theorem 3.1 There is a one to one map between Ḡ2
0m,n/H̄2

0m,n and the subgroup of
Ḡ2

01m,n ⊂ Ḡ2
0m,n which consists of elements which have the form:(

Im, 0,

(
Ik Bα

u

0 In−k

)
,

(
0 Bα

ui

0 0

))
.

Proof. If a, g ∈ Ḡ2
0m,n have the form:

a =
(

Āi
j , Ā

i
jk,

(
B̄α

β B̄α
u

0 B̄v
u

)
,

(
B̄α

βi B̄α
ui

0 B̄v
ui

))
,

g =
(

Ai
j , A

i
jk,

(
Bα

β Bα
u

0 Bv
u

)
,

(
Bα

βi Bα
ui

0 Bv
ui

))
, (10)

then the product ag has the form:

ag =

(
A

i

j , A
i

jk,

(
B

α

β B
α

u

0 B
v

u

)
,

(
B

α

βi B
α

ui

0 B
v

ui

))
, (11)

where
A

j

i = Āk
i Aj

k, A
i

jk = Āi
lA

l
jk + Āi

pqA
p
jA

q
k, (12)

B
α

β = B̄α
γ Bγ

β , (13)

B
α

u = B̄α
γ Bγ

u + B̄α
wBw

u , (14)

B
v

u = B̄v
wBw

u , (15)

B
α

βi = B̄α
γ Bγ

βi + B̄α
γkBγ

βAk
i , (16)

B
α

ui = B̄α
γ Bγ

ui + B̄α
v Bv

ui + B̄α
γkBγ

uAk
i + B̄α

vkBv
uAk

i , (17)

B
v

ui = B̄v
wBw

ui + B̄v
wkBw

u Ak
i . (18)

It is easy to see that Ḡ2
01m,n is a closed Lie subgroup of Ḡ2

0m,n.
If a ∈ G0 and g ∈ H0, then Bα

u = 0, Bα
ui = 0 and ag has the form (11), where

the components are given by the formulas (12)-(18). The initial conditions have an
influence only on relations (14) and (17), which become:

B
α

u = B̄α
wBw

u , B
α

ui = B̄α
v Bv

ui + B̄α
vkBv

uAk
i . (19)
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It can be shown that the matrix (B̄α
u ) · (B̄v

u)−1 = (B̄α
w

˜̄Bv

u) does not depend on the
left class of g in Ḡ2

0m,n/H̄2
0m,n. We are going to find a matrix which consists of linear

forms on IRm (the components are obtained fixing j), namely ( B
α

ui)α,u, which does
not depend on the class of g. It can be obtained as follows:

Let us fix g ∈ Ḡ2
0m,n, which has the form (10). We are looking for a ∈ H̄2

0m,n such

that ag has the components
(
B

a

bi

)
in a simplest form. If we impose the conditions:

A
k

i = δk
i , B

α

β = δα
β , B

u

v = δu
v , B

α

βi = 0, B
v

ui = 0,

we obtain the following expressions for the components of a:

Ak
i = ˜̄Ak

i , Bα
β = ˜̄Bα

γ , Bu
v = ˜̄Bu

v , Bγ
βi = − ˜̄Bα

γ B̄γ
δkBδ

βAk
i , Bv

ui = − ˜̄Bv

t B̄t
wkBw

u Ak
i ,

where
(
Āk

i

)−1 =
(˜̄Ak

i

)
,
(
B̄v

u

)−1 =
(˜̄Bv

u

)
and

(
B̄α

β

)−1

=
(˜̄Bα

β

)
. It implies that the

component B
α

ui of ag, given by the second formula in relations (19)), has the form:

B
α

ui =
(
−B̄α

w
˜̄Bw

t B̄t
vk + B̄α

vk

) ˜̄Bv

u
˜̄Ak

i .

A straightforward computation leads to the fact that B
α

ui is the same for every
element in the left class g · H̄2

0m,n ∈ Ḡ2
0m,n/H̄2

0m,n. It follows that the element(
Im, 0,

(
Ik B

α

u

0 In−k

)
,

(
0 B

α

ui

0 0

))
∈ Ḡ2

01m,n

is in the same class with g and it can be uniquely associated with the class g · H̄2
0m,n.

Conversely, giving an element in Ḡ2
01m,n, it can be associated with its class in

Ḡ2
0m,n/H̄2

01m,n. These two associations are inverse each to other, thus they define a
bijection.2
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