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Abstract

In the present paper we construct the new modified Lie admissible statistics
for open quantum systems, by using the Lie-admissible von Neumann equa-
tion and non-canonical commutation relation. For the special case of the Lie-
admissible complex time model we obtain a new non- canonical quantum statis-
tics. In the same context we consider also the problem of quantum measurement
and the ”loss of coherence”. Finally it has been studied the variation of entropy
(i.e its increase or decrease) within such a nonunitary time evolution of the
density operator.

1 Introduction

Before three years ago Jannussis and Skaltsas ([1]) have introduced the Lie-admissible
Liouville-von Neumann equation for the density operator of open quantum systems,
according to Santilli’s Lie-admissible theory ([2]). This equation has a general form.

All the equations of Liouville type which are known to the authors, linear or non
linear, are particular cases of it. It has been proved also that the models which exist
and dealing with the problem of the quantum measurement are partial cases of the
above mentioned Lie- admissible model and have Lie-admissible character.

The time evolution of the density operator is in general nonunitary. In fact, this is
easily implied from section 5 of ref. [1], where the simple case of the lifting operator
T = 1−iλ , λ real parameter leads to the so-called Lie-admissible complex time model
([3]).

From the results of ref. [1], it is evident that the quantum measurement problem
is ultimately an irreversible process, due to the interaction between quantum system
and apparatus ([4]), and therefore it possesses a Lie-admissible structure in its most
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general possible formulation. According to ref. [1, 2] we can define the Lie-admissible
von Neumann equation for the density operator ρ, i.e.:

ih̄
dρ

dt
= [H, ρ] = HTρ − ρT+H, (1)

with the commutation relation

qTp − pT+q = ih̄Î, (2)

where H(q, p) is the usual Hamilton operator of the system and T 6= T+ describes in
general nonconservative interactions and I is the new unity.

At this point we can exploit the theory of Santilli’s Hadronic Mechanics ([5]) and
define two units, i.e.:

Î = I> , Î =< I. (3)

In the framework of the general Lie-admissible theory the commutation relation (2)
is broken in two relations of the form:

qTp − pT+q = ih̄

{
I>

<I
, (4)

where
I> = T−1 , <I =

(
T+

)−1
. (5)

Due to the Hermitian character of the density operator ρ(q, p, t) and the non
unitary character of the time evolution, it becomes evident a kind of contradiction
between the eq. (1) and (2), in as much as the operators q, p are not anymore
Hermitian, their time evolutions, according to the genotopic Heisenberg equations of
motion ([5]), i.e.:

ih̄
dq

dt
= qTH − HT+q, (6)

ih̄
dp

dt
= pTH − HT+p (7)

are still Hermitian.
We can avoid this contradiction, only when the commutation relations (4) take

the form:

qTp − pT+q = ih̄
1√

TT+
, (8)

fact which is implied from the physical reality which characterizes the science of
Physics. For the special case T = T+ and HT 6= TH which corresponds to the
Lie-isotopic formulation, we have:

qTp − pTq =
ih̄

T
, (9)
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which is correct, as it becomes clear from ref. [5]. Therefore the Lie-admissible
statistics leads to a new modified Lie-admissible statistics, which is described from
the equations:

ih̄
dρ

dt
= HTρ − ρT+H, (10)

qTp − pT+q = i
h̄√

TT+
. (11)

Based on the above equations the organization of the paper is arranged as follows.
In sect. 2 we consider the new deformed Heisenberg quantum mechanics for T = 1+iλ.
In sect. 3 we construct the deformed Hamilton operator. In sect. 4 we study the
quantum measurement problem as an irreversible phenomenon and also the variation
of entropy. Sect. 5 is devoted to concluding remarks.

2 New Lie-deformed Heisenberg Quantum Mechan-
ics

According to the Lie-admissible commutation relation (11), we initiate the operator
Tjk:

qjTjkpk − pkT+
jkqj = ih̄

δjk√
TjkT+

jk

, (12)

[qj , qk] = qjqk − qkqj = 0 , [pj , pk] = pjpk − pkpj = 0, (13)

where Tjk are fixed elements. For the special case

Tjk = 1 + iλjk , T+
jk = 1 − iλjk , λjk = λkδjk ,

λjk real, we obtain the new Heisenberg ring ([6]):

qj(1 + iλjkδjk)pk − pk(1 − iλjkδjk)qj =
ih̄δjk(

1 + λ2
jkδjk

) 1
2
, (14)

[qj , pk] = 0, j 6= k , [qj , qk] = [pj , pk] = 0. (15)

For λjk = 0 it is reduced to the usual Heisenberg ring of the canonical quantum
mechanics. The new operators qj and pk of the above ring take the following form in
q and p- representation, respectively:

qj → qj , pk =
h̄

2λk

√
1 + λ2

k

1
qk

1 − e
2iθkqk

∂

∂qk

 , (16)

pk → pk , qj =
h̄

2λj

√
1 + λ2

j

1
pj

1 − e
−2iθjpj

∂

∂jpj

 , (17)
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where
θk = arctanλk (18)

and the new operators qj , pk are Hermitian.
For simplicity we limit ourselves in one-dimension, e.g. to the new operators

q1 = q, p1 = p with the following commutation relation:

q(1 + iλ)p − (1 − iλ)q =
ih̄√

1 + λ2
(19)

and the corresponding representations are:

q → q, p =
h̄

2λ
√

1 + λ2

1
q

1 − e
2iθq

∂

∂q

 , (20)

p → p, q =
h̄

2λ
√

1 + λ2

1
p

1 − e
−2iθp

∂

∂p

 , (21)

where
θ = arctan λ. (22)

The commutation relation (19) can be written:

[q, p] + iλ{q, p} =
ih̄√

1 + λ2
, (23)

where {q, p} = qp + pq is the anticommutator. As it is well known ([7]), the com-
mutator [q, p] expresses an internal symmetry and the anticommutator {qp + pq} an
external one. In the way the appearance of the parameter can be explained as it
describes external interactions, e.g. interactions between particles or interactions of
the particle with the rest world.

Also the parameter λ is connected with the ”chronon” of Caldirola ([8]) which
generally describes the time interactions between two physical systems.

For
H =

ω

2
(qp + pq) =

h̄ω

2h̄
(qp + pq), (24)

the commutation relation (23) takes the form:

[q, p] =
ih̄√

1 + λ2
− 2ih̄

h̄ω
λH = ih̄

(
1√

1 + λ2
− 2λ

h̄ω
H

)
(25)

and satisfies the non-canonical commutation relation of Heisenberg type ([9]). Ac-
cording to ref. [6], the eigenfunctions of the operators q and p take the form:

ϕp(q) = AeQ

[
ipq

h̄
(1 − iλ)

√
1 + λ2

]
with eigenvalues p (26)
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and

ϕq(p) = BeQ∗

[
− ipq

h̄
(1 + iλ)

√
1 + λ2

]
with eigenvalues q, (27)

where A, B are arbitrary constants,

Q =
1 + iλ

1 − iλ
(28)

and eQ(z) is the Q-exponential function, i. e.:

eQ(z) =
∞∑

n=0

zn

[n]!
, with [n] =

Qn − 1
Q − 1

. (29)

The formulas (26) and (27) for p = h̄k take the form:

fk(q) = C0e 1+iλ
1−iλ

[
ikq(1 − iλ)

√
1 + λ2

]
, (30)

fq(k) = C0e 1−iλ
1+iλ

[
−ikq(1 + iλ)

√
1 + λ2

]
. (31)

The above expressions for λ = 0 are reduced exactly to the ordinary exponential
functions, i.e., eikq and e−ikq which are the eigenfunctions of the operators p and q
in canonical quantum mechanics. Also the eigenvalue equation for the free particle
Hamilton operator is:

p2

2m
fE(q) = E fE(q), (32)

where the operator p in the q-representation has the form (30). From the solution
(29) we obtain:

fE(q) = const. e1 + iλ

1 − iλ

[
i

√
2mE

h̄
q(1 − iλ)

√
1 + λ2

]
(33)

and for

E =
h̄2k2

2m
(34)

we have:
fk(q) = const. e 1+iλ

1−iλ

[
ikq(1 − iλ)

√
1 + λ2

]
. (35)

In the following we will study the equation (10) for the case of free particle with
T = 1 − iλ.

3 Deformed Hamiltonian

Let us begin from the case of free particle.
The equation (10) for the case of free particle takes the form:

ih̄
dp

dt
=

(
1 − iλ

2m

) h̄

2λ
√

1 + λ2

1
q

1 − e
2iθq

∂

∂q




2

ρ − (36)
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−ρ

(
1 + iλ

2m

) h̄

2λ
√

1 + λ2

1
q

1 − e
2iθq

∂

∂q




2

,

because the deformed Hamilton operator

H =
1

2m

 h̄

2λ
√

1 + λ2

1
q

1 − e
2iθq

∂

∂q




2

(37)

is time-independent, the solution of the above equation takes the form:

ρ(t) = exp

−it(1 − iλ)
h̄

 h̄

2λ
√

1 + λ2

1
q

1 − e
2iθq

∂

∂q




2 ρ(0)·

exp

 it(1 + iλ)
h̄

 h̄

2λ
√

1 + λ2

1
q

1 − e
2iθq

∂

∂q




2 .

(38)

From the above solution we conclude that the special case of free particle with
T = 1 − iλ leads to a non unitary Lie-admissible time evolution, with the complex
time t(1 − iλ) = t − iλt, where t is the usual time.

The solution (38) in the energy representation

Hfk(q) =
p2

2m
f(q) =

1
2m

 h̄

2λ
√

1 + λ2

1
q

1 − e
2iθq

∂

∂q




2

fk(q) (39)

=
h̄2k2

2m
fk(q)

reads:

ρk′k(t) = e

−λt

h̄

(
h̄2k

′2

2m
+

h̄2k2

2m

)
− it

h̄

(
h̄2k

′2

2m
− h̄2k2

2m

)
ρk′k(0), (40)

with
ρk′k(t) =< k|ρ(t)|k′ > (41)

and for k = k′ yields

ρkk(t) = e
−λt

m
hk2

ρkk(0) (42)

= e
−2λt

h̄
E(k)

ρkk(0) , with E(k) =
h̄2k2

2m
. (43)
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Also, as it has proved in ref. [1], for any Hamilton operator H(q, p) in the q or
p- representation according to (20) and (21), when the deformed Hamilton operator
which yield is Hermitian, then the Lie-admissible modified equation (10) in the q-
representation is written:

ih̄
dρ(t)
dt

= H(λ)(1 − iλ)ρ(t) − ρ(t)(1 + iλ)H(λ). (44)

If H(λ) is time-independent the solution of the above equation has the form:

ρ(t) = e
− it

h̄
(1 − iλ)H(λ)

ρ(0)e
it

h̄
(1 + iλ)H(λ)

. (45)

Furthermore we assume that we can determined the eigenvalues of the H(λ) operator,
i. e.:

H(λ)|n >= En(λ)| >, (46)

then, the solution (45) reads:

ρnl(t) = e
−λ

t

h̄
[En(λ) + El(λ)] − it

h̄
[El(λ) − En(λ)]

ρnl(0), (47)

with
ρnl(t) =< n|ρ(t)|l > (48)

and for n = l yields:

ρnn(t) = e
−2λtEn

h̄ ρnn(0). (49)

From formulas (47) and (48) we see that for t > 0 we have dissipative behavior of the
function ρnl(t) for λ > 0 and antidissipative exponential behavior of ρnl for λ < 0.

A remarkable interpretation of the parameter λ is given in ref. [10], in which the
equivalence between the Caldirola-Montaldi model ([8]) and the Lie-admissible com-
plex time model is proved for the nonrelativistic and relativistic case. The connection
between the parameter and Caldirola ”chronon”, which describes the interaction time
between physical systems, leads to the result that an external interaction exists be-
tween the particles and environment.

4 Irreversibility and the Problem of Quantum Mea-
surement

As it is well known in quantum mechanics, we have a fundamental distinction between
pure states and mixtures. The former are represented by unit vectors in a Hilbert
space and the latter by density matrices. In the standard formulation, the pure states
occupy a privileged position, that is, the super position principle holds for them, they
obey the Schrödinger time evolution, according to which pure states transform into
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pure states, and observables correspond to self-adjoint operators mapping again pure
states into pure states.

The fundamental distinction between pure states and mixtures is lost during the
measurement process, as is also well known, according to the von Newmann classical
analysis.

These latter evolution converts pure states into mixtures and is irreversible. It
is this dual state evolution and especially the transformation of the pure states into
mixtures during measurements, which creates many important problems ([11]). We
could avoid this dualism of state evolution if we formulate a physical principle that
implies the loss of distinguishability between the pure and mixtures. Various attempts
in this direction have been made and an extensive bibliography exists in the field.

One interesting attempt comes from the so called Brussels school theory (BST)
proposed by Prigogine and his co-workers ([12]). In a recent paper by Jannussis
et.all ([13]) we have proved that the (BST) theory is a partial case of Lie-admissible
treatment. In the context of the Lie-admissible formulation, the time evolution itself
implies the above mentioned loss of distinguishability.

More concretely, irreversibility arises naturally in the Heisenberg - Santilli nonuni-
tary time evolution, which transforms pure states to mixtures, implying in this way
the loss of the distinguishability between them. Also in the ref. [1] we examined vari-
ous models related to the quantum measurement problem and we proved that accept
a common algebraic basis, that of Lie-admissible algebras.

In the following we give illustrations of the above results.
According to ref. [10] and from the solutions (45) and (47), for ρ2(0) = ρ(0) (that

is, if we have a pure states for t = 0), then ρ2(t) 6= ρ(t) (that is, this is converted by
the proposed evolution to mixture). From the solution (47 ) it seems that for t > 0
we have loss of coherence.

It is now interesting to study the time evolution of the entropy S(t) with the
density operator ρ(t, λ), i.e.:

ρ(t, λ) = e
− it

h̄
(1 − iλ)H(λ)

ρ(0)e
it

h̄
(1 + iλ)H(λ)

, (50)

where

H(λ) =
h̄2

8mλ2(1 + λ2)

1
q

1 − e
2iθq

∂

∂q




2

+ V (q) (51)

is the new Hermitian deformed Hamilton operator in the q-representation eq. (20).
The operator in ansantz of (18) takes the form:

H(λ) =
h̄2θ2

2mλ2(1 + λ2)

[
∂2

∂q2
+

2iθ

2

(
∂

∂q

(
∂

∂q
p + p

∂

∂q

)
∂

∂q

)
+ O(2iθ)2

]
+V (q) (52)

and also the operator ρ(t, λ) in ansantz of λ is written:

ρ(t, λ) = ρc(t) +
λ

1!

(
∂ρ(t, λ)

∂λ

)
λ=0

+ O(λ2), (53)
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where

ρc(t) = exp
{
− itH(0)

h̄
ρ

}
ρ(0) exp

{
itH(0)

h̄
ρ

}
(54)

is the usual density operator,(
∂H(λ)

∂λ

)
λ=0

= − ih̄2

2m

(
∂

∂q

(
∂

∂q
q + q

∂

∂q

)
∂

∂q

)
(55)

and (
∂ρ

∂λ
(t, λ)

)
λ=0

= − t

h̄
[{H(0), ρc(t)} +

+i

 1∫
0

e−
it
h̄ ξH(0)

(
∂H(λ)

∂λ

)
λ=0

e
it
h̄ ξH(0) dξ, ρc(t)

 . (56)

In the following we use the standard formula for the entropy:

S(t) = −ktr[ρ(t, λ) ln ρ(t, λ)] = −k

∫
ρ(t, λ) ln ρ(t, λ) dΩ, (57)

where dΩ is a volume element in phase space and k is the Boltzmann constant. The
above entropy for small values of λ takes the form:

S(t) = −k

∫
(ρc(t) − λR(t)) (ln ρc(t) − λR(t)) dΩ, (58)

where

R(t) = −
(

∂ρ(t, λ)
∂λ

)
λ=0

. (59)

By using the Taylor expansion for the derivative of the operator

∂

∂λ
ln [ρc(t) − λR(t)] ,

we obtain:

ln [ρc(t) − λR(t)] = ln ρc(t) − λ

[
1

ρc(t)
R(t) +

1
2

1
ρ2

c(t)
[ρc(t), R(t)]+

+
1
3

1
ρ3

c(t)
[ρc(t), [ρc(t), R(t)]] + · · ·

]
+ O(λ2) (60)

and the formula (58) yields:

S(t) = −k

∫
(ρc(t) − λR(t)) ln (ρc(t) − λM(t)) dΩ, (61)

where

M(t) =
1

ρc(t)
R(t) +

1
2

1
ρ2

c(t)
[ρc(t), R(t)] +

1
3

1
ρ3

c(t)
[ρc(t), [ρc(t), R(t)]] + · · · . (62)
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From (61) we obtain:

S(t) = S0 + kλtr [R(t) ln ρc(t) + ρc(t)M(t)] + O(λ2), (63)

with
S0 = −ktrρc(t) ln ρc(t). (64)

From the above result we see that the entropy is dependent on time and the parameter
λ. So, for appropriate values of the above variable, the entropy can either increase
or decrease. In particular, we must to emphasize the model proposed by Zeh, ([14])
according to which the entropy can increase or decrease in the general description of
the nonunitary formulation.

5 Conclusion

In the present paper we have constructed a new modified Lie-admissible statistics,
which is described from the eq. (10) and the corresponding commutation relation
(11). The Lie-admissible complex time model permit us for first time, with the help
of the representations (20) or (21), to construct the deformed operator H(λ) (51). This
operator remains Hermitian as occurs exactly in the transformation of the classical
mechanics to quantum mechanics. The importance also of the results that arise from
the study of the above models, contribute to a better description of the quantum
measurement problem, and from eq. (21) for t > 0, λ > 0, we have loss of coherence.
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