ON THE LAGRANGE SPACES WITH (α, β) -METRICS

C. Cretu

Abstract

One considers a Lagrange space with the fundamental function (1.1) and one determines the fundamental tensor field, canonical nonlinear connection and canonical metrical linear N-connection.

1. Introduction

Let M be a real, n-dimensional C^{∞} manifold and $\tau: TM \to M$ its tangent bundle. We shall consider, together with a Finsler space $F^n = (M, F(x, y))$, a covector field $A_i(x)$ defined on M, or on open set of M, and "the electromagnetic" 1-form $\beta(x,y) =$ $A_i(x)y^i$. So, we can define the real function on TM:

(1.1)
$$L(x,y) = \alpha^2(x,y) + a\beta(x,y) + b\beta^2(x,y), \quad \forall (x,y) \in TM,$$

where $\alpha(x, y) = F(x, y)$.

This function is C^{∞} -differentiable on $\widetilde{TM} = TM - \{O\}$ and continuous on the null section $O: M \to TM$. Obviously L(x,y) is not homogeneous with respect to (y^i) . We prove that L(x,y) is a regular Lagrangian and that $L^n = (M, L(x,y))$ is a Lagrange space [2]. We study the Lagrange space L^n with the fundamental function (1.1) and determine the fundamental tensor field, canonical nonlinear connection and canonical metrical linear N-connection.

The Lagrange space $L^n = (M, L)$ 2.

According to (1.1) the fundamental tensor field of the Lagrange space L^n , $g_{ij} =$ $\frac{1}{2} \frac{\partial^2 L}{\partial y^i \partial y^j}$, is given by:

Editor Gr.Tsagas Proceedings of the Workshop on Global Analysis, Differential Geometry and Lie Algebras, 1996, 23-26

^{©1999} Balkan Society of Geometers, Geometry Balkan Press

Proposition 2.1 The fundamental tensor field of the Lagrange space $L^n = (M, L)$ is:

(2.1) $g_{ij}(x,y) = \gamma_{ij}(x,y) + bA_i(x)A_j(x),$

where $\gamma_{ij} = \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j}$ is the fundamental tensor field of the Finsler space F^n .

In order to deduce that g_{ij} , from (2.1), is nonsingular we distinguish two cases: b > 0 and b < 0. In this respect we reproduce the following Lemmas from the paper [2].

Lemma 2.2 Let $||A_{ij}||$, (i, j = 1, ..., n) a real nonsingular matrix, having $||A_{ij}||^{-1} = ||A^{ij}||$. Then the matrix $||B_{ij}||$ with the elements $B_{ij} = A_{ij} + c_i c_j$, such that $1 + c^2 \neq 0$, $c^2 = A^{ij}c_i c_j$, is nonsingular. Its determinant is $det||B_{ij}|| = (1 + c^2)det||A_{ij}||$ and $||B_{ij}||^{-1}$ has the elements $B^{ij} = A^{ij} - \frac{1}{1 + c^2}c^i c^j$, $(c^i = A^{ij}c_j)$.

Lemma 2.3 If $||A_{ij}||, (i, j = 1, ..., n)$ is a real nonsingular matrix, having A^{ij} as elements of its inverse and d_i , (i = 1, ..., n) are real numbers for which $1 - d^2 \neq 0$, $d^2 = A^{ij}d_id_j$, then the matrix with the elements $B_{ij} = A_{ij} - d_id_j$ is nonsingular. It has the determinant $det ||B_{ij}|| = (1 - d^2) det ||A_{ij}||$ and its inverse has the elements $B^{ij} = A^{ij} + \frac{1}{1 - d^2} d^i d^j, d^i = A^{ij} d_j.$

Applying these Lemmas we obtain:

Theorem 2.1 1^{0} The d-tensor field q_{ij} has the following properties:

If b > 0, then $det ||g_{ij}|| = (1 + c^2) det ||\gamma_{ij}||$, where $c^2 = b\gamma^{ij}(x, y)A_i(x)A_j(x)$. (2.2)If b < 0, then $det ||g_{ij}|| = (1 - d^2) det ||\gamma_{ij}||$, where $d^2 = -b\gamma^{ij}(x, y)A_i(x)A_j(x)$.

 2^0 The contravariant tensor of (g_{ij}) is as follows:

If
$$b > 0$$
, then $g^{ij}(x,y) = \gamma^{ij}(x,y) - \frac{1}{1+c^2}A^i(x,y)A^j(x,y)$,

where
$$A^{i}(x, y) = \sqrt{b\gamma^{ij}(x, y)}A_{j}(x)$$
.

(2.3) where
$$A^{i}(x,y) = \sqrt{6\gamma^{ij}(x,y)}A_{j}(x)$$
.
If $b < 0$, then $g^{ij}(x,y) = \gamma^{ij}(x,y) + \frac{1}{1-d^{2}}A^{i}(x,y)A^{j}(x,y)$,
where $A^{i}(x,y) = \sqrt{-b\gamma^{ij}(x,y)}A_{j}(x)$.

Now, we can state:

Theorem 2.2 The pair $L^n = (M, L(x, y))$, where L(x, y) is given by (1.1), is a Lagrange space.

Remark. The classical case is obtained when $\gamma_{ij}(x, y) = \gamma_{ij}(x)$, (Lorentz metric). The space L^n is called the Lagrange space of generalized electrodynamics and F^n the associated Finsler space to L^n .

3. Variational problem

Let $c: [0,1] \to M$ be a smooth curve in M expressed in a local chart (U,φ) on the base manifold M by $x^i = x^i(t), t \in [0, 1], Im \ c \subset U$. The length of c in the Lagrange space L^n is

(3.1)
$$I(c) = \int_0^1 L(x, \dot{x}) dt$$

The variational problem concerning I(c), leads to the Euler-Lagrange equation:

(3.2)
$$\begin{cases} \frac{d}{dt} \{ \frac{\partial L}{\partial y^i} \} - \frac{\partial L}{\partial x^i} = 0\\ y^i = \frac{dx^i}{dt}. \end{cases}$$

We denote the electromagnetic tensor field, determined by the covector field $A_i(x)$, by

(3.3)
$$F_{ij}(x) = \frac{\partial A_j}{\partial x^i} - \frac{\partial A_i}{\partial x^j}$$

and consider its mixed form

(3.4)
$$F_j^i(x,y) = \gamma^{ik}(x,y)F_{kj}(x).$$

After usual calculation we get:

Theorem 3.1 The Euler-Lagrange equations in variational problem concerning the functional (3.1) are given by

(3.5)
$$\begin{cases} \frac{d^2x^i}{dt^2} + 2(G^i(x,y) + H^i(x,y)) = 0, \\ y^i = \frac{dx^i}{dt}, \end{cases}$$

where $G^{i}(x,y) = \frac{1}{2}\gamma_{rs}^{i}y^{r}y^{s}$, $H^{i}(x,y) = \frac{1}{2}(\frac{a+2b\beta}{2}F_{h}^{i}y^{h} + A^{i}\overline{B})$, if b > 0, $\overline{B} = \frac{\sqrt{b}}{2}\tilde{F} - \frac{1}{\sqrt{b}(1+c^{2})}A_{k}\gamma_{rs}^{k}\frac{dx^{r}}{dt}\frac{dx^{s}}{dt} - \frac{a+2b\beta}{2(1+c^{2})}A^{i}F_{ih}\frac{dx^{h}}{dt} - \frac{b}{2(1+c^{2})}\tilde{F}A$, $\tilde{F} = (\frac{\partial A_{r}}{\partial x^{s}} + \frac{\partial A_{s}}{\partial x^{r}})\frac{dx^{s}}{dt}\frac{dx^{r}}{dt}$, $A = A^{i}A_{i}$ and $H^{i}(x,y) = \frac{1}{2}(\frac{a+2b\beta}{2}F_{h}^{i}y^{h} + A^{i}\underline{B})$, if b < 0, $d^{2} \neq 1$, $\underline{B} = \frac{\sqrt{-b}}{2}\tilde{F} + \frac{1}{\sqrt{-b}(1-d^{2})}A_{k}\gamma_{rs}^{k}\frac{dx^{r}}{dt}\frac{dx^{s}}{dt} + \frac{a+2b\beta}{2(1-d^{2})}A^{i}F_{ih}\frac{dx^{h}}{dt} + \frac{b}{2(1-d^{2})}\tilde{F}A$. The equations (3.5) determine a spray defined only by the Lagrangian f from

The equations (3.5) determine a spray defined only by the Lagrangian \mathcal{L} from (1.1), so we can develop the geometry of the Lagrange space $L^n = (M, L)$ using this canonical spray only. We have then:

Theorem 3.2 The canonical nonlinear connection of the Lagrange space L^n is given by:

$$(3.6) \begin{cases} N_{j}^{i} = \stackrel{o}{N_{j}}^{i} - \overline{A}_{j}^{i}, & if \ b > 0, \\ & (1) \\ N_{j}^{i} = \stackrel{o}{N_{j}}^{i} - \underline{A}_{j}^{i}, & if \ b < 0, \\ & (1) \end{cases}$$

where
$$\overline{A}_{j}^{i} = \frac{1}{2} \frac{\partial}{\partial y^{j}} \{ \frac{a+2b\beta}{2} F_{h}^{i} y^{h} + A^{i} \overline{B} \}, \underbrace{A_{j}^{i}}_{(1)} = \frac{1}{2} \frac{\partial}{\partial y^{j}} \{ \frac{a+2b\beta}{2} F_{h}^{i} y^{h} + A^{i} \underline{B} \}$$

We can prove now:

Theorem 3.3 The linear N-connection on the Lagrange space L^n is:

$$(3.7) \begin{cases} N_{j}^{i} = \stackrel{o^{i}}{N_{j}} - \overline{A}_{j}^{i}, \ L_{jk}^{i} = \stackrel{o^{i}}{F_{jk}} + \stackrel{o^{i}}{C_{jm}} \overline{A}_{k}^{m} + \overline{A}_{jk}^{i}, \ C_{jk}^{i} = \stackrel{o^{i}}{C_{jk}} + \overline{C}_{jk}^{i} \\ (1) \end{cases}$$

in the case b > 0,

$$(3.8) \begin{cases} N_j^i = N_j^{o\,i} - \underline{A}_j^i, \ L_{jk}^i = \overset{o\,i}{F_{jk}} + \overset{o\,i}{C_{jm}} \underline{A}_k^m + \underline{A}_{jk}^i, \ C_{jk}^i = \overset{o\,i}{C_{jk}} + \underbrace{C_{jk}^i}_{(1)} \end{cases}$$

 $\begin{aligned} &\text{in the case } b < 0, \text{ where } \overline{A}_{jk}^{i} = \frac{b}{2}g^{ih}(\frac{\partial(A_{j}A_{h})}{\partial x^{k}} + \frac{\partial(A_{k}A_{h})}{\partial x^{j}} - \frac{\partial(A_{j}A_{k})}{\partial x^{h}}) - \frac{A^{i}A^{h}}{2(1+c^{2})}(\frac{\delta\gamma_{jh}}{\delta x^{k}} + \frac{\delta\gamma_{kh}}{\delta x^{j}} - \frac{\delta\gamma_{jk}}{\delta x^{j}}), \underline{A}_{jk}^{i} = \frac{b}{2}g^{ih}(\frac{\partial(A_{j}A_{h})}{\partial x^{k}} + \frac{\partial(A_{k}A_{h})}{\partial x^{j}} - \frac{\partial(A_{j}A_{k})}{\partial x^{h}}) + \frac{A^{i}A^{h}}{2(1-d^{2})}(\frac{\delta\gamma_{jh}}{\delta x^{k}} + \frac{\delta\gamma_{kh}}{\delta x^{j}} - \frac{\delta\gamma_{jk}}{\delta x^{h}}), \overline{C}_{jk}^{i} = -\frac{1}{2(1+c^{2})}A^{i}A^{h}(\frac{\partial\gamma_{hj}}{\partial y^{k}} + \frac{\partial\gamma_{kh}}{\partial y^{j}} - \frac{\partial\gamma_{jk}}{\partial y^{h}}), \underline{C}_{(1)}^{i} = \frac{1}{2(1-d^{2})}A^{i}A^{h}(\frac{\partial\gamma_{hj}}{\partial y^{k}} + \frac{\partial\gamma_{kh}}{\partial y^{j}} - \frac{\partial\gamma_{jk}}{\partial y^{h}}). \end{aligned}$

 $\frac{\partial \gamma_{kh}}{\partial y^j} - \frac{\partial \gamma_{jk}}{\partial y^h}$). Then the whole geometry of the Lagrange space L^n can be developed only on the base of canonical linear connection given by Theorem 3.3. This connection is a canonical one because it is determined only by the fundamental function (1.1) of the Lagrange space $L^n = (M, L)$.

References

- Atanasiu Gh., Metrical Kawaguchi connections on the total space of a vector bundle and some special subordinated cases, Tensor, N.S. vol.46(1987) 258-264.
- [2] Miron R., Anastasiei M., The Geometry of Lagrange Spaces: Theory and applications, Kluwer Academic Publishers FTPH, No.59(1994).
- [3] Miron R., General Randers Spaces, In the volume P.I.Antonelli, R. Miron, Lagrange and Finsler Geometry. Applications to Physics and Biology, Kluwer Academic Publishers FTPH, No.76(1995).

Author's address:

C. Creţu "Octav Mayer" Seminar of Mathematics, Iaşi, Romania.

26