ON THE LAGRANGE SPACES WITH (α, β)-METRICS

C. Creţu

Abstract

One considers a Lagrange space with the fundamental function (1.1) and one determines the fundamental tensor field, canonical nonlinear connection and canonical metrical linear N -connection.

1. Introduction

Let M be a real, n-dimensional C^{∞} manifold and $\tau: T M \rightarrow M$ its tangent bundle. We shall consider, together with a Finsler space $F^{n}=(M, F(x, y))$, a covector field $A_{i}(x)$ defined on M, or on open set of M, and "the electromagnetic" 1-form $\beta(x, y)=$ $A_{i}(x) y^{i}$. So, we can define the real function on $T M$:
(1.1) $L(x, y)=\alpha^{2}(x, y)+a \beta(x, y)+b \beta^{2}(x, y), \quad \forall(x, y) \in T M$,
where $\alpha(x, y)=F(x, y)$.
This function is C^{∞}-differentiable on $\widetilde{T M}=T M-\{O\}$ and continuous on the null section $O: M \rightarrow T M$. Obviously $L(x, y)$ is not homogeneous with respect to $\left(y^{i}\right)$. We prove that $L(x, y)$ is a regular Lagrangian and that $L^{n}=(M, L(x, y))$ is a Lagrange space [2]. We study the Lagrange space L^{n} with the fundamental function (1.1) and determine the fundamental tensor field, canonical nonlinear connection and canonical metrical linear N-connection.

2. The Lagrange space $L^{n}=(M, L)$

According to (1.1) the fundamental tensor field of the Lagrange space $L^{n}, g_{i j}=$ $\frac{1}{2} \frac{\partial^{2} L}{\partial y^{i} \partial y^{j}}$, is given by:

Proposition 2.1 The fundamental tensor field of the Lagrange space $L^{n}=(M, L)$ $i s$:
(2.1) $g_{i j}(x, y)=\gamma_{i j}(x, y)+b A_{i}(x) A_{j}(x)$,
where $\gamma_{i j}=\frac{1}{2} \frac{\partial^{2} F^{2}}{\partial y^{i} \partial y^{j}}$ is the fundamental tensor field of the Finsler space F^{n}.
In order to deduce that $g_{i j}$, from (2.1), is nonsingular we distinguish two cases: $b>0$ and $b<0$. In this respect we reproduce the following Lemmas from the paper [2].

Lemma 2.2 Let $\left\|A_{i j}\right\|,(i, j=1, \ldots, n)$ a real nonsingular matrix, having $\left\|A_{i j}\right\|^{-1}=$ $\left\|A^{i j}\right\|$. Then the matrix $\left\|B_{i j}\right\|$ with the elements $B_{i j}=A_{i j}+c_{i} c_{j}$, such that $1+c^{2} \neq 0$, $c^{2}=A^{i j} c_{i} c_{j}$, is nonsingular. Its determinant is $\operatorname{det}\left\|B_{i j}\right\|=\left(1+c^{2}\right) \operatorname{det}\left\|A_{i j}\right\|$ and $\left\|B_{i j}\right\|^{-1}$ has the elements $B^{i j}=A^{i j}-\frac{1}{1+c^{2}} c^{i} c^{j},\left(c^{i}=A^{i j} c_{j}\right)$.

Lemma 2.3 If $\left\|A_{i j}\right\|,(i, j=1, \ldots, n)$ is a real nonsingular matrix, having $A^{i j}$ as elements of its inverse and $d_{i},(i=1, \ldots, n)$ are real numbers for which $1-d^{2} \neq 0$, $d^{2}=A^{i j} d_{i} d_{j}$, then the matrix with the elements $B_{i j}=A_{i j}-d_{i} d_{j}$ is nonsingular. It has the determinant $\operatorname{det}\left\|B_{i j}\right\|=\left(1-d^{2}\right) \operatorname{det}\left\|A_{i j}\right\|$ and its inverse has the elements $B^{i j}=A^{i j}+\frac{1}{1-d^{2}} d^{i} d^{j}, d^{i}=A^{i j} d_{j}$.

Applying these Lemmas we obtain:
Theorem 2.1 1^{0} The d-tensor field $g_{i j}$ has the following properties:
If $b>0$, then $\operatorname{det}\left\|g_{i j}\right\|=\left(1+c^{2}\right) \operatorname{det}\left\|\gamma_{i j}\right\|$, where $c^{2}=b \gamma^{i j}(x, y) A_{i}(x) A_{j}(x)$.
If $b<0$, then $\operatorname{det}\left\|g_{i j}\right\|=\left(1-d^{2}\right) \operatorname{det}\left\|\gamma_{i j}\right\|$, where $d^{2}=-b \gamma^{i j}(x, y) A_{i}(x) A_{j}(x)$.
2^{0} The contravariant tensor of $\left(g_{i j}\right)$ is as follows:
If $b>0$, then $g^{i j}(x, y)=\gamma^{i j}(x, y)-\frac{1}{1+c^{2}} A^{i}(x, y) A^{j}(x, y)$, where $A^{i}(x, y)=\sqrt{b} \gamma^{i j}(x, y) A_{j}(x)$.
If $b<0$, then $g^{i j}(x, y)=\gamma^{i j}(x, y)+\frac{1}{1-d^{2}} A^{i}(x, y) A^{j}(x, y)$, where $A^{i}(x, y)=\sqrt{-b} \gamma^{i j}(x, y) A_{j}(x)$.

Now, we can state:
Theorem 2.2 The pair $L^{n}=(M, L(x, y))$, where $L(x, y)$ is given by (1.1), is a Lagrange space.

Remark. The classical case is obtained when $\gamma_{i j}(x, y)=\gamma_{i j}(x)$, (Lorentz metric).
The space L^{n} is called the Lagrange space of generalized electrodynamics and F^{n} the associated Finsler space to L^{n}.

3. Variational problem

Let $c:[0,1] \rightarrow M$ be a smooth curve in M expressed in a local chart (U, φ) on the base manifold M by $x^{i}=x^{i}(t), t \in[0,1], \operatorname{Im} c \subset U$. The length of c in the Lagrange
space L^{n} is
(3.1) $I(c)=\int_{0}^{1} L(x, \dot{x}) d t$.

The variational problem concerning $I(c)$, leads to the Euler-Lagrange equation:
(3.2) $\left\{\begin{array}{l}\frac{d}{d t}\left\{\frac{\partial L}{\partial i^{i}}\right\}-\frac{\partial L}{\partial x^{i}}=0 \\ y^{i}=\frac{d x^{i}}{d t} .\end{array}\right.$

We denote the electromagnetic tensor field, determined by the covector field $A_{i}(x)$, by
(3.3) $F_{i j}(x)=\frac{\partial A_{j}}{\partial x^{i}}-\frac{\partial A_{i}}{\partial x^{j}}$
and consider its mixed form
(3.4) $F_{j}^{i}(x, y)=\gamma^{i k}(x, y) F_{k j}(x)$.

After usual calculation we get:
Theorem 3.1 The Euler-Lagrange equations in variational problem concerning the functional (3.1) are given by
$(3.5)\left\{\begin{array}{l}\frac{d^{2} x^{i}}{d t^{2}}+2\left(G^{i}(x, y)+H^{i}(x, y)\right)=0, \\ y^{i}=\frac{d x^{i}}{d t},\end{array}\right.$
where $G^{i}(x, y)=\frac{1}{2} \gamma_{r s}^{i} y^{r} y^{s}, H^{i}(x, y)=\frac{1}{2}\left(\frac{a+2 b \beta}{2} F_{h}^{i} y^{h}+A^{i} \bar{B}\right)$, if $b>0, \bar{B}=$ $\frac{\sqrt{b}}{2} \tilde{F}-\frac{1}{\sqrt{b}\left(1+c^{2}\right)} A_{k} \gamma_{r s}^{k} \frac{d x^{r}}{d t} \frac{d x^{s}}{d t}-\frac{a+2 b \beta}{2\left(1+c^{2}\right)} A^{i} F_{i h} \frac{d x^{h}}{d t}-\frac{b}{2\left(1+c^{2}\right)} \tilde{F} A, \tilde{F}=\left(\frac{\partial A_{r}}{\partial x^{s}}+\right.$ $\left.\frac{\partial A_{s}}{\partial x^{r}}\right) \frac{d x^{s}}{d t} \frac{d x^{r}}{d t}, A=A^{i} A_{i}$ and $H^{i}(x, y)=\frac{1}{2}\left(\frac{a+2 b \beta}{2} F_{h}^{i} y^{h}+A^{i} \underline{B}\right)$, if $b<0, d^{2} \neq 1$, $\underline{B}=\frac{\sqrt{-b}}{2} \tilde{F}+\frac{1}{\sqrt{-b}\left(1-d^{2}\right)} A_{k} \gamma_{r s}^{k} \frac{d x^{r}}{d t} \frac{d x^{s}}{d t}+\frac{a+2 b \beta}{2\left(1-d^{2}\right)} A^{i} F_{i h} \frac{d x^{h}}{d t}+\frac{b}{2\left(1-d^{2}\right)} \tilde{F} A$.

The equations (3.5) determine a spray defined only by the Lagrangian \mathcal{L} from (1.1), so we can develop the geometry of the Lagrange space $L^{n}=(M, L)$ using this canonical spray only. We have then:

Theorem 3.2 The canonical nonlinear connection of the Lagrange space L^{n} is given by:
$(3.6)\left\{\begin{array}{c}N_{j}^{i}=\stackrel{o^{i}}{N_{j}}-\bar{A}_{j}^{i}, \text { if } b>0, \\ N_{j}^{i}=\stackrel{o^{i}}{N_{j}}-\underset{(1)}{\underset{(1)}{i}}, \text { if } b<0,\end{array}\right.$
where $\underset{\text { (1) }}{\bar{A}_{j}^{i}}=\frac{1}{2} \frac{\partial}{\partial y^{j}}\left\{\frac{a+2 b \beta}{2} F_{h}^{i} y^{h}+A^{i} \bar{B}\right\}, \underset{(1)}{A_{j}^{i}}=\frac{1}{2} \frac{\partial}{\partial y^{j}}\left\{\frac{a+2 b \beta}{2} F_{h}^{i} y^{h}+A^{i} \underline{B}\right\}$.
We can prove now:
Theorem 3.3 The linear N-connection on the Lagrange space L^{n} is:
(3.7) $\left\{N_{j}^{i}=\stackrel{o_{N}^{i}}{j}-\underset{(1)}{A_{j}^{i}}, L_{j k}^{i}=\stackrel{o}{F}_{j k}^{i}+\stackrel{o}{C}_{j m}^{i} \bar{A}_{k}^{m}+\bar{A}_{j k}^{i}, C_{j k}^{i}=\stackrel{o^{i}}{j k}+\underset{(1)}{C_{j k}^{i}}\right.$
in the case $b>0$,
(3.8) $\left\{N_{j}^{i}=\stackrel{o}{N}_{j}^{i}-\underset{(1)}{A_{j}^{i}}, L_{j k}^{i}=\stackrel{o}{F}_{j k}^{i}+\stackrel{o}{C}_{j m}^{i}{\underset{(1)}{A}}_{(1)}^{A_{j k}^{i}}, C_{j k}^{i}=\stackrel{o^{i}}{j k}+\underset{(1)}{C_{j k}^{i}}\right.$
in the case $b<0$, where $\bar{A}_{j k}^{i}=\frac{b}{2} g^{i h}\left(\frac{\partial\left(A_{j} A_{h}\right)}{\partial x^{k}}+\frac{\partial\left(A_{k} A_{h}\right)}{\partial x^{j}}-\frac{\partial\left(A_{j} A_{k}\right)}{\partial x^{h}}\right)-\frac{A^{i} A^{h}}{2\left(1+c^{2}\right)}\left(\frac{\delta \gamma_{j h}}{\delta x^{k}}+\right.$ $\left.\frac{\delta \gamma_{k h}}{\delta x^{j}}-\frac{\delta \gamma_{j k}}{\delta x^{h}}\right), \underline{A}_{j k}^{i}=\frac{b}{2} g^{i h}\left(\frac{\partial\left(A_{j} A_{h}\right)}{\partial x^{k}}+\frac{\partial\left(A_{k} A_{h}\right)}{\partial x^{j}}-\frac{\partial\left(A_{j} A_{k}\right)}{\partial x^{h}}\right)+\frac{A^{i} A^{h}}{2\left(1-d^{2}\right)}\left(\frac{\delta \gamma_{j h}}{\delta x^{k}}+\frac{\delta \gamma_{k h}}{\delta x^{j}}-\right.$ $\left.\frac{\delta \gamma_{j k}}{\delta x^{h}}\right), \underset{(1)}{\bar{C}_{j k}^{i}}=-\frac{1}{2\left(1+c^{2}\right)} A^{i} A^{h}\left(\frac{\partial \gamma_{h j}}{\partial y^{k}}+\frac{\partial \gamma_{k h}}{\partial y^{j}}-\frac{\partial \gamma_{j k}}{\partial y^{h}}\right), \underset{(1)}{C_{j k}^{i}}=\frac{1}{2\left(1-d^{2}\right)} A^{i} A^{h}\left(\frac{\partial \gamma_{h j}}{\partial y^{k}}+\right.$ $\left.\frac{\partial \gamma_{k h}}{\partial y^{j}}-\frac{\partial \gamma_{j k}}{\partial y^{h}}\right)$.

Then the whole geometry of the Lagrange space L^{n} can be developed only on the base of canonical linear connection given by Theorem 3.3. This connection is a canonical one because it is determined only by the fundamental function (1.1) of the Lagrange space $L^{n}=(M, L)$.

References

[1] Atanasiu Gh., Metrical Kawaguchi connections on the total space of a vector bundle and some special subordinated cases, Tensor, N.S. vol.46(1987) 258-264.
[2] Miron R., Anastasiei M., The Geometry of Lagrange Spaces:Theory and applications, Kluwer Academic Publishers FTPH, No.59(1994).
[3] Miron R., General Randers Spaces, In the volume P.I.Antonelli, R. Miron, Lagrange and Finsler Geometry. Applications to Physics and Biology, Kluwer Academic Publishers FTPH, No.76(1995).

Author's address:
C. Creţu
"Octav Mayer" Seminar of Mathematics, Iaşi, Romania.

