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Abstract

One considers a Lagrange space with the fundamental function (1.1) and
one determines the fundamental tensor field, canonical nonlinear connection
and canonical metrical linear N-connection.

1. Introduction

Let M be a real, n-dimensional C∞ manifold and τ : TM → M its tangent bundle.
We shall consider, together with a Finsler space Fn = (M,F (x, y)), a covector field
Ai(x) defined on M , or on open set of M , and ”the electromagnetic” 1-form β(x, y) =
Ai(x)yi. So, we can define the real function on TM :

L(x, y) = α2(x, y) + aβ(x, y) + bβ2(x, y), ∀(x, y) ∈ TM,(1.1)

where α(x, y) = F (x, y).
This function is C∞-differentiable on T̃M = TM − {O} and continuous on the

null section O : M → TM . Obviously L(x, y) is not homogeneous with respect to
(yi). We prove that L(x, y) is a regular Lagrangian and that Ln = (M,L(x, y)) is a
Lagrange space [2]. We study the Lagrange space Ln with the fundamental function
(1.1) and determine the fundamental tensor field, canonical nonlinear connection and
canonical metrical linear N -connection.

2. The Lagrange space Ln = (M,L)

According to (1.1) the fundamental tensor field of the Lagrange space Ln, gij =
1
2

∂2L

∂yi∂yj
, is given by:
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Proposition 2.1 The fundamental tensor field of the Lagrange space Ln = (M,L)
is:

gij(x, y) = γij(x, y) + bAi(x)Aj(x),(2.1)

where γij =
1
2

∂2F 2

∂yi∂yj
is the fundamental tensor field of the Finsler space Fn.

In order to deduce that gij , from (2.1), is nonsingular we distinguish two cases:
b > 0 and b < 0. In this respect we reproduce the following Lemmas from the paper
[2].

Lemma 2.2 Let ‖Aij‖, (i, j = 1, ..., n) a real nonsingular matrix, having ‖Aij‖−1 =
‖Aij‖. Then the matrix ‖Bij‖ with the elements Bij = Aij +cicj, such that 1+c2 6= 0,
c2 = Aijcicj, is nonsingular. Its determinant is det‖Bij‖ = (1 + c2)det‖Aij‖ and

‖Bij‖−1 has the elements Bij = Aij − 1
1 + c2

cicj, (ci = Aijcj).

Lemma 2.3 If ‖Aij‖, (i, j = 1, ..., n) is a real nonsingular matrix, having Aij as
elements of its inverse and di, (i = 1, ..., n) are real numbers for which 1 − d2 6= 0,
d2 = Aijdidj, then the matrix with the elements Bij = Aij − didj is nonsingular. It
has the determinant det‖Bij‖ = (1 − d2)det‖Aij‖ and its inverse has the elements

Bij = Aij +
1

1 − d2
didj , di = Aijdj.

Applying these Lemmas we obtain:
Theorem 2.1 10 The d-tensor field gij has the following properties:

If b > 0, then det‖gij‖ = (1 + c2)det‖γij‖,
where c2 = bγij(x, y)Ai(x)Aj(x).
If b < 0, then det‖gij‖ = (1 − d2)det‖γij‖,
where d2 = −bγij(x, y)Ai(x)Aj(x).

(2.2)

20 The contravariant tensor of (gij) is as follows:

If b > 0, then gij(x, y) = γij(x, y) − 1
1+c2 Ai(x, y)Aj(x, y),

where Ai(x, y) =
√

bγij(x, y)Aj(x).
If b < 0, then gij(x, y) = γij(x, y) + 1

1−d2 Ai(x, y)Aj(x, y),
where Ai(x, y) =

√
−bγij(x, y)Aj(x).

(2.3)

Now, we can state:
Theorem 2.2 The pair Ln = (M,L(x, y)), where L(x, y) is given by (1.1), is a

Lagrange space.
Remark. The classical case is obtained when γij(x, y) = γij(x) , (Lorentz metric).
The space Ln is called the Lagrange space of generalized electrodynamics and Fn

the associated Finsler space to Ln.

3. Variational problem

Let c : [0, 1] → M be a smooth curve in M expressed in a local chart (U,ϕ) on the
base manifold M by xi = xi(t),t ∈ [0, 1], Im c ⊂ U . The length of c in the Lagrange
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space Ln is

I(c) =
∫ 1

0

L(x, ẋ)dt.(3.1)

The variational problem concerning I(c), leads to the Euler-Lagrange equation:{
d
dt{

∂L
∂yi } − ∂L

∂xi = 0
yi = dxi

dt .
(3.2)

We denote the electromagnetic tensor field, determined by the covector field
Ai(x),by

Fij(x) =
∂Aj

∂xi
− ∂Ai

∂xj
(3.3)

and consider its mixed form

F i
j (x, y) = γik(x, y)Fkj(x).(3.4)

After usual calculation we get:
Theorem 3.1 The Euler-Lagrange equations in variational problem concerning

the functional (3.1) are given by{
d2xi

dt2 + 2(Gi(x, y) + Hi(x, y)) = 0,

yi = dxi

dt ,
(3.5)

where Gi(x, y) = 1
2γi

rsy
rys, Hi(x, y) =

1
2
(
a + 2bβ

2
F i

hyh + AiB), if b > 0, B =
√

b

2
F̃ − 1√

b(1 + c2)
Akγk

rs

dxr

dt

dxs

dt
− a + 2bβ

2(1 + c2)
AiFih

dxh

dt
− b

2(1 + c2)
F̃A, F̃ = (

∂Ar

∂xs
+

∂As

∂xr
)
dxs

dt

dxr

dt
, A = AiAi and Hi(x, y) =

1
2
(
a + 2bβ

2
F i

hyh + AiB), if b < 0, d2 6= 1 ,

B =
√
−b

2
F̃ +

1√
−b(1 − d2)

Akγk
rs

dxr

dt

dxs

dt
+

a + 2bβ

2(1 − d2)
AiFih

dxh

dt
+

b

2(1 − d2)
F̃A.

The equations (3.5) determine a spray defined only by the Lagrangian L from
(1.1), so we can develop the geometry of the Lagrange space
Ln = (M,L) using this canonical spray only. We have then:

Theorem 3.2 The canonical nonlinear connection of the Lagrange space Ln is
given by:

N i
j =

o

N
i

j − A
i

j
(1)

, if b > 0,

N i
j =

o

N
i

j − Ai
j

(1)

, if b < 0,
(3.6)
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where A
i

j
(1)

=
1
2

∂

∂yj
{a + 2bβ

2
F i

hyh + AiB}, Ai
j

(1)

=
1
2

∂

∂yj
{a + 2bβ

2
F i

hyh + AiB}.

We can prove now:
Theorem 3.3 The linear N-connection on the Lagrange space Ln is:{

N i
j =

o

N
i

j − A
i

j
(1)

, Li
jk =

o

F
i

jk +
o

C
i

jmA
m

k
(1)

+A
i

jk, Ci
jk =

o

C
i

jk + C
i

jk
(1)

(3.7)

in the case b > 0,{
N i

j =
o

N
i

j − Ai
j

(1)

, Li
jk =

o

F
i

jk +
o

C
i

jmAm
k

(1)

+Ai
jk, Ci

jk =
o

C
i

jk + Ci
jk

(1)

(3.8)

in the case b < 0, where A
i

jk =
b

2
gih(

∂(AjAh)
∂xk

+
∂(AkAh)

∂xj
−∂(AjAk)

∂xh
)− AiAh

2(1 + c2)
(
δγjh

δxk
+

δγkh

δxj
− δγjk

δxh
), Ai

jk =
b

2
gih(

∂(AjAh)
∂xk

+
∂(AkAh)

∂xj
−∂(AjAk)

∂xh
)+

AiAh

2(1 − d2)
(
δγjh

δxk
+

δγkh

δxj
−

δγjk

δxh
), C

i

jk
(1)

= − 1
2(1 + c2)

AiAh(
∂γhj

∂yk
+

∂γkh

∂yj
− ∂γjk

∂yh
), Ci

jk
(1)

=
1

2(1 − d2)
AiAh(

∂γhj

∂yk
+

∂γkh

∂yj
− ∂γjk

∂yh
).

Then the whole geometry of the Lagrange space Ln can be developed only on
the base of canonical linear connection given by Theorem 3.3. This connection is a
canonical one because it is determined only by the fundamental function (1.1) of the
Lagrange space Ln = (M,L).
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