FINSLER CONNECTION IN THE HIGHER ORDER GEOMETRY

Ioan Bucataru

Abstract

The first part of this work is a natural extension of a recent paper by M. Anastasiei ([1]). In §1 the Finsler connections are defined by local components. In §2 a Finsler connection appears as a pair \((N, \nabla)\), where \(N\) is a nonlinear connection on the jet bundle of order \(k\), \(Osc^k M\) and \(\nabla\) is a linear connection in the pull-back bundle of the tangent bundle by the projection map \(\pi^k : Osc^k M \rightarrow M\). Next, the notion of linear connection of Cartan type is generalized and two examples are given.

AMS subject classification: 53C60

Keywords: nonlinear connection, Finsler connection, Cartan connection

1 Introduction

Let \(M\) be a real, smooth manifold of dimension \(n\) and \((Osc^k M, \pi^k, M)\) its \(k\)-osculator bundle, \(k \in \mathbb{N}^*\) (the jets bundle of order \(k\) of the manifold \(M\)). Then \(Osc^k M\) is a real, smooth manifold of dimension \(n(k + 1)\). We set \(E = Osc^k M\). For \(k = 1\), \(Osc^k M\) can be identified, in a canonical way, with the tangent bundle \(T M\).

Let \((x^i)\) be the local coordinates in a local chart \(U \subset M\). The local coordinates on \((\pi^k)^{-1}(U) \subset Osc^k M\) will be denoted by \((x^i, y^{(1)}_i, \ldots, y^{(k)}_i)\).

For each \(u \in E\), let \(\{\frac{\partial}{\partial x^i} \bigg|_u, \frac{\partial}{\partial y^{(1)}_i} \bigg|_u, \ldots, \frac{\partial}{\partial y^{(k)}_i} \bigg|_u\}\) be the natural basis of the tangent spaces \(T_u E\).

As \((\pi^k)_* : (TE, \tau_E, E) \rightarrow (TM, \tau, M)\) is a \(\pi^k\) morphism of vector bundles, its results that its kernel is a vector subbundle of the bundle \((TE, \tau_E, E)\). This will be denoted by \(V_1 E\) and will be called the vertical subbundle of the \(TE\). The fibers of \(V_1 E\) determine an integrable distribution \(V_1 : u \in E \mapsto V_1(u) \subset T_u E\) that has the dimension \(kn\), called vertical distribution.
For each \(u \in E \) we consider the linear mapping \(J_u : T_u E \to T_u E \) defined in the natural basis as follows:

\[
\begin{align*}
J_u(\frac{\partial}{\partial x^i} | u) &= \frac{\partial}{\partial y^{(i)} | u}, \\
J_u(\frac{\partial}{\partial y^j | u}) &= 0,
\end{align*}
\]

and extended by linearity. The map \(J : TE \to TE \) is called \(k \)-tangent structure. Consider \(V_k = J^k(V_1) \) and the map \(V_k : u \in E \to V_k(u) \) is an integrable, \(n \)-dimensional distribution.

Let be \((\pi^k)^*(TM) = \{(u, X) \in Osc^k M \times TM, \pi^k(u) = \tau(X)\} \) and the map \((\pi^k)^*(\tau) : (\pi^k)^*(TM) \to Osc^k M \) defined by \((\pi^k)^*(\tau)(u, X) = u \). That is, \(((\pi^k)^*(TM), (\pi^k)^*(\tau), Osc^k M) \) is a vector bundle over \(E \), called the pull-back bundle of the tangent bundle \((TM, \tau, M) \) by the map \(\pi^k \). This vector bundle is isomorphic with the vertical bundle \((V_k E, \tau E|V_k E, E) \).

A section in this bundle is locally of the form

\[
S : u = (x, y^{(1)}, \ldots, y^{(k)}) \mapsto S'(x, y^{(1)}, \ldots, y^{(k)}) \frac{\partial}{\partial x^i}
\]

with \(\frac{\partial}{\partial x^i} \) the natural basis in \(T_{\pi^k(u)} M \). This will be called \(\pi^k \)-vector field of \(TM \) and will be identified to a \(d \)-vector field on \(E \), which has the components \((S') \). The \(\mathcal{F}(E) \)-module of the \(\pi^k \)-vector fields will be denoted by \(\Gamma(\pi^k(TM)) \).

There exists a remarkable \(\pi^k \)-vector field on \(TM: C : u \mapsto (u, \pi^k_1(u)) \) and it can be identified to the Liouville vector field

\[
(1.1) \quad 1^2 = y^{(1)} \frac{\partial}{\partial y^{(1)}} + 2 y^{(2)} \frac{\partial}{\partial y^{(2)}} + \cdots + ky^{(k)} \frac{\partial}{\partial y^{(k)}}.
\]

The vector fields \(\Gamma, \Gamma_1, \ldots, \Gamma_k \) are called Liouville vector fields of the \(k \)-osculator bundle.

A nonlinear connection in the \(k \)-osculator bundle is a subbundle \(NE \), of the tangent bundle of \(E \) such that the Whitney sum

\[
(1.2) \quad TE = NE \oplus V_1 E,
\]

holds. A nonlinear connection induces a regular distribution \(N \) on \(E \) of dimension \(n \), which is supplementary to the vertical distribution \(V_1 \). For each \(u \in E \) the map \(\pi^k_{\ast, u}|N(u) : N(u) \to T_{\pi^k(u)} M = ((\pi^k)^*(TM))_u \) is an isomorphism of linear spaces. It inverse, which is denoted by \((l_k)_u \), will be called horizontal lift. Using the notation

\[
\frac{\delta}{\delta x^k} | u = (l_k)_u \frac{\partial}{\partial x^k}
\]

we obtain a basis for \(N(u) \). This is expressed in the natural basis of the tangent space \(T_u E \) as follows:

\[
(1.3) \quad \frac{\delta}{\delta x^k} | u = \frac{\partial}{\partial x^k} | u - N^j_{(1)} (u) \frac{\partial}{\partial y^{(j)} | u} - \cdots - N^j_{(k)} (u) \frac{\partial}{\partial y^{(k)}} | u.
\]

The functions \((N^j_{(1)}, \ldots, N^j_{(k)}) \) are called the coefficients of the nonlinear connection \(N \).

We use the following notations:

\[
\frac{\delta}{\delta y^{(i)}} = J^\ast \left(\frac{\delta}{\delta x^k} \right). \quad \text{If} \quad N_0 = N, N_1 = J(N_0), \ldots, N_{k-1} =
\]
For each

\[C \]

expressed in the adapted basis as follows:

\[\{ \frac{\delta}{\delta x^i} |_{u, \delta y^{(1)i}} |_{u, \delta y^{(k-1)i}} |_{u}, \frac{\partial}{\partial y^{(k)i}} |_{u} \} \]

is a non-holonomic basis for \(T_u E \) that is adapted to the decomposition (1.4). The dual basis of the basis (1.5) is expressed in the dual natural basis using a system of functions \(((1.5) \text{ of coordinates are modified like as the coefficients of a linear connection on } F) \) which are called the dual coefficients of the nonlinear connection \(N \).

The Liouville vector fields are expressed in the adapted basis as follows:

\[\Gamma^1 = z^{(1)i} \frac{\partial}{\partial y^{(1)i}}, \]
\[\Gamma^2 = z^{(1)i} \frac{\delta}{\delta y^{(1)i}} + 2z^{(2)i} \frac{\partial}{\partial y^{(1)i}}, \]
\[\Gamma^k = z^{(1)i} \frac{\delta}{\delta y^{(1)i}} + 2z^{(2)i} \frac{\delta}{\delta y^{(2)i}} + \ldots + k z^{(k)i} \frac{\partial}{\partial y^{(k)i}}, \]

where

\[z^{(1)i} = y^{(1)i}, 2z^{(2)i} = 2y^{(2)i} + M_j^{(1)} y^{(1)j}, \ldots, \]
\[k z^{(k)i} = k y^{(k)i} + (k - 1) M_j^{(1)} y^{(k-1)j} + \ldots + M_j^{(1)} y^{(1)j}. \]

Let \(((\pi^k)^*(TM))^{(k)} \) the Whitney sum of the pull-back bundle on itself of \(k \)-times. We call connection map on the \(k \)-osculator bundle \((2,3) \) a \(\pi^k \) epimorphism of vector bundles \(K = (1,2,3, \ldots) : T E \rightarrow ((\pi^k)^*(TM))^{(k)} \) that satisfies:

\[(k) K \circ J^a = K^{(k)} \text{, } \forall a \in \{1,2,\ldots,k-1\}, \]
\[(k) K \circ J^k = \pi^k. \]

In the paper [3] we have proved that every nonlinear connection \(N \) is the kernel of a connection map.

Definition 1.1 A Finsler connection on the \(k \)-osculator bundle is a system \(F \Gamma = (N, F^{(m)}_{ij}, C^{(m)}_{ij}, \alpha = (1,2)) \), where \(N \) is a nonlinear connection on the \(k \)-osculator bundle, the functions \(F^{(m)}_{ij} \) are defined on every domain of local chart and which at a change of coordinates are modified like as the coefficients of a linear connection on \(M \) and \(C^{(m)}_{ij} \) are the local components of a \(d \)-tensor field of type (1,2).

To a Finsler connection \(F \Gamma \) we associate a linear connection \(D \) on \(E \), which is expressed in the adapted basis as follows:

\[D \frac{\delta}{\delta x^i} = F^{m}_{ij} \frac{\delta}{\delta x^j}, D \frac{\delta}{\delta y^{(\alpha)i}} = F^{m}_{ij} \frac{\delta}{\delta y^{(\alpha)j}}, \]
\[D \frac{\delta}{\delta y^{(k)i}} = C^{m}_{ij} \frac{\delta}{\delta y^{(k)j}}. \]
The linear connection D is called N-linear connection. It preserves by parallelism the distributions $N_0, N_1, \ldots, N_{k-1}, V_k$ and the k-tangent structure J is parallel with respect to it.

For a Finsler connection Γ we denote by D^j_i the h-tensor fields of deflection and by d^j_i the v_α-tensor fields of deflection. These are given by:

\begin{align}
D^j_i & = D^j_i \frac{\delta}{\delta y^i} + 2 D^j_i \frac{\delta}{\delta y^{(\alpha)}} + \cdots + k \frac{\delta}{\delta y^{(k)}} \frac{\partial}{\partial y^i} \\
d^j_i & = d^j_i \frac{\delta}{\delta y^i} + 2 d^j_i \frac{\delta}{\delta y^{(\alpha)}} + \cdots + k \frac{\delta}{\delta y^{(k)}} \frac{\partial}{\partial y^i}.
\end{align}

2 Finsler Connection on the k-osculator bundle.

Characterizations.

Theorem 2.1 There exists a one to one correspondence between the set of Finsler connections Γ and the set of pairs (α, Γ), with α a nonlinear connection on E and Γ a linear connection in the pull-back bundle $(\pi^k)^*(TM)$.

Proof. If Γ is specified by (α, Γ), we define $\Gamma : \chi(E) \times (\pi^k)^*(TM)$.

Conversely, let (α, Γ) be a pair like in hypothesis. In the natural basis Γ takes the form:

\begin{align}
\nabla \Gamma & = \Gamma^j_i \frac{\partial}{\partial x^i} \\
\nabla & = \Gamma^j_i \frac{\partial}{\partial x^i}.
\end{align}

If we consider the system of functions (defined on every neighborhood coordinates):

\begin{align*}
F^j_i & = \Gamma^j_i \Gamma^0 \Gamma^1 \Gamma^2 \cdots \Gamma^k \\
C^j_i & = \Gamma^j_i \Gamma^0 \Gamma^1 \Gamma^2 \cdots \Gamma^k,
\end{align*}

by a direct calculation we obtain that $\Gamma = (\alpha, \Gamma)$ is a Finsler connection on E. In the adapted basis the linear connection ∇ is expressed as (2.1), where F^j_i and C^j_i are given by the previous formula. Concluding, the correspondence $\Gamma \leftrightarrow (\alpha, \Gamma)$ is one to one. \square.

Definition 2.1 A linear connection ∇ in the pull-back bundle $(\pi^k)^*(TM)$ is said to be regular if the subspace $H(u) = \{X_u \in T_u E, \nabla_{X_u} C = 0\}$ of $T_u E$ is supplementary to $V_k(u)$ for every $u \in E$.

Proposition 2.1 Every regular connection ∇ in the pull-back bundle $(\pi^k)^*(TM)$ induces a nonlinear connection N on E.

Proof. As ∇ is a regular connection we obtain a distribution $H : u \in E \rightarrow H(u) = \{X_u \in T_u E, \nabla_{X_u} C = 0\}$ of dimension kn supplementary to the distribution V_k and so $T_u E = H(u) \oplus V_k(u), \forall u \in E$. We denote by ψ_k the vertical projector induced by the previous decomposition. For every $u \in E$ the map $(l_{\psi_k})_u : ((\pi^k)^*(TM))_u \rightarrow V_k(u)$ defined by $(l_{\psi_k})_u \left(\frac{\partial}{\partial x^i}\right) = \frac{\partial}{\partial y^i} |_u$ and extended by linearity is an isomorphism of vector spaces. We denote by $K_u : V_k(u) \rightarrow ((\pi^k)^*(TM))_u$ the inverse map of $(l_{\psi_k})_u$ and we extend it to $T_u E$ by $K_u := K_u \circ \psi_k$. In this way we obtain a morphism of vector bundles with the base $E, K : T E \rightarrow (\pi^k)^*(TM)$ for which $H = \text{Ker} K$. Let $(k-1)$ (k) (k) (k) (k) (k) $K = K \circ J, \cdots, K = K \circ J^{k-1}$. The map $K = (K, \cdots, K) : T E \rightarrow ((\pi^k)^*(TM))_u$ is a connection map. Its kernel is a nonlinear connection N.

Next, we give a characterization for the regular connections.

Theorem 2.2 There exists a one to one correspondence between the set of regular connections ∇ in the pull-back bundle and the set of Finsler connections $F \Gamma$ satisfying:

\[
(*) \quad (1) \quad (1) \quad (k-1) \quad (k) \quad (k)

\text{det} (d^i_j) \neq 0.

Proof. Let ∇ be a regular connection. According to the definition and the previous proposition we obtain a kn-dimensional distribution H and a connection map $K = (K, \cdots, K)$. Let $N = \text{Ker} K$. For the pair (N, ∇) we have according to the Theorem 2.1. a Finsler connection $F \Gamma$. We prove that for this the conditions $(*)$ and $(**)$ hold.

For $X_u \in T_u E$ we have:

\[
(2.3) \quad \nabla_{X_u} C = (X^i D^i_j + (K X)^i_j d^i_j + \cdots + (K X)^i_j d^i_j + (K X)^i_j d^i_j) \left(\frac{\partial}{\partial x^i}\right) |_u.
\]

The condition $H(u) \subset \text{Ker} K_u$ assures that $(*)$ is true and $H(u) \cap V_k(u) = \{0\}$ assures that $(**)$ hold.

Conversely, let $F \Gamma = (N, F^m \alpha, C^m_{ij}, \alpha = \text{I} K)$, be a Finsler connection satisfying $(*)$ and $(**)$). According to (2.3), the condition $(*)$ implies that if $X_u \in H_u$ then $X_u \in \text{Ker} K_u$ and so $H_u \subset \text{Ker} K_u$. The condition $(**)$ assures that $H(u) \cap V_k(u) = \{0\}$ and so $H_u = K_u$.

Finsler connection
Definition 2.2 Let \(N \) be a linear connection on \(E \). An \(N \)-linear connection on \(E \) is said to be of *Cartan type* if:

\[
(2.4) \quad N(u) = \{X_u \in T_u E, D_{X_u} \Gamma^\alpha = 0 \ \forall \alpha = 1, k\} \ \forall u \in E.
\]

Theorem 2.3 Let \(N \) be a nonlinear connection on \(E \) and \(D \) an \(N \)-linear connection. Then \(D \) is a linear connection of Cartan type, if and only if

\[
(2.5) \quad \frac{D_j^\alpha}{(\alpha)} = 0 \text{ and } \det(D_j^\alpha) \neq 0.
\]

Proof. Let \(X_u \in T_u E \). According to (1.9) we obtain the following formulae:

\[
D_{X_u} \Gamma^\alpha = (X^t D_j^\alpha + (K X)^t d_j^\alpha + \cdots + (K X)^t d_j^\alpha) \frac{\partial}{\partial y^{(k)x\alpha}} |u = \nonumber\]

\[
= A^j \frac{\partial}{\partial y^{(k)x\alpha}} |u,
\]

\[
D_{X_u} \Gamma^\alpha = A^j \frac{\delta}{\delta y^{(k)x\alpha}} |u + 2(X^t D_j^\alpha + (K X)^t d_j^\alpha + \cdots + (K X)^t d_j^\alpha) \frac{\partial}{\partial y^{(k)x\alpha}} |u + \nonumber\]

\[
+ (K X)^t d_j^\alpha + \cdots + (K X)^t d_j^\alpha) \frac{\partial}{\partial y^{(k)x\alpha}} |u = \nonumber\]

\[
= A^j \frac{\delta}{\delta y^{(k)x\alpha}} |u + 2A^j \frac{\delta}{\delta y^{(k)x\alpha}} |u + \cdots + (k-1) A^j \frac{\delta}{\delta y^{(k)x\alpha}} |u + \nonumber\]

\[
+ k(X D_j^\alpha + (K X)^t d_j^\alpha + \cdots + (K X)^t d_j^\alpha) \frac{\partial}{\partial y^{(k)x\alpha}} |u = \nonumber\]

\[
= A^j \frac{\delta}{\delta y^{(k)x\alpha}} |u + 2A^j \frac{\delta}{\delta y^{(k)x\alpha}} |u + \cdots + k A^j \frac{\delta}{\delta y^{(k)x\alpha}} |u.
\]

The conditions \(D_{X_u} \Gamma^\alpha = 0, \ \forall \alpha = 1, k \) are equivalent with the equations \(A^j = 0 \ \forall \alpha = 1, k \) and these are equivalent with:

\[
(2.6) \quad X^t (D_j^\alpha \cdots D_j^\alpha) + ((K X)^t d_j^\alpha \cdots (K X)^t d_j^\alpha) = 0.
\]

Let \(N \) be a nonlinear connection and \(D \) be an \(N \)-linear connection which satisfies (2.3). We have that \(X \in N \) if and only if \(K X = (K X = \cdots = (K X = 0. \) Then (2.5) becomes \(X^t (D_j^\alpha \cdots D_j^\alpha) = 0 \) from where we obtain that the \(h \)-tensor fields of deflections are vanishing. If we assume that \(\det(D_j^\alpha) = 0 \) then exists \(X_u \in T_u E \) with \(K_u X_u \neq 0 \) such that (2.5) holds. So, we have \(X_u \notin N(u) \) with \(D_{X_u} \Gamma^\alpha = 0, \ \forall \alpha = 1, k \).

This means that \(N(u) \subset \{X_u \in T_u E, D_{X_u} \Gamma^\alpha = 0 \ \forall \alpha = 1, k\} \). □
3 Examples of linear connections of Cartan type.

Let \((M, g)\) be a Riemann manifold, \(\gamma^i_{jk}\) the local coefficients of the Levi-Civita connection.

Theorem 3.1 There exists a unique nonlinear connection \(N\) on \(E\) such that \(F^\Gamma = (N, F^m_{ij} = \gamma^m_{ij} \circ \pi^k, C^m_{ij} = 0)\) is a linear connection of Cartan type on \(E\).

Proof. We prove that on every domain of local chart we can define a system of functions \((N^1_j, \ldots, N^k_j)\) which is uniquely determined by the conditions (2.5) of the
(1)

Theorem 2.3. By a change of coordinates these functions will change according to the
(1)

rule which allows us to say that and these functions are the coefficients of a nonlinear connection
(1)

\(N\), \(F\) given by this theorem is
(1)

such that
(1)

\(\gamma^i_{jk}\) and \(z^{(3)i}\) defined by (1.7).
(1)

Next, in the same manner we obtain \((N^1_j, \ldots, N^k_j), (M^i_j, \ldots, M^i_j)\) and \(z^{(5)i}, \ldots, z^{(k)i}\).
(1)

Finally, with the previous functions we define
(1)

\(N^i_j (x, y^{(1)}, \ldots, y^{(k)}) = (\partial \partial x^p - N^p_j - \partial y^q \partial y^{(1)p} - \partial y^q \partial y^{(2)p} - \partial y^q \partial y^{(3)p} + \gamma^i_{jk}(x)z^{(k)m}.
(1)

By a direct calculation we can verify that at a change of coordinates on \(E\) the system of functions \((N^1_j, \ldots, N^k_j)\) satisfies (4.9) from [6] and so these are the local coefficients of a nonlinear connection on \(E\). The Finsler connection \(F^\Gamma\) given by this theorem is of Cartan type because:

- a) the \(h\)-tensors of deflections are vanishing (by the construction of the functions
(1)

\(N^i_j\) we have that \(D_j^i\) are vanishing);
I. Bucataru

b) \(\text{det}(d_{ij}^{\alpha\beta}) \neq 0 \) (for \(\alpha > \beta \) we have \(d_{ij}^{\alpha\beta} = 0 \), \(d_{ij}^{\alpha\alpha} = \delta_i^j \) and so \(\text{det}(d_{ij}^{\alpha\beta}) = 1 \)). □

Let \(F^n = (M, F) \) be a Finsler space and \((N_i^j, F_{ij}^m, C_{ij}^m)\) the Cartan connection of the Finsler space \(F^n \) ([5, p.113]).

Theorem 3.2 There exists a unique nonlinear connection \(N \) on \(E \) such that \(\Gamma = (N, F_{ij}^m := F_{ij}^m \circ \pi_1^k, C_{ij}^m = C_{ij}^m \circ \pi_1^k, C_{ij}^m = 0 \; \alpha \geq 2) \) is a linear connection of Cartan type on \(E \).

Proof. The proof follows the previous theorem line. Thus, on every domain of local chart, we define the systems of functions \((N_i^j(1), \ldots, N_i^j(k))\) and \((M_i^j(1), \ldots, M_i^j(k))\) which will be the coefficients and the dual coefficients, respectively, of a nonlinear connection \(N \). From the vanishing of the first \(h \)-tensor of deflection we obtain \(N_i^j(x, y^{(1)}, \ldots, y^{(k)}) = \)

\(N_i^j(1) \circ \pi_1^k \). To determine the next coefficients a method like in the previous theorem is used. □

References

Author’s address:

I. Bucataru

“Octav Mayer” Institute of Mathematics,
Iași Branch of the Romanian Academy, Iași, Romania.