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Abstract

This paper studies the possibility to obtain in the convex interior of a given
closed curve a Lagrange structure. The most important result is that this special
Lagrange structure is given only by the elementary geometric properties of the
given closed curve. An interesting class of metric spaces is highlighted so that
the distance between two close points has the same Lagrangean form as those
described by the two ”special” tangent circles. As a particular result the Cayley
hyperbolic distance between two closed points of the interior of a given circle
from the Euclidean plane leads to a generalized Lagrange metric, which is not
reductible to a Lagrange or a Finsler one. In this way the Poincaré model of the
hyperbolic geometry of Lobacevski becomes an example of generalized Lagrange
space.
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We shall consider in the two-dimensional Euclidean plane known the concepts:
curve, closed curve, convex set, tangent in a point to a curve. Let P0 be a fixed point
belonging to a given curve c : I ⊂ R 7→ R and let P be a variable point on c in the
neighborhood U (P0) ∩ c of P0 .

Definition 1 The curve c is called dual derivable if the limit of the intersection of
the tangents in P0 and P , when P is moving on curve to P0, is the fixed point P0.

We can observe that the dual derivability excludes the existence of rectilinear
components of the curve. Obviously, a simple closed curve having its interior as
convex set is not dual derivable.

Definition 2 We shall call parallel derivable curve any simple closed curve belonging
to the two- dimensional Euclidean plane which satisfies the conditions:

i) for any direction it allows just two tangents parallel with a given direction,
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ii) the tangents described above do not intersect again the interior of the curve.

The parallel derivability does not imply necessary a dual derivability for a curve,
such that the following definition makes sense:

Definition 3 We shall call that the curve K is i-derivable if K is a simple closed
curve of the two- dimensional Euclidean plane which proceeds from a parallel and
dual derivable curve K∗ by geometrical inversion of an arbitrary power with respect
to an arbitrary point as pole, pole which is contained in the interior of K∗.

Lemma 1 A parallel and dual derivable curve K∗ has as interior a convex set.

Proof. If not, there exist M,N ∈ K∗ such that the segment line M N intersects
K∗ . That means K∗ has points in the both sides of M N . In each side there exists,
using Lagrange’s Theorem, tangent lines parallel with M N . It is obvious that one of
this tangent will intersect the interior of K∗ , in collision with the parallel derivability
of K∗ . 2

Lemma 2 An i-derivable curve is dual and parallel derivable and its interior is a
convex set.

Proof. Consider a point A contained in the interior of the given i-derivable curve
denoted by K. Taking into account that the inverse K∗ is dual and parallel deriv-
able, the geometric inversion I (A,µ) of arbitrary power will conserve both the angles
between curves and the tangency, that means that K will be a dual and parallel
derivable curve. The convex interior of K∗ in Lemma 1 will be transformed into a
convex set bounded by the initial curve K, with respect to I (A,µ) . 2

Lemma 3 In any point A situated in its interior, an i-derivable curve K permits a
pair of circles both mutually tangent in A and being each one also tangent in a unique
point at K. The common tangent line in A of the two circles may have any direction.

Proof. The i-derivable curve K proceeds from the inversion of K∗ with respect
to A, an interior point of K∗ . The parallel lines having a given direction ∆ are
transformed in tangent circles passing by A with the tangent line in A parallel with
∆ . Taking into account Lemma 2, the circles tangent in A will intersect each one K
in only one point. 2

Denote by s , S the tangent points at K of the circles described by Lemma 3 and
by r , R the length of the radii of the same circles. We can observe that r, R depend
on the point A and by the direction ∆.

Lemma 4 An i-derivable curve allows a Lagrangean structure in its interior.

Proof. We will consider the arclength element described using x1, x2 as usual
coordinates in the plane of the curve:

ds = M (x1, x2, ẋ1, ẋ2)
√

dx2
1 + dx2

2,
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where we denote by M (x1, x2, ẋ1, ẋ2) the expression
1
2

(
1
r

+
1
R

)
according to the

special circle determined by A and ∆ =
ẋ2

ẋ1
. 2

We shall show that a particular distance that we shall introduce in the interior of
an i- derivable curve leads to the same Lagrangean metric as the one introduced by
the simple circles of i-derivable curves.

Consider A and B as fixed points in the interior of the i-derivable curve denoted
by K and P an arbitrary point on K. The Euclidean distances |PA| , |PB| determine

a function f(P ) :=
|PA|
|PB|

, f : K 7→ R∗, which has a maximum MAB and a minimum

mAB when P is moving on K. Then we can prove the following:

Theorem 1 d(A, B) := ln MAB · m−1
AB is a distance between A and B.

Proof. If A = B then f(P ) =
|PA|
|PB|

= 1 for any P ∈ K and that means ln
MAB

mAB
=

ln 1 = 0 . If ln
MAB

mAB
= 0 for a pair A , B, then MAB = mAB and that means that

the function is constant. Or, if A 6= B, it results that P which belongs to K also
belongs to the Apolloniu’s circle of the pair A , B. But A and B are separated by
the Apolloniu’s circle which coincides with K in collision with A , B ∈ int K . For
d(A, B) = d(B,A) , it is enough to observe that

min
P∈K

|PA|
|PB|

=
1

max
P∈K

|PB|
|PA|

.

We wish to prove that for any three points A,B,C in intK we have:

d(A,B) + d(B,C) ≥ d(A,C). (1)

Let S1, S2, S3 ; s1, s2, s3, be the points for which the maximum and the minimum
of the three ratios is reached:

|S1A|
|S1B|
|s1A|
|s1B|

=
MAB

mAB
;

|S2B|
|S2C|
|s2B|
|s2C|

=
MBC

mBC
;

|S3A|
|S3C|
|s3A|
|s3C|

=
MAC

mAC
.

Therefore, for the substitutions with minoring role S1, S2 → S3, ; s1, s2 → s3, we

obtain
MAB

mAB
· MBC

mBC
≥ |S3A|

|S3C|
:
|s3A|
|s3C|

=
MAC

mAC
, equivalently with (1). See also [2], [3].

2

These method for obtaining distances is known as the logarithmic oscillation
method of metrization and was studied firstly by the Romanian geometer Dan Barbi-
lian (see [1]). The previous distance is called a Barbilian distance.

Let A be a point belonging to the interior of the i-derivable curve K, ∆ be a given
direction and A + dA be another point in a small neighborhood of A such that dA
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is orthogonal to ∆. Let us denote by R, r the radii of the circles which appear in
Lemma 3, and by ds the infinitesimal distance established by Theorem 1 between the

points A and A + dA , i.e. ds = d(A,A + dA) = ln
max
P∈K

|PA|
|P (A + dA)|

min
P∈K

|PA||P (A + dA)| . Let us

denote by dσ the Euclidean distance between the points A, A + dA. Then we can
prove:

Theorem 2 The previous distance between two close points A, A+dA from the inte-
rior of an i- derivable curve has the same form as the Lagrangean arclength determined
by Lemma 4.

Proof. We have to prove that ds =
1
2

(
1
R

+
1
r

)
dσ .

In the given conditions ds =
MA(A+dA) − mA(A+dA)

mA(A+dA)
. For A, A + dA, P with the

coordinates (x1, x2), (x1
1, x

1
2), (x1, x2) the Apolloniu’s circle determined by A,A+ dA

and the constant
√

λ has the equation:

2∑
i=1

(
(xi − xi)2 − λ(xi − x1

i )
2
)

= 0.

Its radius will be:

ρ2 =
λ

(1 − λ)2

2∑
1

(xi − x1
i )

2 .

For the maximum MA(A+dA) and the minimum mA(A+dA) of the expression PA
P (A+dA) ,

it appears:

R2 =
MA(A+dA)

(1 − MA(A+dA))2
dσ2 , r2 =

mA(A+dA)

(1 − mA(A+dA))2
dσ2

and it results:

MA(A+dA) − mA(A+dA)

mA(A+dA)
=

2
(√

dσ2 + 4r2 +
√

dσ2 + 4R2
)
dσ(

−dσ +
√

dσ2 + 4R2
) (

dσ +
√

dσ2 + 4r2
) .

Taking into account that we can neglect small infinities of second order, we obtain
2dσ

dσ +
√

dσ2 + 4a2
=

dσ

a
and also ds =

1
2

(
1
R

+
1
r

)
dσ. 2

Taking into account the method of metrization of the interior of the i-derivable
curves these Lagrange spaces can be called Lagrange oscillant spaces. Among these
Lagrange oscillant spaces we shall highlight one which is very important for geometers.

We shall analyze the particular case of the circle because the previous Barbil-
ian distance is in fact a modified Cayley distance of the Cayley-Poincaré model of
Lobacevski hyperbolic geometry ([2]).
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Theorem 3 The Barbilian distance between two closed points A1(x, y), B1(x+ ẋ, y+
ẏ) from the interior of the circle Γ induces the generalized Lagrange metric which has
as coefficients

g11 = g22 =
4ẏ4(yẋ − xẏ)2

(ẋ2 + ẏ2) (R2ẋ2 − (x2 + y2)ẏ2)2
, g12 = g21 = 0. (2)

Proof. Let A(x0, y0), B(x0 + dx, y0 + dy) be two points from the interior of the
circle Γ and consider the straight line AB : y − y0 = m(x − x0), where m := dy

dx .
We put

ds := d(A,B) = ln
MAB

mAB
= ln

(
1 +

MAB − mAB

mAB

)
=

MAB − mAB

mAB
. (3)

Theorem 2 leads to

ds =
1
2

(
1

R1
+

1
R2

)√
dx2 + dy2. (4)

We have to compute R1 and R2, which the radii of two circles tangent both to the Γ
circle and to the straight line AB in A.

Let O1(x1, y1), O2(x2, y2) be the centres of the above two circles. Consider also
T1, T2 the two tangent points of the two circles at Γ . We have:

O1O2 : y − y0 = − 1
m

(x − x0).

Therefore O1 will have the coordinates O1(x1, y0 − 1
m (x1 − x0) and the square of the

distance O1A will be:

O1A
2 =

m2 + 1
m2

(x1 − x0)2 .

Solving the system 
y =

y0 − 1
m (x1 − x0)

x1
x

x2 + y2 = R2

,

we will obtain the coordinates of the point T1, that is:

T1

 Rx1√
x2

1 +
(
y0 − 1

m (x1 − x0)
)2

,
R

(
y0 − 1

m (x1 − x0)
)√

x2
1 +

(
y0 − 1

m (x1 − x0)
)2

 .

If we consider the Euclidean distance O1T1, we will obtain:

O1T
2
1 =

√
x2

1 +
(

y0 −
1
m

(x − x0)
)2

− R

2

.
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The condition O1A
2 = O1T

2
1 will lead to the equation:

4(x1 − x0)2
(
m2n2 − R2(m2 + 1)

)
+ 4mn(x1 − x0)

(
R2 − m2(x2

0 + y2
0)

)
+

+
(
R2 − m2(x2

0 + y2
0)

)2 = 0,

(where n = y0 − mx0 ) which has as solutions

x1 − x0 = −1
2
· R2 − m2(x2

0 + y2
0)

m
(
y0 − mx0 ± R

√
m2 + 1

) , that is:

R1 =
√

m2 + 1
2m

· R2 − m2(x2
0 + y2

0)
m

(
y0 − mx0 + R

√
m2 + 1

) ,

R2 =
√

m2 + 1
2m

· R2 − m2(x2
0 + y2

0)
m

(
y0 − mx0 − R

√
m2 + 1

) .

Using (4) it results:

ds =
m√

m2 + 1
· 2m(y0 − mx0)
R2 − m2(x2

0 + y2
0)

√
dx2 + dy2

and finally, replacing the particular point A by A1, and m by ẏ
ẋ it follows:

ds2 =
4ẏ4(yẋ − xẏ)2

(ẋ2 + ẏ2) (R2ẋ2 − (x2 + y2)ẏ2)2
(dx2 + dy2).

The matrix of the coefficients gij(x, y, ẋ, ẏ) of the metric is
4ẏ4(yẋ − xẏ)2(ẋ2 + ẏ2)
(R2ẋ2 − (x2 + y2)ẏ2)2

0

0
4ẏ4(yẋ − xẏ)2

(ẋ2 + ẏ2) (R2ẋ2 − (x2 + y2)ẏ2)2

 .

The rank [gij ] = 2 . So, gij(x, y, ẋ, ẏ) is a distinguished tensor field. Therefore it
determines a generalized Lagrange space GL2. 2 (see [9])

Definition 4 The space GL2 with the fundamental tensor field gij from (2) is called
a Barbilian Space.

These space, suggested by a problem of hyperbolic geometry can be important in
applications. We prove:

Theorem 4 A Barbillan Space is a generalized Lagrange space which is not reducible
to a Lagrange or a Finsler space.
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Proof. By absurdum, we admit the existence of a Lagrangian L(x, y, ẋ, ẏ) for
which

gij(x, y, ẋ, ẏ) =
1
2
· ∂2L

∂yi∂yj
, (5)

where gij is the fundamental tensor of a Barbilian Space.

From (5) it follows that the Cartan tensor Cijk =
1
2

∂gij

∂yk
is totally symmetric. But

from (2) we deduce
∂g11

∂ẏ
6= ∂g12

∂ẋ
. Consequently, the equality, (5) is an impossibility.

2
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