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Abstract

Hyperstructures are used in order to organize affine Lie Algebras. More pre-
cisely, the Hv-structures are used in the principal vertex operator construction
of the Affine Kac-Moody Lie Algebras.
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Some hyperstructures have already been used as organized devices in several
branches of mathematics. For example, the irreducible characters of finite groups
form canonical hypergroups. New classes and generalizations of hyperstructures give
more opportunities towards this direction. A generalization of the classic hyperstruc-
tures is the class of the Hv-structures where the equality in several axioms is replaced
by the non-empty intersection. In this paper we present a way how the affine Kac-
Moody Lie algebras can be viewed as Hv -structures.

1 THE Hv-STRUCTURES

A hyperoperation (·) defined on the set H is called weak associative, we write WASS,
if (xy)z ∩ x(yz) 6= ∅ for all x, y, z ∈ H. (·) is called weak commutative, we write
WCO, if xy ∩ yx 6= ∅ for all x, y ∈ H. In the same sense the other basic properties
can be replaced by the weak ones, i.e. the equality is replaced by the non-empty
intersection. The new hyperstructures introduced in [7] are called Hv-structures. One
can generalize the classical hyperstructures and several properties can be obtained,
see [1], [3], [6], [7]. The motivating example is the quotient of a structure by an
equivalence relation. The Hv-group (Hv-ring, Hv-vector space ) is the hyperstructure
which satisfies the group ( ring, vector space, respectively ) like axioms.

Every Hv-structure ”hides” a corresponding structure. This structure is obtained
from the Hv -structure by quotient out by the fundamental relation β∗, γ∗ or ε∗.
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Therefore, if H is a Hv -group ( Hv-ring, Hv-vector space) then H/β∗ is a group (H/γ∗

is a ring, H/ε∗ is a vector space, resp.). The above corresponding structures are the
fundamental ones. The fundamental relation β∗ in a Hv-group (H, ·) equivalently can
be defined as follows:

An element a ∈ H is called β equivalent to the element b ∈ H if there exists a finite
set of elements {z1, . . . , zn} of H such that {a, b} ∈ z1 · · · zn. Then the transitive
closure of β is the β∗.

In a similar way the γ∗ is defined in Hv-rings and the ε∗ is defined in Hv-vector
spaces. Using this analytic construction one can also define analogous fundamental
relations in weak and partial hyperoperations. This is the ones used in this paper and
we denote it by β∗

b .

2 ON AFFINE LIE ALGEBRAS

Recall the basic construction for the affine Lie algebras given by Kac in [2].
Let g′(A) be an affine Lie algebra of type X

(r)
N corresponding to the finite-dim-

ensional Lie algebra g of type XN . Consider the elements Ei , Fi , Hi (i = 0, . . . , `),
which are the Chevalley generators, such that the relations

degEi = −degFi = 1, degH = 0 (i = 1, ..., `)

define a Z/h(r)Z-gradation g =⊕
i

gi(1; r) called the r-principal gradation of g. Note

that h(r) = r
∑̀
i=0

a1 is the Coxeter number of g, where ai be the labels of the diagram

of the affine matrix X
(r)
N . Take the r-cyclic element of g, E =

∑̀
i=0

Ei and denote by

S(r) the centralizer of E in g. It is graded with respect to the r-principal gradation

S(r) = ⊕
i∈Z/h(r)Z

S
(r)
j

and the relation dimgj(1; r) = ` + dimS
(r)
j (j ∈ Z/h(r)Z) is valid.

Although there is no general way to normalize the basis of S(r) we can fix a normalized,
with respect to the standard invariant form, basis of S(r). Denote by Ti,j (i =
1, . . . , tj) (tj = dim S

(r)
j ) the homogeneous components of degree j.

Finally, consider a set of square matrices Aα (α = 0, ..., `) such that the homo-
geneous components Aα,j of them together with the homogeneous components Ti,j

(i = 1, . . . , tj) (tj = dim S
(r)
j ) of the S(r), should form a basis of g.

The above realization of the basic representation is called the principal vertex
operator construction. In the following we write down the explicit formulas for the
principal vertex operator construction of the affine algebra g′(A) of type A

(1)
n−1 (n ≥ 2)

and D
(1)
n (n ≥ 4), see respectively [2] and [4], [5].
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3 THE CASE A
(1)
n−1 (n ≥ 2)

Let Eij (i, j = 1, . . . , n) denote the n × n matrix which is 1 in the i, j-entry and 0
everywhere else. Take the elements

E0 = En1, Ei = Ei,i+1

F0 = En1, Fi = Ei+1,i

H0 = Enn − E11, Hi = Ei,i − Ei+1,i+1

 (i = 1, . . . , n − 1) .

The 1-principal Z/nZ-gradation of g is given by setting deg Eij = j − i for i 6= j
and deg D = 0 for a traceless diagonal matrix D.
Set

E =
n−1∑
i=0

Ei =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
1 0 0 · · · 0


and let S be the centalizer of E in g. Then a basis of S is

Tj = Ej (j = 1, . . . , n − 1) and deg Tj = j modn .

For two distinct n-th roots of unity, ε and η, define n×n matrices A(ε,η) = (εiη−j)n
i,j=1.

Let A(ε,η),j be the homogeneous components of the A(ε,η). The Tk together with the
homogeneous components of A(ε,1) form a basis of g. We denote the elements of A(ε,1)

by Aα,j .

4 THE CASE D(1)
n (n ≥ 4)

Consider the 2n × 2n matrices then take the Chevalley generators given, for i =
1, . . . , n − 1, as follows

E0 = E2n−1,1 − E2n,2, Ei = Ei,i+1 − E2n−1,2n−i+1 ,
En = En−1,n+1 − En,n+2 ,

F0 = E1,2n−1 − E2,2n , Fi = Ei+1,1 − E2n−i+1,2n−i ,
Fn = En+1,n−i − En+2,n ,

H0 = E2n,2n + E2n−1,2n−1 − E22 − E11 ,

Hi = E2n−i,2n−i + Eii − E2n−i+1,2n−i+1 − Ei+1,i+1 ,

Hn = Enn + En−1,n−1 − En+2,n+2 − En+1,n+1 .

Denote by k the number k if k ≤ n and k − 1 if k > n for every k ∈ Z. Moreover, let
h = 2(n − 1) be the Coxeter number. The 1-principal Z/hZ-gradation of g is given
by setting

deg Eij =
(
j − i

)
modh .
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In a similar way, as in the above case A
(1)
n−1 (n ≥ 2), we obtain a of the canonical

part of g (see [4]). Furthermore, a normalized basis of the centralizer of E is given as
follows:

For n = 2k :
Ts =

1√
h

E2s−1 for s = 1, . . . , k − 1;

Ts =t Tn+1−s =
1√
h

E2s−3 for s = k + 2, . . . , n;

Tk =
1√
2
En−1 +

i

4
E0, Tk+1 =

1√
2h

En−1 − i

4
E0, where i2 = −1.

For n = 2k + 1 :

Ts =
1√
h

E2s−1 for s = 1, . . . , k; Tk+1 =
1

2
√

2
E0;

Ts = −tTn+1−s =
1√
h

E2s−3 for s = k + 2, . . . , n.

5 TWO HYPEROPERATIONS

Using the notation of the above sections 3 and 4, we define the following two ”nor-
malizing” hyperproducts (¯) and (∗) on Aα,j and S

(r)
j as follows:

Aα,i ¯ Aβ,j =
{
Aα,iAβ,j , T1,i+j , . . . , Tti+j ,i+j

}
,

Aα,i ¯ Tp,j =
{
Aα,iTp,j , T1,i+j , . . . , Tti+j ,i+j

}
,

Tp,j ¯ Aα,i =
{
Tp,jAα,i, T1,i+j , . . . , Tti+j ,i+j

}
,

Tp,j ¯ Tq,i =
{
T1,i+j , . . . , Tti+j ,i+j

}
,

where Aα,i, Aβ,j ∈ {Aα,i | α = 0, . . . , `, i ∈ Z/h(r)Z}
and Tp,j , Tq,i ∈ {Ti,j | i = 1, . . . , tj , tj = dim S

(r)
j }.

Note that if S
(r)
j = ∅ for some j, then (¯) is partial hyperoperation.

For the second hyperproduct (∗) we pick up and fix an element Aσ,i of every degree
i.

Yα,i ∗ Yβ,j = Yα,i ¯ Yβ,j ∪ {Aσ,i+j} ,

where Yα,i, Yβ,jare elements of the basis of degree i and j respectively.
In the case A

(1)
n−1 (n ≥ 2) we have dim S

(r)
j = 1 for all j = 1, . . . , n − 1 thus, the

hyperoperation ¯ is partial only in the case Tp,j ¯ Tq,i, where i + j = 0modn.
In the case D

(1)
n (n ≥ 4) we have the following:

(a) If n = 2k +1 then dim S
(r)
j = 1, j ∈ {1, 3, ..., n− 2, n− 1, n, ..., 2n− 3} and in the

rest cases dim S
(r)
j = 0,
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(b) If n = 2k then dimS
(r)
j = 1, j ∈ {1, 3, ..., n − 3, n + 1, n + 3, ..., 2n − 3} and

dim S
(r)
n−1 = 2 and in the rest cases dim S

(r)
j = 1.

Theorem 1 The hyperoperations (¯) and (∗) are WASS in g.

Proof. We have

(Aα,i ¯ Aβ,j) ¯ Aγ,k =
{
Aα,iAβ,j , T1,i+j , . . . , Tti+j ,i+j

}
¯ Aγ,k ={

Aα,iAβ,jAγ,k, T1,i+jAγ,k, . . . , Tti+j ,i+jAγ,k, T1,i+j+k, . . . , Tti+j+k,i+j+k

}
and on the other hand

Aα,i ¯ (Aβ,j ¯ Aγ,k) = Aα,i ¯
{
Aβ,jAγ,k, T1,j+k, . . . , Ttj+k,j+k

}
={

Aα,iAβ,jAγ,k, Aα,iT1,j+k, . . . , Aα,iTti+j ,i+jT1,i+j+k, . . . , Tti+j+k,i+j+k

}
.

Therefore (¯) is WASS.
The hyperoperation (∗) is also WASS since it is greater than (¯).2

The element E shifts the gradation by 1 in both hyperoperations (¯) and (∗).
Therefore ”orbits” of the elements of the basis, of degree 1, are obtained. These
”orbits” are normalized in the sense that in the same degree they have the same
length. This normalization is transferred in every non-zero element of g.

Theorem 2 Let β∗
b be the fundamental relation obtained by using elements on one

only level. Then the set of fundamental classes is isomorphic to Z/h(r)Z.

Proof. Take S
(r)
j0

such that dim S
(r)
j0

6= 0. Then, the product which has degree j0

contains all the elements of S
(r)
j0

. This means that the β∗
b -class of every element of

degree j0 is the subspace of degree j0. For the rest degrees one has simply to shift
the degree by using the element E. 2
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