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Abstract

Let (M, g) be a compact Riemannian manifold of dimension n. Let V be a
vector bundle over M . Let D be a second order elliptic differential operator on
the cross sections C∞(V ) of V . This operator D gives a spectrum denoted by
Sp(V, M, D). The aim of the present paper is to study the influence of different
spectra on special structure on a compact manifold and to prove that different
spectra can determine completely the geometry on the exceptional Lie group
(F4, g0).
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1 Introduction

Let (M, g) be a compact Riemannian manifold of dimension n. We consider a vector
bundle V over M . Let C∞(V ) be the cross sections of V . Let D be a second order
elliptic differential operator with leading symbol given by the metric tensor g acting
on C∞(V ), that

D : C∞(V ) → C∞(V ), D : θ → D(θ). (1)

If we have the property D(θ) = λθ, then θ is called eigensection and λ eigenvalue
associated to θ. The set of all eigenvalues of D is called spectrum of D and denoted
by Sp(V,M,D) and has the form

Sp(V,M,D) = {λ0 = · · · = λ0 = · · · < λ1 = λ1 · · · < · · · < ∞} .
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This is discrete and each eigenvalue has finite multiplicity. One of the basic prob-
lems in the spectra theory is to study the influence of Sp(V,M,D) on some structures
on the compact Riemannian manifold (M, g), when V and D are given.

The whole paper contains six sections. Each of them is analyzed as follows.
The first section contains the introduction.
Some basic elements of fibre bundles and Riemannian geometry are included in

the second section.
The third section has the different methods to compute the coefficients of this

asymptotic expansion.
The calculations of these coefficients for special manifolds are included in the

fourth section.
The fifth section contains some Riemannian manifolds, which can be determined

by some spectra.
The determination of the geometry on the exceptional Lie group (F4, g0) by differ-

ent spectra is given in the last section, where g0 the Riemannian metric on F4 coming
from the Killing-Cartan form on the Lie algebra t4 of F4.

2 BASIC ELEMENTS OF AFFINE AND
RIEMANNIAN GEOMETRY

Let M be a differential manifold of dimension n. In the local level we consider a chart
(U,ϕ) on M, that is

ϕ : U → ϕ(U) ⊆ IRn

is a diffeomorphism of U onto ϕ(U). Let {x1, ..., xn} be a local coordinate system in
U .

We denonte by C∞(M) the set of all differentiable functions on M, that is

C∞(M) = {f | f : M →IR}

which is an algebra over IR. Then we have the vector space Λq(M, IR), q = 0, 1, ..., n
of exterior q-forms on the manifold M . It is obvious that Λ0(M, IR) = C∞(M).

Let B = (V,M,F ) be a vector bundle over the compact manifold M, that means
V is the total space, M the base manifold and F the fibre. It is obvious

F
i→ V

π→ M,

where i is the inclusion mapping and π the projection mapping and

F ≈ Vx, ∀x ∈ M.

Let Γ be an affine connection on M . Let C∞(V ) be the set of cross sections of V .
If X is a vector on M, then this connection Γ defines a linear mapping

∇X : C∞(B) → C∞(B), ∇X (ϕ + ψ) = ∇Xϕ + ∇Xψ,
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∇νXϕ = ν∇Xϕ, ∇X (νϕ) = ν∇Xϕ + (Xν) ϕ,

where ϕ,ψ ∈ C∞(V ), ν ∈ C∞(M).
In the local coordinate system (x1, ..., xn) in U and let (y1, ..., ym) be a local

coordinate system in W , such that B|W = (W,U, F ) is local representation of B =
(V,M,F ). Let (ϕ1, . . . , ϕn) be a local base of the cross sections of B|W . It is known
that the local vector fields

X1 =
∂

∂x1
, . . . , Xn =

∂

∂xn

form a base of D1(U). Then the following formulas are valid:

∇XiXj =
n∑

i=1

Γl
ijXl.

Therefore we obtain Christoffel’s functions

Γl
jk,

which are n3.
These Christoffel’s functions also determine the connection Γ on M . For every

vector field X on M and the connection Γ on M we have the linear mapping

∇X : C∞(V ) → C∞(V ), ∇X : ϕ → ∇Xϕ.

The torsion tensor field T of type (1, 2) and the curvature tensor field R of type
(1, 3) in the local coordinate system (x1, . . . , xn) can be expressed as follows

T k
ij = Γk

ij − Γk
ji,

Rl
ijk =

∂

∂xi
Γl

jk − ∂

∂xj
Γl

ik+
n∑

m=1

(
Γl

imΓm
jk − Γl

jmΓm
ik

)
.

The theory of connection can be faced by the means of exterior forms.
Let ωi, ωi

j , (1 ≤ i, j ≤ n), be the 1-forms on U determined by

ωi (Xj) = δi
j , ωi

j =
∑

k

Γi
kjω

k.

The structure equations of Cartan are given by

dωi = −
∑

p

ωi
p ∧ ωp +

1
2

∑
j,k

T i
jkωj ∧ ωk,

dωi
j = −

∑
p

ωi
p ∧ ωp +

1
2

∑
l,k

Ri
jlkωl ∧ ωk.
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These are related by previous theory using the tangent bundle over M .
Let (M, g) be a Riemannian manifold. Let (U,ϕ) be a chart on M with local

coordinate system (x1, . . . , xn). The Riemannian metric g on U can be written

g|U = gijdxidxj .

This Riemannian metric g defines a connection Γ in the tangent bundle TM of
M, whose components {Γi

jk} with respect to the local coordinate system (x1, . . . , xn)
are given by

Γi
jk =

1
2
gil

{
∂gkl

∂xj
+

∂gjl

∂xk
− ∂gjk

∂xl

}
.

This connection is free torsion and its curvature tensor field has components {Rh
kji}

with respect to (x1, ..., xn), which are given by

Rh
kji =

∂

∂xk
Γh

ji −
∂

∂xj
Γh

ki + Γh
ktΓ

t
ji − Γh

jtΓ
t
kj .

It is known that the tensor field R of type (1, 3) satisfies some conditions.
From this tensor field we can define the Ricci tensor field p of type (0, 2) and

a scalar curvature T , which is a function on M . These in local coordinate system
(x1, . . . , xn) are defined by

pij =
n∑

t=1

Rt
tij ,

T = gijpij .

Let λ be a plane in TP (M) which is spanned by two linearly independent vectors
X and Y . Then the expression

σ (λ) =
−R̄P (X,Y,X, Y )

gP (X,X)gP (Y, Y ) − g2
P (X,Y )

is called sectional curvature of λ, where R̄ is the Riemannin curvature of (M, g),
defined in local coordinates (x1, . . . , xn) as follows

R̄ijkl = Rt
ijkgit

and R̄P and gP values of R̄ and g respectively at the point P .

3 .

Let (M, g) be a compact Riemannian manifold of dimension n. We denote by Λq(M, IR)
the vector space of exterior q-forms on the manifold M , where q = 0, 1, . . . , n and
Λ0(M, IR) = C∞(M). We consider the Laplace operator ∆ = dδ + δd acting on the
exterior q-forms Λq(M, IR), that is

∆ = dδ + δd : Λq(M, IR) → Λq(M, IR), (2)
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∆ : α → ∆α. (3)

If we have ∆α = λα, λ ∈ IR, then α is called eigen-q-form and λ eigenvalue asso-
ciated to α. The set of all eigenvalues is called spectrum and denoted by Spq(M, g).
This has the form

Spq(M, g) = {0 ≤ λ1,q ≤ λ2,q ≤ · · · ≤ +∞} , (4)

which is discrete and each eigenvalue has finite multiplicity. We also have the eigen-
q-forms

{0, ϕ1,q, ϕ2,q, . . . , } . (5)

We form the sum
∞∑

m=0

e−λm,qtϕm,q(x)ϕm,q(y), (6)

which converges uniformly on compact subsets of (0,∞) × M to the fundamental
solution eq(t, x, y) of the operator ∆ − ∂/∂t acting on q-forms, and the trace

Zq =
∑
m≥0

e−λmt (7)

can be expressed as the integral over the manifold of the pole

TQ =
∑
m≥0

e−λmt 〈ϕm, ϕm〉 , (8)

where 〈ϕm, ϕm〉 is the Riemannian inner product of q-forms at a point of M, that is

Zq =
∫
M

Tr (Tq) dM, (9)

where dM is the volume of M . This technique is based the main idea in order to
construct the fundamental solution of the operator ∆ − ∂/∂t, which has the form

eq (t, x, y) = Gq
N (t, x, y) +

∑
m≥0

(−1)m+1
∫ t

0

ds

∫
M

(Km (s, x, z)Gq
N (t − s, z, y)) dM.

(10)
The quantities

Km (s, x, z) and Gq
N (t − s, z, y) (11)

depend on the Riemannian tensor, its tensor fields and their covariant derivatives.
The asymptotic expansion of Zq, which is given by (7), takes the form

Zq =
∑
m≥0

e−λmt ≈ (4πt)−n/2 {
a0,q + a1,qt + a2,qt

2 + · · ·
}

, (12)

where
ai,q =

∫
M

Ui,qdM (13)
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and Ui,q a function on M, that is

Ui,q : M → IR, (14)

which depends on the curvature tensor field R, the Ricci tensor field p and the scalar
curvature T and their covariant derivatives.

Some of these coefficients have the form

a0,q =
(

n

q

)
V ol(M) (15)

a1,q =
[
−1
6

(
n

q

)
−

(
n − 2
q − 1

)] ∫
M

TdM, (16)

a2,q =
∫
M

{[
1
72

(
n

q

)
− 1

6

(
n − 2
q − 1

)
+

1
2

(
n − 4
q − 2

)]
T 2+

[
−1
180

(
n

q

)
+

1
2

(
n − 2
q − 1

)
− 2

(
n − 4
q − 2

)]
|p|2 +[

1
180

(
n

q

)
− 1

12

(
n − 2
q − 1

)
+

1
2

(
n − 4
q − 2

)]
|R|2

}
dM. (17)

The coefficients a3,q have been estimated only for the cases q = 0, 1, 2. Therefore
we have

a3,0 =
1

7!9

∫
[−142 |∇T |2 − 26 |∇ρ|2 7 |∇R|2 − 35T 3

+42T |ρ|2 − 42T |R|2 + 35 |ρ|3 − 20L1 + 8L2 − 8L3]dM, (18)

a3,1 =
1

9 · 40 · 7!

∫
M

[
− (980 + 5680n) |∇T |2 − (1078 + 104n) |∇ρ|2 + (49 + 280n) |∇R|2 +

+(1568−1680n)T |ρ|2 +(343−1680n)T |R|2 +(2548+1440n) |ρ|3 +(215−1400n)T 3+

+(392 − 800n)L1 + (−1392 + 320n)L2 + (197 − 960n)L3]dM, (19)

a3,2 = 1
4·7!·9·10 ·∫ [

(−(2840n2 − 3330n − 2438) |∇T |2 + (−52n2 − 1026n + 8036) |∇ρ|2 + (−140n2+

+149n− 1568) |∇R|2 − (−720n2 + 265n− 1960)T 3 + (840n2 − 2408n + 17836)T |ρ|2 +

+(−840n2 + 1173n − 3626)T |R|2 + (720n2 + 1112n − 28616) |ρ|3 +

+(−800n2 + 1192n − 18421)L1 + (160n2 − 1532n + 26246)L2−

−(−480n2 + 627n − 4708)L3)
]
dM, (20)

where
L1 = ρijρklRikjl, L2 = ρijRiklmRjklm, L3 = RijklRijuvRkluv . (21)
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We can generalize the above results using theory of fibre bundles. Let V be a
vector bundle over the compact Riemannian manifold (M, g). Let (U,ϕ) be a chart
of M with local coordinate system (x1, ..., xn). The restriction of g on U is given by

g/U = ds2 = gijdxidxj .

Let (gij) be the inverse matrix of (gij) and let |g| = (det(gij))1/2. The Riemannian
measure on M is given by

dM = gdx1 . . . dxm .

From this vector bundle V we obtain the vector space C∞(V ) of cross sections of
the vector bundle V . Let D : C∞(V ) → C∞(V ) be a second order elliptic differential
operator with leading symbol given by the metric tensor. If we choose a local frame
for V , we can express D in the form

D = −(gij∂2/∂xi∂xj + P k∂xk + Q),

where P k and Q are square matrices. These are not invariantly defined, but they
depend on the choice of frame and coordinate system.

Let Vx be the fibre of V over a point x. We choose a smooth fibre metric on
V . Let L2(V ) be the completion of C∞(V ) with respect to the global integrated
inner product. As a Banach space L2(V ) is independent of the Riemannian and fibre
metrics. For t > 0, we have

exp(−tD) : L2(V ) → C∞(V )

is an infinitely smoothing operator of trace class. The Kernel of exp(−tD) is defined
by

K(t, x, y,D) : Vy → Vx

and it is a smooth endomorphism valued function of (t, x, y). It can be proved ([4])
that K(t, x, y,D) vanishes to infinite order for x 6= y. If x = y, then K has an
asymptotic expansion as t → 0+ of the form

K(t, x, y,D) ∼ (4πt)−n/2
∞∑

n=0

En (x,D) tn,

where E0(x,D) = I.
We must notice that En(x,D) are local invariants of the differential operator

D. If we use local frame for V and a local system of coordinates, then we can
express En(x,D) functorially as a non-commutative polynomial in the derivatives of
the metric tensor and in the derivatives of the matrices P k and Q with coefficients
which are smooth functions of the metric. This polynomial is universal in the sense
that the coefficients depend only on the dimension n and are independent of the vector
bundle and the operator D.
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If D is self-adjoint, let {λi, θi} be a spectral resolution of D into a complete
orthonormal basis of eigensections θi and eigenvalues λi. For such an operator the
Kernel function is given by

K (t, x, y,D) =
∑
i=0

e−λitθi (x) ⊗ θj (y) .

Hence

Tr (exp (−tπD)) =
∞∑

i=0

e−tλi =
∫
M

Tr (K (t, x, y,D)) dM.

This can be written as follows

Tr (exp (−tD)) = (4πt)−n/2
∑

tn
∫
M

Tr (En (x,D)) dM.

We set
an (x,D) = Tr (En (x,D)) , an(D) =

∫
M

an (x,D) dM.

The coefficients an(D) are isospectral invariants or the operator D.
There are some techniques for estimates of an (x, D). This can be done by tensorial

expressions. This method is different than the first one [4].

4 .

Let Tn = IRn/Zn be the flat torus with metric ḡ coming from the restriction of the
Euclidean metric

g = dx2
1 + ... + dx2

n

on the n-dimensional Euclidean space IRn(x1, ..., xn) in Tn. The Laplace operator ∆
on the vector space C∞(Tn) of functions on Tn has the form

∆ = −
(

∂2

∂x2
1

+ · · · + ∂2

∂x2
n

)
.

The spectrum of ∆ acting on C∞(Tn) is given by the formula

Sp(Tn, ḡ) = {0 < λ1 = · · · < λ2 = · · · < · · · < λn = · · · < · · · < ∞} .

The coefficients aq, q = 0, 1, . . . , are given by

a0 = 2πnl, aq = 0, q = 1, 2, . . . , n,

where l is the radius of the circle.
Let (M, g) be a compact symmetric manifold of rank 1. These Riemannian man-

ifolds are the following:
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1. (Sn, g0) n-dimensional sphere with constant sectional curvature 1.

2. (IPn(IR), g0) real projective space of dimension n with constant sectional cur-
vature 1.

3. (IPn(C), g0) complex projective space of constant holomorphic sectional curva-
ture 1.

4. (IPn(IH), g) quaternionic projective space.

5. P 2(y) = F4/SpinP Cayley projective plane.

The coefficients aq q = 0, 1, . . . , for these manifolds are given in ([1]).
It is still open to compute these coefficients for other manifolds.
Which we require all the operators should be with leading symbol given by the

metric tensor.
In order to see this influence we give the following theorems.

Theorem 4.1 ([8]) Let (M, g) and (M ′, g′) be two compact Riemannian manifolds
of dimension n with the property Spk(M, g) = Spk(M ′, g′) for k = 0 and k = 1. If
(M, g) is an Einstein so is (M ′, g′).

Theorem 4.2 ([7]) Let (M, g) and (M ′, g′) be two compact simply connected Rie-
mannian manifolds of dimension n. If n is given then there is at least one q ∈ [0, n]
such that if Spq(M, g) = Spq(M ′, g′) and (M, g) has constant sectional curvatnre, so
does (M ′, g′) and (M, g) is isometric onto (M ′, g′).

5 .

Let (M, g) be a compact Riemannian manifold of dimension n. We consider the
following second order elliptic differential operator:

Dε
r = ε∆r + (1 − ε)∆̄r , (22)

where 0 ≤ ε ≤ 1, r = 1, 2, . . . , n − 1 and ∆̄r the Beltrami-Laplace operator acting on
r-forms on M . This operator has a spectrum

Spr (M, g,Dε
r) = {0 ≤ λ1 (ε) ≤ λ2 (ε) ≤ · · · < ∞} ,

which is discrete and each eigenvalue has finite multiplicity. Some of the coefficients
of D1(ε) are given by

a0,1(ε) = nV ol(M), (23)

a1,1(ε) =
6ε − n

n

∫
M

TdM, (24)

a2,1(ε) =
1

360

∫
M

[(5n − 60ε)T 2 + (180ε2 − 2n) |ρ|2 + (2n − 30) |R|2]dM, (25)
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a3,1(ε) =
1

360 · 7!

∫
M

[
(−98 + 588ε − 5680n) |∇T |2 +

+(392 − 1470ε2 − 1440n)) |∇ρ|2 + (49 − 280n) |∇R|2 +

+(245 − 1400n)T 3 + (−98ε − 1470ε2 + 1680n)T |ρ|2 +

+(245 + 98ε − 1680n)T |R|2 + (245ε − 1400n) |ρ|3

+(392 − 800n)L1 + (98 − 1470ε + 320n)L2 + (197 − 960n)L3] dM. (26)

The following theorem has been proved ([10]).

Theorem 5.1 Let (M, g) and (N,h) be two compact Riemannian manifolds. We
assume that Spk(M, g, ∆) = Spk(N,h, ∆) for k = 0, 1, 2 and Sp1(M, g,Dε

1) =
Sp1(N,h,Dε

1) for three distinct values of ε 6= 0. If (M, g) is locally symmetric, so
is (N,h).

The main result of the present paper is to prove that the symmetric space (F4, g0),
which is the exceptional Lie group with metric g0 coming from the Killing-Cartan form
on the Lie algebra t4 of F4.

Now, we prove the below theorem.

Theorem 5.2 Let (M, g) be a compact Riemannian irreducible manifold of dimen-
sion 52. If we have the relations Spk(M, g, ∆) = Spk(F4, g0, ∆) for k = 0, 1, 2 and
Sp1(M, g,Dε

1) = Sp1(F4, g0, D
ε
1) for three distinct values of ε 6= 0, where (F4, g0) is

the exceptional Lie group with Riemannian metric g0 coming from the Killing-Cartan
form on the Lie algebra t4 of F4, then (M, g) is isometric onto (F4, g0).

Proof. From the assumption we conclude that the manifold (M, g) is symmetric.
The only 52 dimensional irreducible symmetric manifold are the following:

Sp(14)/Sp(13) × Sp(1) = IP 13(IH);
SU(27)/S(U(26) × U(1)) = IP 26(C);
SU(15)/S(U(13) × U(2));
SO(53)/SO(52) × S0(1) = S52;
SO(28)/SO(26) × S0(2);
SO(17)/SO(13) × S0(4);
Since we have
Sp(F4, g0, ∆0) 6= Sp(IP 13(IH), g1, ∆0) ([1]), ([14]);
Sp(F4, g0, ∆0) 6= Sp(IP 26(C), g2, ∆0) ([1]), ([14]);
Sp(F4, g0, ∆0) 6= Sp(SU(15)/S(U(13) × U(2)), g3, ∆0) ([12]), ([14]);
Sp(F4, g0, ∆0) 6= Sp(SU(53)/SO(52) × S0(1), g4,∆0) ([1]), ([14]);
Sp(F4, g0, ∆0) 6= Sp(SO(26) × S0(2), g5, ∆0) ([15]), ([14]);
Sp(F4, g0, ∆0) 6= Sp(SO(17)/SO(13) × S0(4), g6, ∆0) ([12]), ([14]),

where g1, g2, g3, g4, g5 and g6 are the Riemannian metrics on the manifolds IP 13(IH),
IP 26(C), SU(15)/S(U(13) × U(2)), SU(53)/SO(52) × S0(1), SO(26) × S0(2),
SO(17)/SO(13)×S0(4) respectively coming from the Killing-Cartan form on the Lie
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algebras t14, t27, t15, t53, t28 and t17 respectively of the Lie groups Sp(14), SU(27),
SU(5), SU(53), SO(28) and SO(12) respectively.

Finally we conclude that the irreducible Riemannian symmetric manifold coincides
with the exceptional Lie groups (F4, g0).
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