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Abstract

We present a simple, axiom-preserving, isotopic generalization of the ordi-
nary differential calculus, here called isodifferential calculus, which is based on
the generalization of the basic unit with compatible generalizations of fields,
vector spaces and manifolds. The new calculus is applied to the isotopic lifting
of Newton’s equations with a number of novel possibilities, such as: the repre-
sentation of the actual nonspherical and deformable shape of particles (which
is absent in Newtonian mechanics); the admission of nonlocal-integral forces
(which is not possible for the topology of Newton’s equations); and the capa-
bility to turn Newtonian systems which are non-Hamiltonian in the frame of
the observer into a form in the same frame which is Hamiltonian in isospaces.
We then introduce the isotopies of the Lagrangian and Hamiltonian mechan-
ics and show that the most general possible isotopic Newton’s equations are
derivable from a first-order variational principle in isospace. The calculus of
isovariations and related isotopies of optimization methods are indicated. We
also show that the construction of the isoanalytic representations from the given
equations of motion (here called inverse isotopic Newtonian problem) is consid-
erably easier than that of the conventional inverse Newtonian problem. We
finally apply the isodifferential calculus to the construction of novel isotopies of
the symplectic and Riemannian geometries which are nonlinear in the velocities
and integro-differential, thus being particularly significant for interior dynam-
ical problems. The paper is written by a physicist to stimulate mathematical
studies on nonlinear-integral dynamical systems which have recently emerged in
particle physics, astrophysics, superconductivity and other disciplines.
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1 Background notions on isotopies

The basic notion of this paper, that of isotopies, is rather old. As Bruck [5] recalls, the
notion can be traced back to the early stages of set theory where two Latin squares
were said to be isotopically related when they can be made to coincide via permuta-
tions. Since Latin square can be interpreted as the multiplication table of quasigroups,
the isotopies propagated to quasigroups, then to algebras and more recently to most
of mathematics. As an illustration, the isotopies of Jordan algebras were studied by
McCrimmon [19], those of Lie algebras by Santilli [25], and subsequently extended
to fields, vector spaces, manifolds, groups, functional analysis, etc. A comprehensive
literature on isotopies up to 1984 can be found in Tomber’s bibliography [2] while
subsequent references can be found in the recent monograph by Lõhmus, Paal and
Sorgsepp [17].

In this paper we study the isotopies of differential calculus, here called isodiffer-
ential calculus, and identify the consequential isotopies of mechanics and geometries.
The isocalculus is presented here for the first time, although it is implicit in other
studies by this author [32, 33], as we shall indicated later on. In this section we
recall only those aspects of the isotopies which are essential for the understanding of
this paper. The topics are also selected on the basis of their applicability to specific
problems in physics and other disciplines. Due to the emphasis on applications, our
treatment is local, while abstract, realization-free profiles are merely indicated.

Let F = F (n, +,×) be a field (hereon assumed to have characteristic zero) with
elements n, m, . . . (hereon assumed to be real R, complex C or quaternionic numbers
Q), sum n + m, multiplication n × m, additive unit 0, multiplicative unit 1, and
familiar properties n + 0 = 0 + n = n, n × 1 = 1 × n = n, ∀n ∈ F , and others. An
isofield [31] is the image F̂ = F̂ (n̂, +, ×̂) of F (n, +, X) under the lifting

1 → Î , (1)

where the quantity Î is sufficiently smooth, everywhere invertible, symmetric, real-
valued and positive-definite but otherwise arbitrary (conditions which are hereon as-
sumed), thus generally being outside the original set F (e.g., for F = R, Î can be a
well behaved integral or an N ×N matrix), while preserving unchanged the additive
unit 0. The set F is then reconstructed in such a way to admit Î as the correct left
and right unit. This requires the lifting of: the numbers n ∈ F into the isonumbers
n̂ = n× Î, the sum n+m into the isosum n̂+m̂ = (n+m)× Î, and the multiplication
into the isomultiplication

n × m → n̂×̂m̂ = n̂ × T̂ × m̂, T̂ = Î−1. (2)

Under these conditions it is easy to see that: 1̂ is the correct left and right unit of
F̂ , Î×̂n̂ = n̂×̂Î = n̂, ∀ n̂ ∈ F̂ (n̂, +, ×̂); F̂ (n̂, +, ×̂) preserves all axioms of F (n, +,×)
thus being a field; and F̂ (n̂, +, ×̂) is isomorphic to F (n, +,×). Due to the preservation
of the original axioms, the lifting F (n, +,×) → F̂ (n̂, +, ×̂) is called an isotopy. In
this case the new unit Î is called isounit and its inverse T̂ is called the isotopic
element. All conventional operations dependent on the multiplication on F (n, +,×)
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are generalized on F̂ (n̂, +, ×̂) in such a way that Î preserves all the original axiomatic
properties of I, i.e. Î n̂ =Î ∗ Î ∗ . . . ∗ Î(n-times) =Î,Î = Î

Î
2 = Î, Î/Î = Î, etc. Despite

its simplicity, the lifting F (n, +,×) → F̂ (n̂, +, ×̂) has significant implications. For
instance, real numbers which are conventionally prime (under the tacit assumption
of the unit 1) are not necessarily prime with respect to a different unit [31]. As a
result, most of the properties and theorems of the contemporary number theory are
dependent on the assumed unit and, as such, admit intriguing isotopies.

The notion of isonumbers was presented, apparently for the first time, by this au-
thor at the conference Differential Geometric Methods in Mathematical Physics, held
at the University of Clausthal, Germany, in 1980. The first mathematical treatment
appeared in ref. [21] of 1982. A systematic mathematical study is available in ref.
[31], while additional studies and applications are presented in monographs [32, 33].

Let E(x, δ,R) be an N -dimensional Euclidean space, with local chart x = {xk},
k = l, 2, . . . , N , N -dimensional metric δ = diag.(1, 1, . . . 1) and line element x2 =
xiδijx

j over the reals R(n, +,×), where the convention on the sum of repeated indices
is assumed hereon . The lifting of the fields R(n,+,×) evidently requires for necessary
compatibility a corresponding lifting of the space E(x, δ,R). The isotopies of the
Euclidean, Minkowskian and Riemannian spaces were introduced by this author in
paper [28] of 1983, subjected to a deeper study in memoirs [29, 30] of 1988 and
systematically studied with various applications in the recent monographs [32, 33].
Isospaces can be introduced as follows.

The isoeuclidean spaces Ê(x̂, δ̂, R̂) are the image of E(x, δ,R) constructed over the
isofields R̂(n̂, +, ×̂) and are characterized by: the lifting of the original N -dimensional
unit I = diag.(l, 1, ..., 1) into N×N -dimensional isounits Î = (Îi

j) = T̂−1 (verifying the
above assumed conditions); the joint deformation of the metric δ into the isometric δ̂,
δ → δ̂ = T̂ δ; the assumption that the isounit of the underlying isofield coincides with
that of the isospace; and use of the original local coordinates in contravariant form,
x̂k ≡ xk, although different coordinates in their covariant form, x̂k = δ̂kj x̂

j = T̂ i
kxi.

Because of the latter occurrence, the symbol x will be used for the coordinates of
conventional spaces, while the symbol x̂ will be used for the coordinates of isospaces.
When writing δ̂(x,

.
x,

..
x, . . .) we refer to the projection of the isometric δ̂ in the original

space. Since the deformation of the metric δ → δ̂ = T̂ δ is compensated by the inverse
deformation of the unit, I → Î = T−1, it is easy to see that Ê(x̂, δ̂, R̂) preserves all
geometric axioms of E(x, δ,R). Therefore, the map E(x, δ,R) → Ê(x̂, δ̂, R̂) is also
an isotopy and Ê(x̂, δ̂, R̂) ≈ E(x, δ,R). Similar results occur for the isotopies of the
Minkowski, Riemannian and other spaces [28, 32].

Despite its simplicity, the lifting E(x, δ,R) → Ê(x̂, δ̂, R̂) also has significant im-
plications. ln fact, the functional dependence of the matrix elements Îi

j of the isounit
Î is completely unrestricted. The isometric δ̂ can therefore depend on the local co-
ordinates x as well as their derivatives with respect to an independent variable t of
arbitrary order, and we have the liftings

I = diag(1, 1, . . . , 1) → Î =
(
Îi
j

)
= Î

(
t, x,

.
x,

..
x, . . .

)
= T̂−1, (3)
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x2 = xiδijx
j ∈ R → x̂2̂ =

[
xiδ̂

(
t, x,

.
x,

..
x, . . .

)
xj

]
Î ∈ R̂(n̂,+, ×̂), δ̂ = T̂ δ. (4)

Despite the above generalizations, the original space is flat and therefore its image
under isotopies is isoflat, that is, the axioms of flatness are verified in isospace (i.e.
when the basic unit is Î). The understanding is that the projection of Ê(x̂, δ̂, R̂) into
the original space E(x, δ,R) is curved (when the unit is the conventional 1). Note that
Riemannian metrics g(x) are a particular case of the broader isometric δ̂(x,

.
x,

..
x, . . .).

This indicates that the N -dimensional Riemannian space R(x, g,R) over the reals
can be reinterpreted as the isospace Ê(x̂, δ̂, R̂), δ̂ = g(x), over the isoreals via the
factorization g(x) = T̂ (x)δ. The assumption of the isounit Î = T−1 then eliminates
curvature in isospace [32].

Isospaces have intriguing and novel properties which do not appear to have prop-
agated into the mathematical literature. For instance, the conventional trigonometry
on the two- dimensional Euclidean space E(x, δ,R), δ = diag.(1, 1) (Gauss plane) is
lost under lifting to a two-dimensional Riemannian space R(x, g(x), R), but it can be
reformulated in the two-dimensional isospace Ê(x̂, δ̂(x,

.
x,

..
x, . . .), R̂) resulting in the

so-called isotrigonometry (see [32], App. 6.A, for brevity). An intriguing application
is the formulation of the Pythagorean theorem for a triangle with curved sides (be-
cause it can be mapped via the isotopies into an ordinary Pythagorean configuration
with straight sides in isospace).

Similarly, all infinitely possible spheroidal ellipsoids in three-dimensional Euclidean
space x2/a2 + y2/b2 + z2/c2 = 1 ∈ R(n, +,×), a, b, c 6= 0, are unified by the perfect
sphere in isospace called isosphere(

x2/a2 + y2/b2 + z2/c2
)
Î = Î ∈ R̂(n̂, +, ×̂), (5)

Î = diag(a2, b2, c2), T̂ = diag(a−2, b−2, c−2) (6)

In fact, under isotopies the semiaxes (1, 1, 1) of the original perfect sphere are deformed
into the values (a2, b2, c2), but the corresponding units are deformed of the inverse
amount (a−2, b−2, c−2) thus preserving the perfect sphericity in isospace. When the
conditions of positive-definiteness and non-singularity of the isounit are relaxed, the
isosphere unifies all possible compact and noncompact quadrics and cones in three-
dimension. The use of yet more general isounits then yields new notions, such as an
isosphere whose isounit is singular or a distribution. For corresponding isotopies of
the Minkowski space see [33].

The isotopies of the various branches of Lie’s theory (enveloping algebra, Lie alge-
bra, Lie groups, representation theory, etc.) were introduced by this author in memoir
[25] of l978 under the name of Lie-isotopic theory, where systematically studied in
monographs [26, 27] and [32, 33] and today called Lie-Santilli isotheory (see indepen-
dent monographs [12, 17, 34] or review paper [14] and literature quoted therein). In
essence, Lie’s theory in its contemporary formulation (on conventional spaces over
conventional fields) is linear, local and canonical and, as such, it possesses limitations
in its applications. The isotopies of Lie’s theory are the most general possible non-
linear, nonlocal and noncanonical maps which are however capable of reconstructing
linearity, locality and canonicity when formulated in isospaces over isofields. As such,
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the isotopies imply a considerable broadening of the applications of the conventional
Lie theory while preserving its axioms at the abstract level.

The isotopies of functional analysis, called isofunctional analysis, were introduced
by Kadeisvili [13], including the notions of isofunction f̂(x̂) on isospaces, isocontinuity,
isolimits, etc. They are simple isotopies of the conventional notions and will be tacitly
assumed hereon. We merely recall that the notion of isocontinuity implies that of
continuity, but the inverse statement is not necessarily true.

Ref. [13] also introduced a classification of isounits into five topologically different
classes, which is called Kadeisvili’s classification and generally used in current liter-
ature. This paper is devoted to the isotopies of Kadeisvili’s Class I, i.e., those with
isounits verifying the assumed conditions. The isotopies of Class II occur when the
isounits satisfy the same conditions except that they are negative-definite. The iso-
topies of Class III are the union of those of classes I and II; those of Class IV include
all preceding ones plus singular isounits; and those of Class V include all preceding
ones plus isounits of unrestricted characteristics, such as step-functions, distributions,
lattices, etc.

Kadeisvili’s classification is significant because it illustrates the broad character of
the isotopies. For instance, Lie’s theory is unique (because referred to the single unit
I), while the Lie- Santilli isotheory admits five topologically distinct classes (because
based on five distinct isounits). It should be stressed that, despite all the studies
conducted to date, the isotopies remain vastly unexplored at this writing. In fact,
only the isotopies of Class I, II and III have been preliminarily studied until now
[32, 33], while those of Classes IV and V are unknown.

The isotopies of manifolds, called isomanifolds, have been systematically studied
by the mathematicians G. Tsagas and D. S. Sourlas [34, 35, 36]. They here called
Tsagas-Sourlas isomanifolds and can be indicated as follows. Let M be a manifold.
An isochart is the pair (Uα,Φα) [34], where Uα ⊆ M and Φα is a homeomorphism of
Uα onto an open subset V̂α of Ê(x̂, δ̂, R̂):

Φα :→ Φα(Uα) = V̂α ⊆ Ê(x̂, δ̂, R̂). (7)

A Tsagas -Sourlas isomanifold is an N -dimensional real isomanifold reducible to
the study of M [Ê(x̂, δ̂, R̂)]. For the basic properties of isomanifolds we refer to [35]
for brevity. We only mention that, conventional manifolds have a topology which is
everywhere local-differential, while the Tsagas-Sourlas isomanifold have an integro-
differential topology, i.e., a topology which is everywhere local-differential except in
the isounit. Nonlocal-integral terms can therefore be treated via isomanifolds provided
that they are embedded in the isounit.

2 Isodifferential calculus on Tsagas-Sourlas isoman-
ifolds

Let E(x, δ,R) be the ordinary N -dimensional Euclidean space with local coordinates
x = {xk}, k = 1, 2..., N , and metric δ = diag.(1, 1, 1) over the reals R(n, +,×).
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Let Ê(x̂, δ̂, R̂) be its isotopic image with local coordinates x̂ = {x̂k} and isometric
δ̂=T̂ δ over the isoreals R̂(n̂, +, ×̂). Let the isounit be given by the N × N nowhere
singular, symmetric, real-valued and positive-definite matrix Î = (Îj

i ) = (Îj
i ) = T̂−1 =

(T j
i )−1 = (T j

i )−1 whose elements have a smooth but otherwise arbitrary functional
dependence on the local coordinates, their derivatives with respect to an independent
variable and any needed additional quantity, Î = Î(x̂, . . .). The following properties
then hold

x̂k ≡ xk, x̂k = δ̂kix̂
i = T̂ i

kδij x̂
j = T̂ i

kδijx
j = T̂ i

kxi, xi = δijx
j , (8)

x̂iδij x̂
j = x̂iT̂ j

i δjmx̂m = x̂iδ
ij x̂j ≡ x̂kx̂k = x̂kx̂k, δ̂ij =

[(
δ̂mn

)−1
]ij

, (9)

xiδijx
j = xiδ

ijxj = xixj = xix
j , δij =

[
(δmn)−1

]ij

. (10)

Let M
[
Ê(x̂, δ̂, R̂)

]
be the Tsagas-Sourlas isomanifold on Ê hereon refered as

M(Ê). The isodifferential calculus on M(Ê) can be defined as an isotopic lifting
of the conventional differential calculus on M(E), that is, a lifting based on the gen-
eralization I → Î of the unit I of E, under the condition of preserving the original
axioms, including the condition of the invariance of the isounit (see below).

The first-order isodifferentials of the contravariant and covariant variables x̂k and
x̂k, respectively, are here defined as the quantities

d̂x̂k = Îi
k(x, . . .)dxi, d̂x̂k = T̂ i

k(x, . . .)dxi , (11)

where the expressions d̂x̂k and d̂x̂k are defined on M(Ê) while the corresponding
expressions Îk

i dxi and T̂ i
kdxi are the projections on M(E).

Let f̂(x̂) be a sufficiently smooth isofunction on a closed domain D̂(x̂) of con-
travariant coordinates x̂k on M(Ê). By using Kadeisvili’s [13] notions of isocontinu-
ity, isolimits and isoconvergence, we shall say that f̂(x̂) admits the isoderivative at a
point â ∈ D̂ when the following isolimits exist

f̂ ′(âk) =
∂̂f̂(x̂)

∂̂x̂k |x̂k=âk

= T̂ i
k

∂f(x)
∂xi |x̂k=âk

= Limdx̂k→0̂k

f̂
(
âk + d̂x̂k

)
− f̂

(
âk

)
d̂xk

(12)

where, again, ∂̂f̂(x̂)/∂̂x̂k is computed in M(Ê) and T̂ i
k∂f(x)/∂xi is the projection in

M(E). When f̂(x̂) is a isofunction of a covariant coordinate x̂k on a closed domain
D̂(x̂k) ∈ M(Ê), we have the isoderivative at âk when the following limit exists:

f̂ ′(âk) =
∂̂f̂(x̂)

∂̂x̂k |x̂k=âk

= Îi
k

∂f(x)
∂xi |x̂k=âk

= Limdx̂k→0̂k

f̂
(
âk + d̂x̂k

)
− f̂ (âk)

d̂xk

(13)
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The isodifferentials of an isofunction of contravariant (covariant) coordinates x̂k(x̂k)
on Ê(x̂, δ̂, R̂) are defined via the isoderivatives according to the respective rules

d̂f̂(x̂)|contrav. =
∂̂f̂

∂̂x̂k
d̂x̂k = T̂ i

k

∂f

∂xi
Îk
j dxj = df(x), (14)

d̂f(x)|covar. =
∂̂f̂

∂̂x̂k

d̂x̂k = Îk
i

∂f

∂xi
T̂ j

kdxj = df(x). (15)

An iteration of the notion of isoderivative leads to the second-order isoderivative

∂̂2f̂(x̂)

∂̂xk 2
= T̂ i

kT̂ j
k

∂2f(x)
∂xi∂xj

,
∂̂2f̂(x̂)

∂̂x2
k

= Îk
i Îk

j

∂2f(x)
∂xi∂xj

(no sums on k) (16)

and similarly for isoderivatives of higher order.
The isolaplacian on Ê(x̂, δ̂, R̂) is given by

∆̂ = ∂̂k∂̂k = ∂̂iδ̂ij ∂̂
j = ∂̂iδijδ

j = Îi
kδkδij∂

j , ∂̂k = ∂̂/∂̂x̂k, ∂k = ∂/∂xk, etc., (17)

and differs from the corresponding expression on a Riemannian space R(x, g,R) with
metric g(x) = δ̂, ∆ = δ̂−1/2∂iδ̂

1/2δ̂ij∂j .
A few examples are in order. First note the following properties derived from

definitions (12) and (13),

∂̂x̂i/∂̂x̂j = δi
j , ∂̂x̂i/∂̂x̂j = δj

i , ∂̂x̂i/∂̂x̂j = T̂ j
i , ∂̂x̂i/∂̂x̂j = Îi

j (18)

Next, we have the simple isoderivatives:

∂̂
(
x̂kx̂k

)
∂̂x̂r

=
∂̂

(
x̂iδ̂ij x̂

j
)

∂xr
= T̂ i

r

∂
(
xiδijx

j
)

∂xi
= T̂ i

r2xi = 2x̂r , (19)

∂̂ ln ψ̂(x̂)

∂̂x̂k
= T̂ i

k

∂ lnψ(x)
∂xi

=
1

ψ̂(x̂)

∂̂ψ̂(x̂)

∂̂x̂k
, (20)

and similarly for other cases.
For completeness we merely mention the (indefinite) isointegration which, when

defined as the inverse of the isodifferential, is given by∫
d̂x̂ =

∫
T̂ Îdx =

∫
dx = x, (21)

namely,
∫̂=

∫
T̂ . Definite isointegrals are formulated accordingly.

The above basic notions are sufficient for our needs at this time. Isodifferentiable
isofunctions of order m will be indicated Ĉm. Systematic studies on the isotopies
of the various theorems of the conventional calculus (see, e.g., [38]) will be studied
elsewhere.

Remark: The isodifferential, isoderivative and isodifferentiation verify the con-
dition of preserving the basic isounit Î. Mathematically, this condition is necessary
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to prevent that a set of isofunctions f̂(x̂), ĝ(x̂), ..., on Ê(x̂, δ̂, R̂) over the isofield
R̂(n̂, +, ×̂) with isounit Î are mapped under isoderivative into a set of functions
f̂ ′(x̂), ĝ′(x̂), ... defined over a different field because of the alteration of the isounit.
Physically, the condition is also necessary because the unit is a pre-requisite for mea-
surements. Lack of conservation of the unit therefore implies lack of consistent phys-
ical applications.

As an example, the following alternative definition of the isodifferential

d̂x̂k = d
(
Îk
i xi

)
=

[(
∂iÎ

k
r

)
xr + Îk

i

]
dxi = Ŵ k

i dxi, (22)

would imply the alteration of the isounit,Î → Ŵ 6= Î, thus being mathematically and
physically unacceptable.

Nevertheless, when using isoderivatives of independent variables, say, coordinates
and time, the above rule does not apply and we have:

∂̂t∂̂kf̂ (t, x̂) = ∂̂t

[
∂̂kf̂ (t, x̂)

]
= ∂̂t

[
T i

k (t, x, . . .) ∂if (t, x)
]
. (23)

Additional properties of the isodifferential calculus will be identified during the course
of our analysis.

3 Isotopic lifting of Newtonian mechanics

Newton’s equations have remained essentially unchanged since their formulation in
1687 [20]. Their re-inspection is now warranted because classical Hamiltonian me-
chanics has been constructed to represent Newton’s equations and, in turn, quantum
mechanics has been constructed as an operator image of Hamiltonian mechanics. The
applicability of these mechanics is essentially restricted to local-differential and poten-
tial systems, while the advancement of knowledge in various disciplines is requesting
the treatment of nonlocal-integral and nonpotential systems. It then follows that a
possible broadening of contemporary dynamics must originate from its foundations,
Newton’s equations.

In this section we introduce, apparently for the first time, the isotopies of Newton’s
equations characterized by the isodifferential calculus as one (not necessarily unique)
way of broadening their original conception [20]. The isotopies have been selected
over a variety of other possibilities because of their axiom-preserving character as
well as of the consequential broadening of classical and quantum mechanics outlined
in subsequent sections.

The contemporary formulation of Newton’s equations requires the tensorial space
S(t, x, v) = E(t) × E(x, δ,R) × E(v, δ̂, R), where E(t) is the one-dimensional space
representing time t, E(x, δ,R) is the conventional three-dimensional Euclidean space
with local trajectories x(t) = [xk] = {x, y, z} and E(v, δ, R) is the tangent pace TE
(see Sect. 6) which, at this Newtonian level, can be considered as an independent space
representing the contravariant velocities v = {vk} = dxk/dt. Newton’s equations for
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a test body of mass m = const. ( 6= 0) moving within a resistive medium (a.e., our
atmosphere) can then be written

mdvk/dt − FSA
k (t, x, v) − FNSA

k (t, x, v) = 0, k = 1, 2, 3(= x, y, z), (24)

where SA (NSA) stands for variational self-adjointness (variational non-self-adjoint-
ness), i.e. the verification (violation) of the necessary and sufficient conditions for
the existence of a potential U(t, x, v) originally due to Helmholtz [11] (see monograph
[26] for historical notes and systematic studies). It should be recalled that in New-
tonian mechanics the potential U(y, x, v) must be linear in the velocities (to avoid a
redefinition of the mass),

U(t, x, v) = Uk(t, x)vk + U0(t, x). (25)

Eq.s (24) can then be written{
m

dvk

dt
− d

dt

∂U(t, x, v)
∂vk

+
∂U(t, x, v)

∂xk
− FNSA

k (t, x, v)
}NSA

=

=
{

m
dvk

dt
− ∂Uk(t, x)

∂xs

dvs

dt
+

∂U0(t, x)
∂xk

− FNSA
k (t, x, v)

}NSA

= 0, (26)

namely, they are not in general derivable from Lagrange’s [10] or Hamilton’s [10]
equations in the local chart {t, x, v}, as well known [26, 27] (see later on for coordi-
nate transforms). The extension to systems of n particles with masses mk( 6= 0) is
straighforward and will be ignored for brevity.

The representation space of the desired isotopic image of Newton’s equations is
given by the Kronecker product of isospaces Ŝ(t̂, x̂, v̂) = Ê(t̂)× Ê(x̂, δ̂, R̂)× Ê(v̂, δ̂, R̂)
characterized by the (one- dimensional) time isounit Î0

0 = (T̂ 0
0 )−1 and the (three-

dimensional) space isounit Î = (Îk
i ) = (T̂ i

k)−1 where, for clarity, we have differentiated
the isotime t̂, isocoordinates x̂k(t̂) and isovelocities v̂k(t) from the original respective
quantities t, xk and vk, with the following relationships in addition to (8-10):

t̂ = t, v̂k ≡ vk, v̂k = δ̂kj v̂
j = T̂ i

kδij v̂
j = T̂ i

kvi 6= vk = δkiv
i. (27)

The desired isotopic lifting of Newton’s equations (26) in isospace Ŝ(t̂, x̂, v̂), here
called isotopic Newton equations and submitted apparently for the first time, are given
by

Γ̂k(t̂, x̂, v̂) = m̂
d̂v̂k

d̂t̂
− d̂

d̂t̂

∂̂Û(t̂, x̂, v̂)

∂̂v̂k
+

∂̂Û(t̂, x̂, v̂)

∂̂x̂k
=

= m̂
d̂v̂k

d̂t̂
− ∂̂Ûk(t̂, x̂)

∂̂x̂i

d̂x̂i

d̂t̂
+

∂̂Û0(t̂, x̂)

∂̂x̂k
= 0, (28)

Û(t̂, x̂, v̂) = Ûk(t̂, x̂)v̂k + Û0(t̂, x̂), (29)

where we have used properties (17), m̂ = const (6= 0) is the isotopic mass, that is,
the image of the Newtonian mass in isospace and one should note the preservation of
the linearity of isopotential (29) in v̂k.
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Theorem 1 All possible sufficiently smooth, regular and variationally non-self-adjoint
Newton’s equations (26) always admit in a neighborhood of a point (t, x, v) the repre-
sentation in terms of the isotopic equations (28 and 29)

m̂
d̂v̂k

d̂t̂
− d̂

d̂t̂

∂̂Û(t̂, x̂, v̂)

∂̂x̂k
+

∂̂Û(t̂, x̂, v̂)

∂̂x̂k
=

= T̂ i
k

{
m

dvi

dt
− ∂Ui(t, x)

∂xs

dxs

dt
+

∂U0(t, x)
dxi

− FNSA
i (t, x, v)

}
= 0. (30)

Proof. When projected in the original space S(t, x, v), Eq.s (28-29) can be written

m̂T̂ 0
0

d
(
T̂ i

kvi

)
dt

− T̂ 0
0

d

dt
T̂ i

k

∂Û
(
t̂, x̂, v̂

)
∂v̂i

+ T̂ i
k

∂Û
(
t̂, x̂, v̂

)
∂xi

=

m̂T̂ 0
0 T̂ i

k

dvi

dt
− T̂ 0

0 T̂ i
k

∂Ûi (t, x)
∂xs

vs + T̂ i
k

∂Û0 (t, x)
∂xi

+ m̂T̂ 0
0

dT̂ i
k

dt
vi = 0. (31)

Sufficient conditions for identities (30) are then given by

m̂T 0
0 dvi/dt = mdvi/dt, (32)

T̂ 0
0

∂Ûi(t, x)
∂xs

vs =
∂Ui(t, x)

∂xs
vs, (33)

∂Û0(t, x)
∂xi

=
∂U0(t, x)

∂xi
, (34)

m̂T̂ 0
0

dT̂ i
k (t, x, . . .)

dt
vi = −T̂ i

kFNSA
i (t, x, v) , (35)

which, under the assumed continuity and regularity conditions (see [26] for details)
always admits a solution in the unknown quantities m̂, T̂ 0

0 , T̂ i
k, Ûk and Û0 for given

equations (26). In fact, system (32-33) is overdetermined and a solution exists for
diagonal space isounit and constant time isounit,

Îi
k = δi

kefk(t,x,v), Î0
0 = constant > 0, (36)

for which
m̂T 0

0 ≡ m, Ûk (t, x) = Î0
0Uk (t, x) , Û0 (t, x) = U0 (t, x) , (37)

fk (t, x, v) = −m−1

∫ 1

0

dtFNSA
k (t, x, v) /vk, (38)

where there are no repeated indices m̂ is constant and the functions fk are computed
from Eq.s (38). 2

The primary motivations for the submission of the isotopic Newton’s equations
are expressed by the following properties with self-evident proofs which will be only
illustrated.
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Corollary 1 The isotopic Newton equations permit a representation of the actual
nonspherical shape of the body considered and of its possible deformations via the
generalized unit (or isotopic element) of the theory.

Recall that Newton’s equations can only approximate the body considered as a
massive point, as well known since Newton’s time [20]. The point-like representation of
particles then persists under analytic representations via Hamilton’s equations as well
as under symplectic map to quantum mechanical formulations. A representation of the
extended character of particles is reached in second quantization via the form factors.
However, this representation is restricted to spherical shapes from the fundamental
symmetry of quantum mechanics, the rotational symmetry. The latter symmetry is
known to be a symmetry of rigid bodies. Form factors cannot therefore represent
the deformations of particles under sufficiently intense external interactions which is
studied via other rather complicated procedures.

A first motivation for the studies presented in this paper is to introduce a repre-
sentation of actual nonspherical and deformable shapes of particles at the primitive
Newtonian level, which then persists under classical analytic representations and maps
to first quantization. The isotopic Newton equations do indeed achieve these objec-
tives by setting the foundations for possible new advances in classical and quantum
physics. The objective is achieved via the new degrees of freedom of the generalized
unit of the theory which are evidently absent in the conventional Newtonian, classical
and quantum formulations.

As a simple case, suppose that the body considered is a rigid spheroidal ellipsoid
with semiaxes n2

1, n2
2, n2

3= constants. Such a shape is directly represented by the
isotopic element of the theory in the simple diagonal form

T̂ = diag
(
n−2

1 , n−2
2 , n−2

3

)
, nk = const > 0, k = 1, 2, 3, T̂ 0

0 = 1. (39)

The representation of the shape in isospace Ŝ(t̂, x̂, v̂) is then embedded in the isoderiva-
tives of the isotopic Newton equations and, when projected in the conventional space
S(t, x, v) can be written

mT̂ i
k

dvi

dt
− T̂ i

k

∂Ui (t, x)
∂xs

vs + T̂ i
k

∂U0 (t, x)
∂xi

= 0, (40)

namely, the shape terms T̂ i
k are admitted as factors.

Note that the representation of shape occurs only in isospace because, when pro-
jected in the conventional Euclidean space,. the shape terms cancel out by recovering
the conventional point-like character of Newton’s equations. This illustrates the ne-
cessity of the isotopy for the representation of shape. Moreover, the nonspherical
character of the shape emerges only in the projection in ordinary spaces, because all
deformed spheres in ordinary spaces are mapped into the perfect sphere in isospace,
the isosphere of Sect. 1,

x̂2 =
(
x1n−2

1 x1 + x2n−2
2 x2 + x3n−2

3 x3
)
Î ∈ R̂(n̂,+, ×̂). (41)

The representation of shapes more complex than the spheroidal ellipsoids is possi-
ble with non-diagonal isounits. The representation of the original shape due to motion
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within resistive media or other reasons, can be achieved via a suitable functional de-
pendence of the T̂ i

k terms in velocities, pressure, etc. [32, 33].
A simple application discussed in detail in [33] is given by a charged, spinning and

spherical metallic shell which is subjected to a sufficiently intense external electro-
magnetic field represented by the known Lorentz force with potential U = eAkvk+eφ,
where e is the charge and (Ak, φ) are the familiar electromagnetic potentials. It is
evident that the original spherical shape is deformed by the Lorentz force, with conse-
quential alteration of its magnetic moment. Such a deformation is not representable
by Newton’s equations as well as by its Hamiltonian representation, but it is easily
representable via our isotopic equations (28-29).

The operator image of this classical setting illustrates the relevance of the theory
herein submitted. In first quantization, the constituents of a nuclear structure (pro-
tons and neutrons) are represented as point-like particles. As such, they maintain
in the nuclear structure their intrinsic magnetic moments when in vacuum. How-
ever, this approach has not permitted an exact representation of the total magnetic
moments of few-body nuclei (such as deuteron, tritium, etc.). The isotopic repre-
sentation of protons and neutrons as they are in the physical reality (extended and
therefore elastic, spinning, charge distributions) has instead permitted the achieve-
ment of an exact representation of said total magnetic moments because each particle
experiences a (generally small) deformation of its shape when under the short-range
strong forces of a nuclear structure, resulting in an alteration of the intrinsic magnetic
moment in vacuum which is missing in conventional quantum treatments. In turn,
such alteration permits the exact representation of the total magnetic moments of
few-body nuclei as well as other intriguing implications and novel predictions [32, 33].

Corollary 2 The isotopic Newton equations permit a novel representation of varia-
tionally non-self-adjoint forces via the isometric of the underlying geometry, according
to the rules

mdvk/dt − FNSA
k (t, x, v) = Îi

kmdT̂ j
i vj/dt, (42)

while leaving unchanged the representation of conventional self-adjoint forces (except
for the constant factor T̂ 0

0 of Uk).

In fact, the non-self-adjoint forces are embedded in the covariant coordinates in
isospace v̂i = T j

i vj , where the vj are the covariant coordinates in conventional space.
The novelty therefore lies on the fact that non-self-adjoint forces are represented by
the isogeometry itself, thus providing another motivation for the istopies.

The simplicity of representation (42) should be kept in mind and compared to
the complexity of the conventional solution of the inverse problem of Newtonian me-
chanics ([26], i.e., the representation of non-self-adjoint systems via a Lagrangian
or a Hamiltonian. Moreover, under the assumed conditions, the latter exists in the
fixed coordinates (t, x, v) of the observer only for a restricted class called nonessen-
tially nonselfadjoint [loc. cit.], while isorepresentation (30) always exist in the given
coordinates (t, x, v) under the same conditions.

When coordinate transformations are admitted, an indirect analytic representation
(i.e., a representation in transformed coordinates (t′, x′, v′)) always exists for all local-
differential, analytic and regular, nonselfadjoint Newtonian systems in a star-shaped
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region of the variables (this is the Lie-Koening theorem [27] as the analytic counterpart
of the geometric Darboux’s theorem of Sect. 6). However, the latter representation
has a number of physical drawbacks. First, the transformations (t, x, v) → (t′, x′, v′)
are nonlinear and, as such, the new coordinates are not realizable in laboratory. Also,
their nonlinearity implies the loss of the original inertial character of the reference
frame with consequential loss of conventional relativities (in fact, the Galilei and
Einstein relativities are solely applicable to inertial systems as well known).

These are the reasons why, after completing the studies of ref.s [26, 27], this author
continued the search for a representation of nonselfadjoint systems which occurs in
the given inertial reference frame of the observer, and it is universal, i.e., applicable
to all systems occurring in the physical reality.

The following examples illustrate isorepresentation (30). The equation of the
linearly damped particle in one dimension

m dv/dt + γ v = 0, γ ∈ R(n, +,×) , γ > 0, (43)

admits isorepresentation (30) with values

T̂ = Ŝ0e
γt/2m, T̂ 0

0 = 1, Uk = U0 = 0, (44)

where Ŝ0 is a shape factor, e.g., of the spheroidal type (39) which is prolate in the
direction of motion. In this way, the isotopic Newton equations represent:1) the
nonselfadjoint force FNSA = −γv experienced by an object moving within a physical
medium; 2) its extended character (which is necessary for the existence of the resistive
force); and 3) the deformation of the original shape (in the case considered a perfect
sphere) caused by the medium.

The equation for the linearly damped harmonic oscillator in one dimension

m
..
x +γ

.
x +kx = 0, k ∈ R(n, +,×), k > 0, (45)

admits isorepresentation (30) with the values

T̂ = Ŝ0e
γt/2m, U0 = −1

2
kx2, Uk = 0, T̂ 0

0 = 1, (46)

where Ŝ0 represents the shape of the body oscillating within a resistive medium. The
interested reader can construct a virtually endless variety of isorepresentations of
non-self-adjoint forces. A systematic study will be conducted elsewhere.

Corollary 3 The isotopic Newton equations permit the representation of nonlocal-
integral forces when completely embedded in the isounit of the theory.

The above occurrence is permitted by the integro-differential topology of the
Tsagas- Sourlas isomanifolds recalled in Sect. 1. Consider as an example the integro-
differential equation

m dv/dt + γv2

∫
σ

dσF(σ, . . .) = 0, γ > 0, (47)
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representing an extended object (such as a space-ship during re-entry in our atmo-
sphere) with local-differential center-of-mass trajectory x(t) and corrective terms of
integral type due to the shape (surface) σ of the body moving within a resistive
medium, where F is a suitable kernel depending on σ as well as on other variables
such as pressure, temperature, density, etc. The above equation admits isorepresen-
tation (30) with the values

T̂ = Ŝσe
γm−1×

∫
σ

dσF(σ,...)
, T̂ 0

0 = 1, Uk = U0 = 0, (48)

where Ŝσ is the shape factor, which is admitted by the integro-differential topology of
the isomanifold M(Ê) because all integral terms are embedded in the isounit. Similar
isorepresentations can be easily constructed by the interested reader.

It should be recalled that the representation of nonlocal-integral terms is prohib-
ited in Hamiltonian mechanics because the underlying geometry and topology are
local-differential. In fact, the Lie-Koening Theorem requires a local-differential ap-
proximation of systems and it is inapplicable to integral systems of type (47).

In the author’s opinion, the generalization of Newton’s equations into a form
admitting nonlocal-integral forces has the most important epistemological, mathe-
matical and physical implications. Recall that contemporary mathematical and phys-
ical knowledge is generally restricted to point-like/local formulations. The isotopies
therefore permit the study of more general nonlocal-integral systems begining at the
primitive Newtonian level. Mathematically, the representation of nonlocal-integral
forces requires the study of new methods, such as new topologies, geometries and
mechanics. Physically, the implications are equally important and they deal with
the historical legacy, due to Blockint’sev, Fermi and others, that the strong interac-
tions have a nonlocal-integral component. In fact, all strongly interacting particles
(hadrons) have a charge radius which is of the same order of the range of the strong in-
teractions (about 10−13 cm). A necessary condition to activate the strong interactions
is therefore that hadrons enter into mutual penetration of their charge distributions.
But hadrons are some of the densest objects measured in laboratory until now. The
historical legacy on the nonlocality of the strong interactions then follows.

A quantitative treatment of the historical legacy of the nonlocality of strong inter-
actions has been the primary motivation for this author to conduct his studies on the
isotopies, with evident need to initiate the studies at the primitive Newtonian level,
then passing to classical analytic representations and finally to operator treatment.

The isotopic Newton equation on a curved space are submitted in Sect. 7.

4 Variational iso-self adjointness

The fundamental methods of the Inverse Newtonian Problem are the conditions of
variational self-adjointness in E(t) × E(x, δ,R) × E(v, δ, R) [11, 26]. In this section
we shall identify, apparently for the first time, their image in isospace here called
conditions of variational iso-self-adjointness.



ISOTOPIES OF DIFFERENTIAL CALCULUS AND ITS APPLICATIONS 75

Theorem 2 A necessary and sufficient condition for a system of ordinary second-
order isodifferential equations in E(t) × Ê(x̂, δ̂, R̂) × Ê(v̂, δ̂, R̂)

Γ̂k

(
t̂, x̂, v̂, â

)
= 0, k = 1, 2, . . . , N, v̂ = d̂x̂/d̂t̂, â = d̂v̂/d̂t̂ (49)

which are isodifferentiable at least up to the third order and regular in a region R̂
of points (t̂, x̂, v̂, â, d̂â/d̂t̂) (i.e., det(∂̂Γ̂i/∂̂âj) 6= 0) to be variationally iso-self-adjoint
(ISOSA) in R̂ is that all the following conditions:

∂̂Γ̂i

∂̂âk
=

∂̂Γ̂k

∂̂âi
, (50)

∂̂Γ̂i

∂̂v̂k
+

∂̂Γ̂k

∂̂v̂i
= 2

d̂

d̂t̃

∂̂Γ̂i

∂̂âk
=

d̂

d̂t̃

(
∂Γ̂i

∂̂âk
+

∂̂Γ̂k

∂̂âi

)
, (51)

∂̂Γ̂i

∂̂x̂k
− ∂̂Γ̂k

∂̂x̂i
=

d̂

d̂t̃

[
d̂

d̂t̃

(
∂̂Γ̂k

∂̂v̂i

)
− ∂̂Γ̂k

∂̂v̂i

]
=

=
1
2

d̂

d̂t̃

(
∂̂Γ̂i

∂̂âk
− ∂̂Γ̂k

∂̂âi

)
(52)

are identically verified in R̂.

Proof. The proof is provided by an elementary isotopy of the conventional case,
ref. [26], Theorem 2.1.2, p. 60, and consists in computing the isovariational forms
of system (49), proving their uniqueness and showing that conditions (50)-(52) are
necessary and sufficient for the isovariational forms to coincide with their adjoint. 2

The novelty of conditions (50-52) is illustrated by the following:

Corollary 4 Systems of ordinary isodifferential equations which are variationally iso-
self-adjoint in isospace are generally variational non-self-adjoint when projected in
ordinary spaces.

Proof. Conditions (50-52) imply no restriction on the isotopic terms T̂ i
k in isospace

while the same terms are restricted by the ordinary conditions of self-adjointness in
ordinary spaces 2

Theorem 3 The isotopic Newton equations (28)-(29) are variationally iso-self-adjoint.

Proof. The verification of the first set of conditions (50) reads

∂̂F̂i

∂̂âj
− ∂̂F̂j

∂̂âi
= T̂m

j

∂̂F̂i

∂̂âm
− T̂m

i

∂̂F̂j

∂̂âm
= T̂m

j T̂m
i − T̂m

i T̂m
j ≡ 0, (53)

and the same identities hold for all remaining conditions. 2
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It is an instructive exercise for the interested reader to work out the isotopies
of the remaining theorems for second-order ordinary differential equations (see [26],
Sections 2.2 and 2.3).

We now introduce the conditions of variational iso-self-adjointness for N -dimensional
systems (49) in an equivalent 2N -dimensional first-order form. Let T ∗Ê(x̂, δ̂, R̂) be
the isocotangent space (see Sect. 6 for a geometric treatment), which in this section
can be characterized via the independent space Ê(p̂, δ̂, R̂) with new, independent,
covariant coordinates p̂k and let the total representation space be T̂ (t)× Ê(x̂, δ̂, R̂)×
Ê(p̂, δ̂, R̂) with local chart b̂ = {bµ} = {x̂k, p̂k}, µ = 1, 2, . . . , 2N , k = 1, 2, . . . , N .
Assign sufficiently smooth and invertible prescriptions for the characterization of the
new variables p̂k

p̂k = ĝk

(
t̂, x̂, v̂

)
, (54)

with unique system of implicit functions vk = fk(t̂, x̂, p̂) (see [26], Sect. 2.4, for the
conventional case). By using the latter implicit functions, system (49) can be written
in the equivalent 2N - dimensional form

Γ̂µ

(
t̂, b̂, ĉ

)
= Ĉµν

(
t̂, b̂

)
ĉν + D̂µ

(
t̂, b̂

)
= 0, ĉν = d̂ b̂ν/d̂t̂. (55)

Theorem 4 A necessary and sufficient condition for system (55) which is at least
twice isodifferentiable and regular (det(Ĉµν)(R̂) 6= 0) in a (6N + 1)- dimensional
region R̂ of points (t̂, b̂, ĉ, d̂ĉ/d̂t̂) to be iso-self-adjoint in R̂ is that all the following
conditions:

Ĉµν + Ĉνµ = 0, (56)

∂̂Ĉµν

∂̂b̂ρ
+

∂̂Ĉνρ

∂̂b̂µ
+

∂̂Ĉρµ

∂̂b̂ν
= 0, (57)

∂̂D̂µ

∂̂b̂ν
+

∂̂D̂ν

∂̂b̂µ
=

∂̂Ĉµν

∂̂t̂
(58)

are identically satisfying in R̂.

Proof. The proof is also a simple isotopy of the proof of Theorem 2.7.2, p. 87, ref.
[26]. Also, conditions (56)-(58) are uniquely derivable from conditions (50)-(52) when
systems (49) are assumed to be 2N -dimensional and of first-order. 2

The following property is self-evident,

Corollary 5 When systems (55) assume the isocanonical form

Γ̂µ

(
t̂, b̂, ĉ

)
= ωµν ĉν − Ξ̂µ

(
t̂, b̂

)
= 0, (59)

where ωµν is the conventional canonical symplectic tensor

(ωµν) =
(

0N×N −IN×N

IN×N 0N×N

)
, (60)
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the conditions of variational iso-self-adjointness (56)-(58) reduce to

∂̂Ξ̂µ

∂̂b̂ν
− ∂̂Ξ̂ν

∂̂b̂µ
= 0. (61)

Note that a conventional canonical system which is self-adjoint is also iso-self-
adjoint. Additional and this illustrates the reason why a potential representation of
a selfadjoint forces persists at the isotopic level. Additional properties of variational
iso-self-adjointness will be identified later on.

Let us recall the following meanings of the conditions of variational self-adjointness
for 2N-dimensional systems of ordinary first-order differential equations

Γµ (t, b, c) = Cµν (t, b) cν + Dµ (t, b) = 0, b =
{
xk, pk

}
, cν = dbν/dt , (62)

on a conventional space (see [26, 27] for detailed studies):
1) Analytic meaning. The conditions imply the direct derivability (i.e., derivability

without change of local variables or integrating factors) of the equations from a first-
order variational principle

δ A = δ

∫ t2

t1

dt [Rµ (t, b) dbµ − H (t, b)] = 0, (63)

Cµν = ∂µRν − ∂νRµ , Dµ = ∂µH − ∂tR , ∂µ = ∂/∂bµ , ∂t = ∂/∂t ; (64)

2) Geometric meaning. The two form

C = Cµνdbµ ∧ dbν , (65)

characterized by the covariant symplectic tensor Cµν(b); and
3) Algebraic meaning. The brackets among two smooth functions A(b) and B(b)

[A,B] = (∂µA)Cµν(b) (∂νB) , (66)

characterized by the contravariant version of Cµν

Cµν =
[
(Cαβ)−1

]µν

,

are Lie.
In the next sections we show that the above properties persist in their entirety

when formulated under isotopies in isospaces.

5 Isolagrangian and isohamiltonian mechanics

We now show the derivability of the isotopic Newton equations from a first-order iso-
variational principle and then study the isotopies of Lagrange’s [15] and Hamilton’s
[10] mechanics.
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Proposition 1 All Newtonian action functionals of second or higher order in Eu-
clidean space E(t)×E(x, δ,R)×E(v, δ, R) whose integrand is sufficiently smooth and
regular in a region R of their variables can always be identically rewritten as first-
order action isofunctionals in isospace Ê(t̂)×Ê(x̂, δ̂, R̂)×Ê(v̂, δ̂, R̂) which are bilinear
in the velocities,

Â =
∫ t2

t1

dtL (t, x, v, a, . . .) =
∫̂ t̂2

t̂1

d̂t̂ L̂
(
t̂, x̂, v̂

)
, (67)

L̂ =
1
2
m̂v̂iδ̂ij v̂

j − Û i
(
t̂, x̂

)
δ̂ijv

j −U0

(
t̂, x̂

)
=

1
2
m̂v̂kv̂k − Ûk

(
t̂, x̂

)
vk − Û0

(
t̂, x̂

)
. (68)

In fact, identities (67) are overdetermined because, for each given L, there exist
infinitely many choices of m̂, T̂ 0

0 , T̂ i
j , Ûk and Û0. We shall assume that integral terms

are admitted in the integrand provided that they are all embedded in the isometric.
The isovariational calculus is a simple extension of the isodifferential calculus. In

fact, we can write the following isovariation along an admissible isodifferentiable path
P̂ :

δ̂ Â
(
P̂

)
=

∫̂ t̂2

t̂1

d̂t̂

(
δ̂x̂k ∂̂

∂̂x̂k
+ δ̂v̂k ∂̂

∂̂v̂k

)
L̂

(
P̂

)
=

∫̂ t̂2

t̂1

d̂t̂

(
∂̂L
∂̂x̂k

− d̂

d̂t̂

∂̂L
∂̂v̂k

)(
P̂

)
δ̂x̂k,

(69)
where we have used isointegration by parts. The isotopy of the celebrated Euler [8]
necessary condition can be formulated as follows.

Theorem 5 (Isoeuler Necessary Condition): A necessary condition for an isod-
ifferentiable path P̂ in isospace Ê(t) × Ê(x̂, δ̂, R̂) × Ê(v̂, δ̂, R̂) to be an extremal of
action isofunctional Â is that all the following isotopic equations

L̂k

(
P̂0

)
=

{
d̂

d̂t̂

∂̂L̂
(
t̂, x̂, v̂

)
∂̂v̂k

−
∂̂L̂

(
t̂, x̂, v̂

)
∂̂x̂k

} (
P̂0

)
= 0 (70)

are identically verified along P̂0.

It is an instructive exercise for the interested reader to prove the following:

Corollary 6 The isotopic equations (70) are variationally iso-self-adjoint.

The isotopies of the remaining aspects of the calculus of variations (see, e.g.,
Bliss[4]) with consequential isotopies of the optimal control theory are intriguing and
significant, but they cannot be studied here for brevity. When dealing with the
calculus of isovariations, Eq.s (70) will be referred to as isoeuler equations, and when
dealing with analytic mechanics they will be referred to as isolagrange equations.

We shall say that the isotopic Newton equations (28)-(28) admit a direct isoan-
alytic representation, when there exists one isolagrangian L̂

(
t̂, x̂, v̂

)
under which all
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the following identities occur{
d̂

d̂t̂

∂̂L̂
(
t̂, x̂, v̂

)
∂̂v̂k

−
∂̂L̂

(
t̂, x̂, v̂

)
∂̂x̂k

}ISOSA

=

=

{
m̂

d̂vk

d̂t̂
−

∂̂Ûk

(
t̂, x̂

)
∂̂x̂i

d̂x̂i

d̂t̂
+

∂̂Û0

(
t̂, x̂

)
∂̂x̂k

}ISOSA

=

= T̂ i
k

{
m

dvi

dt
− ∂Uj (t, x)

∂xS

dxS

dt
+

∂U0 (t, x)
∂xi

− FNSA
i (t, x, v)

}NSA

= 0, (71)

L
(
t̂, x̂, v̂

)
=

1
2
m̂v̂kv̂k − Û , Û

(
t̂, x̂, v̂

)
= Ûk

(
t̂, x̂

)
v̂k + Û0

(
t̂, x̂

)
. (72)

Theorem 6 (Universality of isolagrangian mechanics) All possible sufficiently
smooth and regular dynamical systems in a star-shaped neighborhood of a point of
their variables always admit a direct isorepresentation via the isolagrange equations
in isospace.

Proof. The universality of the isorepresentation follows from the fact that conditions
(32)-(35) always admit solution (37)-(38) in the unknown functions. 2

Remark: Newtonian systems are usually refered to systems with local-differential
forces depending at most on velocities. Theorem 6 includes also non-Newtonian forces,
e.g ., when they are of integral type or acceleration-dependent. Discontinuous New-
tonian forces, such as those of impulsive type, have been removed from the theorem
because of lack of current knowledge on the topology of isospaces with discontinu-
ous isounits (isospaces of Kadeisvili’s Class V [13]), although such an extension is
expected to exist, and its study is left to interested readers.

Note the simplicity of the construction of an isolagrangian representation as com-
pared to the complexity of the construction of a conventional Lagrangian representa-
tion [26, 27], when it exists.

We now introduce, apparently for the first time, the isotopies of the Legendre
transform based on the isodifferential calculus (ref. [33] presents a different isotopies
based on the isotopic degrees of freedom of the multiplication). For this purpose,
we introduce the following isodifferentials in isospace Ŝ(t̂, x̂, p̂) = Ê(t̂) × Ê(x̂, δ̂, R̂) ×
Ê(p̂, δ̂, R̂):

d̂ t̂ = Î0
0 dt, d̂x̂k = Îk

i dxi, ∂̂x̂i/∂̂x̂j = δi
j , etc., (73)

d̂ p̂k = T̂ i
j dp̂i, d̂ p̂k = Îk

i dp̂i, ∂̂p̂i/∂̂p̂j = δj
i , etc. (74)

The total isounits and isotopic elements of the isospace Ê(x̂, δ̂, R̂) × Ê(p̂, δ̂, R̂) are
therefore given by

Î2 = diag.
(
Î , T̂

)
, T̂2 = diag.

(
T̂ , Î

)
. (75)

It should be indicated that, in view of the independence of the variables p̂k from
x̂k, we can introduce a new isounit Ŵ = Ẑ−1 for the isospace Ê(x̂, δ̂, R̂) which is
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different than the unit Î = T̂−1 of isospace Ê(x̂, δ̂, R̂), in which case the total unit is
Î2 = diag.

(
Î , Ŵ

)
. Selection (74) is based on the simplest possible case Ŵ = Î which

is recommendable from the geometric isotopies studied in the next section. Other
alternatives belong the problem of the degrees of freedom of the isotopic theories
which is not studied in this paper for brevity.

We now introduce the isocanonical momentum via the following realization of
prescriptions (54)

p̂k =
∂̂L̂(t̂, x̂, v̂)

∂̂v̂k
= m̂v̂k − Ûk

(
t̂, x̂

)
, (76)

under the condition of being regular in a (2N + 1)-dimensional region R̂ of points
(t̂, x̂, p̂)

Det

(
∂̂2L̂(t̂, x̂, v̂)

∂̂v̂i∂̂v̂j

) (
R̂

)
6= 0, (77)

thus admitting a unique set of implicit functions v̂k = fk(t, x̂, p̂). The isolegendre
transform can then be defined by

L̂
(
t̂, x̂, v̂

(
t̂, x̂, p̂

))
= p̂kv̂k

(
t̂, x̂, p̂

)
− 1

2
m̂v̂i

(
t̂, x̂, p̂

)
v̂i

(
t̂, x̂, p̂

)
+

+Ûk (t, x̂) v̂k
(
t̂, x̂, p̂

)
+ Û0

(
t̂, x̂

)
= p̂kp̂k/2m̂ + V̂ k

(
t̂, x̂

)
p̂k + V̂ 0

(
t̂, x̂

)
= Ĥ (t, x̂, p̂) .

(78)
We are now equipped to study the isotopies of Hamilton’s principle [10]. By using

the unified variables b̂ = {b̂µ} = {x̂k, p̂k}, ĉ = d̂ b̂µ/d̂t̂, and by introducing the notation

R̂◦ =
{

R̂◦
µ

}
=

{
p̂k, 0̂

}
, µ = 1, 2, . . . , 2N, k = 1, 2, . . . , N, (79)

the isocanonical principle assumes the form along an actual path P̂0

δ̂ Â = δ̂

∫̂ t̂2

t̂1

d̂t̂
(
p̂k d̂x̂k/d̂t̂ − Ĥ

)(
P̂0

)
= δ̂

∫̂ t̂2

t̂1

d̂t̂
(
R̂◦

µĉµ − Ĥ
) (

P̂0

)
=

=
∫̂ t̂2

t̂1

d̂t̂

{
δ̂p̂i

∂̂

∂̂p̂i

+ δ̂v̂i ∂̂

∂̂v̂i
+ δ̂x̂i ∂̂

∂̂x̂i

} (
pkvk − H

) (
P̂0

)
=

∫̂ t̂2

t̂1

d̂t̂

[(
d̂x̂k

d̂t̂

∂̂p̂k

∂̂p̂i

− ∂̂Ĥ

∂̂p̂i

)
δ̂p̂i −

(
d̂

d̂t̂

(
p̂k

∂̂v̂k

∂̂v̂i

)
+

∂̂Ĥ

∂̂x̂i

)
δ̂x̂i

] (
P̂0

)
=

∫̂ t̂2

t̂1

d̂t̂

{
δ̂b̂µ ∂̂

∂̂b̂µ
+ δ̂ĉµ ∂̂

∂̂ĉµ

} (
R̂◦

µ d̂b̂µ − Ĥ d̂t̂
)(

P̂0

)
=

∫̂ t̂2

t̂1

{(
∂̂R̂◦

ν

∂̂b̂µ
−

∂̂R̂◦
µ

∂̂b̂ν

)
d̂b̂ν

∂̂t̂
− ∂̂Ĥ

∂̂b̂µ

} (
P̂0

)
∗ δ̂b̂µ = 0. (80)
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Theorem 7 (Isohamilton Necessary Condition): A necessary condition for an
isofunctional in isocanonical form whose integrand is sufficiently smooth and regular
in a region R of points (t̂, b̂, ĉ) to have an extremum along a path P̂0 is that all the
following isoequations in disjoint notation

d̂x̂k

d̂t̂
=

∂̂Ĥ
(
t̂, x̂, p̂

)
∂̂p̂k

,
d̂p̂k

d̂t̂
= −

∂̂Ĥ
(
t̂, x̂, p̂

)
∂̂x̂k

, (81)

or in unified notation (
∂̂R̂◦

ν

∂̂b̂µ
−

∂̂R̂◦
µ

∂̂b̂ν

)
d̂b̂ν

∂̂t̂
−

∂̂Ĥ
(
t̂, b̂

)
A

∂̂b̂µ
= 0, (82)

hold along an actual path P̂0.

It is also instructive for the interested reader to prove the following:

Corollary 7 Isotopic equations (82) are variationally iso-self-adjoint.

Eq.s (81) or (82) are called isohamilton equations and can be more simply written
in the following respective covariant and contravariant forms

ωµν
d̂b̂ν

d̂t̂
=

∂̂Ĥ
(
t̂, b̂

)
∂̂b̂µ

, (83)

d̂b̂µ

d̂t̂
= ωµν

∂̂Ĥ
(
t̂, b̂

)
∂̂b̂ν

, (84)

where the quantities

(ωµν) =

(
∂̂R̂◦

ν

∂̂b̂µ
−

∂̂R̂◦
µ

∂̂b̂ν

)
=

(
0N×N −IN×N

IN×N 0N×N

)
, (85)

(
ωαβ

)
=

(
∂̂R̂◦

ν

∂̂b̂µ
−

∂̂R̂◦
µ

∂̂b̂ν

)−1

=
(

0N×N ĪN×N

−ĪN×N 0N×N

)
, (86)

are the conventional covariant and contravariant canonical tensors, respectively, which
hold in view of the identities originating from properties (73)-(74) and values (79)

∂̂R̂◦
ν/∂̂b̂µ ≡ ∂R◦

ν/∂bµ. (87)

The equivalence of the isolagrangian and isohamiltonian equations under the as-
summed regularity and invertibility of the isolegendre transform can be proved as in
the conventional case (see, e.g., [26], Sect. 3.8).

We now study the following additional property of isohamiltonian mechanics which
is important for operator maps. The isotopic Hamilton-Jacobi problem (see, e.g.,
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[26], p. 201 and ff. for the conventional case) is the identification of an isocanonical
transform under which the Hamiltonian becomes null. The generating function of such
a transform is the isocanonical action itself, resulting in the end-point contributions

d̂Â = d̂

∫ t

t0

(
p̂k d̂x̂k − Ĥ d̂t̂

)
=

∣∣∣p̂k dx̂k − Ĥ d̂t̂
∣∣∣t
t0

, (88)

with isotopic Hamilton-Jacobi equations

∂̂Â

∂̂t̂
+ Ĥ (t, x̂, p̂) = 0,

∂̂Â

∂̂x̂k
− p̂k = 0, (89)

plus initial conditions ∂̂Â/∂̂x̂◦k = p̂◦k, where x̂◦ and p̂◦ are constants.
Remark l: Note the abstract identity between the conventional and isotopic me-

chanics. Since the isounits are positive-definite, at the abstract level there is no
distinction between dt and d̂t̂ or dx and d̂x̂, etc. The isolagrange and isohamilton
equations therefore coincide at the abstract level with the conventional equations.
This illustrates the axiom-preserving character of the isotopies.

Remark 2: The direct universality of the isohamiltonian mechanics in the fixed
inertial frame of the observer should be compared with the corresponding lack of uni-
versality of the conventional Hamiltonian mechanics. A first direct universality was
achieved by this author [27] via a step-by-step generalization of Hamiltonian mechan-
ics called (for certain historical reasons) Birkhoffian mechanics. The latter mechanics
is based on the most general possible first-order Pfaffian variational principle (63)-(64)
in the unified variables b = {bµ} = {xk, pk} in a conventional space S(t, x, p), i.e.,

δ

∫ t2

t1

[Rµ (b) dbµ − H (t, b) dt] = 0, (90)

yielding Birkhoff’s equations [3] in covariant form{
Ωµν (b)

∂bν

dt
− ∂H (t, b)

∂bµ

}SA

= 0, Ωµν (b) =
∂Rν

∂bµ
− ∂Rµ

∂bν
, (91)

with contravariant version

dbµ

dt
= Ωµν (b)

∂H (t, b)
∂bν

, Ωµν =
[
(Ωαβ)−1

]µν

. (92)

The connection between the Birkhoffian and the isohamiltonian mechanics is in-
triguing. In fact, the Pfaffian action can always be identically rewritten as the isotopic
action ∫ t2

t1

[Rµ (b) dbµ − H (t, b) dt] ≡
∫̂ t̂2

t̂1

[
R̂0

µ (b) d̂b̂µ − Ĥ
(
t̂, b̂

)
dt

]
,

b̂µ ≡ bµĤ ≡ H, d̂t̂ = dt,

(93)
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and the general, totally antisymmetric Lie tensor Ωµν (see later on) always admits
the factorization into the canonical Lie tensor ωµν and a regular symmetric matrix
T̂ ν

µ

Ωµν ≡ ωµβT̂ ν
β , (94)

under which Birkhoff’s equations (92) coincides with the isohamilton’s equations (84)
for Î0

0 = 1.
Despite these similarities, it should be indicated that the isohamiltonian mechan-

ics is considerably broader than the Birkhoffian mechanics. In fact, the former is
based on an action of arbitrary order, while the latter necessarily requires a first-
order action. Also, the former can represent integral forces, while the latter cannot
(because the underlying geometry, the symplectic geometry in its most general pos-
sible exact realization) only admits local-differential systems. Finally, the former is
based on a broader mathematics, the isodifferential calculus, while the latter is based
on conventional mathematics.

Remark 3: An important application of the isohamiltonian mechanics is to pro-
vide a novel classical realization of the Lie-Santilli isotheory [25, 12, 14, 17, 34]. Recall
that the conventional classical realization of the Lie product is given by the familiar
Poisson brackets among two functions A(b) and B(b) in the cotangent bundle (phase
space)

[A,B]Poisson =
∂A

∂xk

∂B

∂pk
− ∂B

∂xk

∂A

∂pk
=

∂A

∂bµ
ωµν ∂B

∂bν
. (95)

From the self-adjointness of Birkhoff’s equations [27] and the algebraic meaning
of the conditions of self-adjointness recalled in Sect. 4, the most general possible
(regular, unconstrained) brackets in cotangent bundle verifying the Lie algebra axioms
are given by the Birkhoffian brackets (also called generalized Poisson brackets) [27]

[A, B]Birkhoff =
∂A

∂bµ
Ωµν (b)

∂B

∂bν
(96)

The novel brackets introduced in this paper are given by the following brackets
among isofunctions Â(b̂), B̂(b̂) on isocotangent bundle

[A,B]Isotopic =
∂̂A

∂̂x̂k

∂̂B

∂̂p̂k

− ∂̂B

∂̂x̂k

∂̂A

∂̂p̂k

=

=
∂A

∂xk

∂B

∂pk
− ∂B

∂xk

∂A

∂pk
, (97)

and they formally coincide with the conventional brackets (95) when projected in
the original space. This illustrates Bruck’s [5] statement to the effect that ”the iso-
topies are so natural to creep in unnoticed”. However, one should remember that the
underlying geometry is generalized. In fact, the isotopic brackets can be written

[A,B]Isotopic =
∂A

∂̂x̂i

T̂ k
i (t, r, p, . . .) δkj

∂B

∂̂p̂j

− ∂B

∂̂x̂i

T̂ k
i (t, r, p, . . .) δkj

∂A

∂̂p̂j

, (98)
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thus showing their differences with the conventional brackets. Moreover, one should
keep in mind from the comments following Eq.s (75) that we have selected the simplest
possible isotopies for which the isounits of the independent variables p̂k and xk are the
same. The use of different isounits for p̂k and xk evidently implies further differences
between the isotopic and conventional brackets.

Note that the isotopic character of brackets (97) is assured by the iso-self-adjointness
of the isohamilton equations. Note also that brackets (98) do not verify the Lie al-
gebra axioms in conventional spaces, evidently because the isotopic elements T̂ j

i are
unrestricted. This illustrates that the isotopic theory of this paper verifies the Lie ax-
ioms only in isospace but not when projected in conventional spaces. This occurrence
should be compared to other realizations studied in ref.s [32, 33] in which the Lie
axioms are verified in isospace as well as in their projection in conventional spaces.

In unified notation we evidently have the same occurrence. In fact, the isotopic
brackets can be written

[A,B]Isotopic =
∂̂A

∂b̂µ
ωµν ∂̂B

∂b̂ν
=

∂A

∂̂b̂α
T̂α

µ ωµν T̂ β
ν

∂B

∂b̂β
=

∂A

∂b̂α
ωαβ ∂B

∂b̂β
, (99)

where the last identity occurs in view of the properties

T̂α
µ ωµν T̂ β

ν = ωαβ . (100)

It is also easy to see that the isohamiltonian mechanics provides a classical real-
ization of the Lie-Santilli isogroups [25, 12, 14, 17, 34]. In fact, the integrated form
of Eq. (84) yields the time evolution of a quantity Â(t̂) in isospace here expressed in
terms of expression (98)

Â
(
t̂
)

= exp

{
t

[
∂Ĥ

∂x̂
T̂

∂

∂p̂
− ∂Ĥ

∂x̂
T̂

∂

∂p̂

]}
Â

(
0̂
)
, (101)

which is indeed a one-dimensional isogroup owing to the appearance of the isotopic
matrix T̂ in the exponent (see [32] for details). Realizations (97) and (101) are the
classical counterpart of the operator isotopic realizations identified below.

Remark 4: One should note from isoprinciple (89) that

∂̂Â/∂̂p̂k ≡ 0, k = 1, 2, . . . , N. (102)

This occurrence is important for quantization in order to reach wavefunctions
ψ̂(t̂, x̂) independent from the momenta p̂, as necessary for a correct isotopy of quantum
mechanical wavefunctions ψ(t, x).Note that property (98) occurs again because of the
embedding of higher order terms in the geometry of the theory.

Remark 5: The significance of isohamiltonian mechanics can be also illustrated
by the fact that its map under the conventional (or symplectic) quantization is not
quantum mechanics, but instead a broader isotopic theory known under the name
of hadronic mechanics [33]. Without entering into details, it is important for this
paper to see that the isotopic operator theory preserves all the main features of
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the isotopic Newton equations, such as the representation of nonspherical-deformable
shapes, nonselfadjoint forces and nonlocal-integral interactions.

Consider the map (called naive isoquantization)

Â
(
t̂, x̂

)
→ −i Î

(
t̂, p̂

)
Ln ψ̂

(
t̂, x̂

)
, n̂ = 1, (103)

where the coordinates are in isospace, Î is the isounit of the isotopic Newton equations
which is here assumed to be independent from x̂ for simplicity (see ref. [33] for the
general case). The application of map (103) to Eq.s (89) yields the following isotopic
Schrödinger equations

i ∂̂ ψ̂ / ∂̂t̂ = ĤT̂ ψ̂ = Ĥ ∗ ψ̂, p̂k T̂ ψ̂ = p̂k ∗ ψ̂ = −i ∂̂ ψ̂/∂̂x̂k (104)

and are defined on a isohilbert space Ĥ with isostates ψ̂, φ̂, . . ., and isoinner product
< ψ̂|̂φ̂ >= Î

∫
dx̂3ψ̂ ↑ φ̂ over the isocomplex field Ĉ(ĉ,+, ×̂) originally submitted

by Myung and Santilli [20] (see [33] for recent detailed studies). The equivalent
isoheisenberg equation for an observable Ô are given by

i d̂Ô / d̂t̂ =
[
Ô, Ĥ

]
= Ô ∗ Ĥ − Ĥ ∗ Ô = Ô T̂ Ĥ − Ĥ T̂ Ô (105)

and results to be defined on an enveloping algebra ξ̂ of operators Â, B̂,..., and isounit
Î = T̂−1 on Ĥ equipped with the isoassociative product Â∗B̂ = Â T̂ B̂ over Ĉ(ĉ,+, ×̂)
originally submitted by Santilli [25]. The operator image of the isobrackets (98) is
therefore given by [

Â, B̂
]

= Â T̂ B̂ − B̂ T̂ Â, (106)

which constitute the operator realization of the Lie-Santilli isoproduct (see [25, 12,
14, 17, 25, 31, 33, 34] and references quoted therein).

The exponentiated form of Eq.s (106) yields the time evolution of isostates

ψ̂′ = Û ∗ ψ̂ =
{

êiĤt
}
∗ ψ̂ = eiHTt ψ̂ , (107)

where êα is the isoexponentiation of an arbitrary (well behaved) quantity α, i.e.,
the exponentiation in ξ̂ when it is turned into a universal enveloping isoassociative
algebra via the isotopic Poincaré-Birkhoff-Witt theorem first formulated in [25] and
then studied in [20]

êα = Î + α/1! + α ∗ α/2! + · · · =
{
eαT

}
Î , (108)

Û is a isounitary transform, i.e., a transform verifying the rules on Ĥ

Û ∗ Û† = Û† ∗ Û = Î , (109)

and the isotopic group laws can be written for an arbitrary isoparameters ŵ ∈
R̂(n̂, +, ×̂) [25]

Û (ŵ) ∗ Û (ŵ′) = Û (ŵ + ŵ′) , Û (ŵ) ∗ Û (−ŵ) = Û
(
0̂
)

= Î . (110)
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As one can see, the matrix T̂ of the isotopic Newton equations is preserved in its
entirety at the operator level and this confirms the capability of the isotopic opera-
tor theory of representing nonspherical-deformable shapes, nonselfadjoint forces and
nonlocal-integral interactions (see [33] for comprehensive studies).

The significance of the Lie-Santilli isotheory over the conventional formulation is
illustrated by the appearance of the matrix T̂ with arbitrary nonlinear-integral terms
in the exponent of the isogroup, Eq. (107). This assures that the original linear,
local and canonical Lie theory is mapped under isotopies into nonlinear, nonlocal and
noncanonical forms, as desired. The reconstruction in isospace of linearity, locality
and canonicity is illustrated in the next section.

Numerous applications of the above operator isotopic theories in various disciplines
are studied in ref. [33]. An application illustrating the nonlinear-integral character
occurs for the Cooper pair in superconductivity in which two identical electrons expe-
rience an attractive interaction under the intermediate action of cuprate ions. The use
of quantum mechanical Coulomb interactions does not permit the achievement of the
above attraction among identical electrons. The occurrence is preliminarily explained
in superconductivity via the assumption of not fully known interactions between elec-
trons and phonons. The occurrence is instead represented via the operator isotopic
theory via the lifting studied in detail by Animalu [1] of the conventional Coulomb
interactions characterized by the following isounit, today called Animalu isounit

Î = exp
{∫

dx ψ̂†
↑ (x) ψ̂↓ (x) Iψ̂↑ (r) /ψ̂↑ (r)

}
(111)

where ↑ and ↓ represents spin up and down, respectively, ψ̂ is the wavefunction of
the isoelectron (i.e., the electron under isotopic treatment) and ψ is that of the con-
ventional electron. In essence , the isotopy of the Coulomb interactions characterized
by isounit (111) assumes a form at short distances which behaves likes the attrac-
tive Coulomb interactions but which is stronger than the conventional interactions,
thus resulting in attraction irrespective of whether the charges are equal or opposite.
The emerging theory, called iso-super-conductivity [1], results to be in remarkable
agreement with experimental data and offers rather promising predictive capacities
currently under study by various authors. Similar results occurs in the application
of the isotopic theories in nuclear physics, particle physics. astrophysics and other
disciplines [33].

Isounit (111) illustrates the type of interactions occurring in the isotopic operator
theory, and it is therefore significant for the identification of the class of mathe-
matical structures recommended for study. Isounit (111) contain the integral term∫

dx ψ̂†
↑ (x) ψ̂↓ (x) which is representative of the nonlocal interactions occurring in the

Cooper pair, which are given by the volume integral over the region of overlapping
of the two wavepackets ψ̂↑ and ψ̂↓. These interactions are not permitted by quantum
mechanics owing to its strict local-differential character, but they are permitted by
isotopic theories when embedded in the isounit, as now familiar.

Moreover, the correct achievement of attraction among the identical electrons calls
for the additional contribution which is nonlinear in the wavefunctions and which is
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represented by the term ψ↑/ψ̂↑ in the exponent of (111). These contributions are
today treated via nonlinear Schrödinger’s equations of the type

H (t, r, p, ψ, . . .)ψ (t, x) = E ψ (t, x) . (112)

Even though mathematically impeccable and actually intriguing, the latter theories
are afflicted by problems of physical consistency, such as the loss of the superposition
principle (with consequential inability to treat bound states as needed for the Cooper
pair), the general nonunitary character of the time evolution which implies the general
loss of invariance of the unit (with consequential impossibility of consistent measure-
ments), the general loss of the original Hermiticity under the time evolution of the
theory (with consequential loss of observables), and others.

The isotopic theories resolve all these problematic aspects via the decomposition

H (t, r, p, ψ, . . .) ψ ≡ H0 (t, x, p) T̂ (ψ, . . .)ψ = H ∗ ψ = Eψ,

that is, via the embedding of all nonlinear terms in the isotopic element T , with
consequential reconstruction in isospace of the superposition principle, the unitarity
of the time evolution law, the invariance of the unit, the preservation of Hermiticity
at all times, etc. (for brevity, see [33] for details).

With the understanding that quantum mechanics is exactly valid for all conditions
in which nonlinear, nonlocal and nonhamiltonian effects are ignorable (such as the
atomic structure as well as the electromagnetic and weak interactions at large), the ad-
vantage of isotopic theories for systematic studies of nonlinear, nonlocal, noncanonical
interactions at short distances is then evident. At any rate, the conventional theory is
recovered identically when the integral

∫
dx ψ̂†

↑ (x) ψ̂↓ (x) in Animalu’s isounit (111)
is identically null, i.e., when the nonlocal contributions due to overlapping of the
wavepackets are ignorable, in which case Î = I.

6 Isosymplectic geometry

We identify in this section the isotopies of the symplectic geometry, called isosym-
plectic geometry for short, as the geometry underlying the isohamilton equations and
related Lie-isotopic theory. These isotopies were first studied by this author in ref.
[25], then subjected to deeper studies in memoir [29] and monograph [32] via the
lifting of the units and of the conventional associative product. The formulation of
the isosymplectic geometry based on the isodifferential calculus is presented in this
section for the first time.

Unless otherwise stated, all quantities are assumed to satisfy the needed conti-
nuity conditions, e.g., of being of class C∞ and all neighborhoods of a point are
assumed to be star-shaped or have an equivalent topology. Owing to the emphasis
on applications, the treatment of this section is restricted to local realizations, while
coordinate-free treatments are left to the interested reader. In any case, as we shall
see, all distinctions cease to exist at the abstract level between the symplectic and
isosymplectic geometries. A comprehensive literature on the symplectic geometry is
available in ref. [26] and it is omitted here for brevity.
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Let M(Ê) = M(Ê(x̂, δ̂, R̂) be an N -dimensional Tsagas-Sourlas isomanifold [35]
on the isoeuclidean space Ê(x̂, δ̂, R̂) over the isoreals R̂ = R̂(n̂, +, ×̂) with N × N -
dimensional isounit Î = (Îi

j), i, j = 1, 2, . . . , N , of Kadeisvili [13] Class I (nowhere
degenerate, symmetric, real valued and positive-definite with Class C∞ elements)
and local chart x̂ = {x̂k}. A tangent isovector X̂(m̂) at a point m̂ ∈ M(Ê) is an
isofunction defined in the neighborhood N(m̂) of m̂ with values in R̂ satisfying the
isolinearity conditions

X̂m

(
α̂×̂f̂ + β̂×̂ĝ

)
= α̂×̂X̂m̂

(
f̂
)
+β̂×̂X̂m̂ (ĝ) , X̂m̂

(
f̂×̂ĝ

)
= f̂(m̂)×̂X̂m̂ (ĝ)+ĝ(m̂)×̂X̂m̂

(
f̂
)

,

(113)
for all f̂ , ĝ ∈ M(Ê) and α̂, β̂ ∈ R̂, where ×̂ is the isomultiplication in R̂ and the use
of the symbol̂means that the quantities are defined on isospaces.

The collection of all tangent isovectors at m̂ is called the tangent isospace and
denoted TM(Ê). The tangent isobundle is the 2N -dimensional union of all possi-
ble tangent isospaces when equipped with an isotopic structure (see below). The
cotangent isobundle T ∗M(Ê) is the dual of the tangent isobundle and it is defined
with respect to the isounit Î2 = diag. (Ì , T̂ ) = diag. (T̂−1, Î−1), with the under-
standing pointed our in the preceding section that more general isounits of the type
Î2 = diag.

(
Î , Ŵ−1

)
, Ŵ 6= Î, are possible because of the independence of x̂ and p̂.

Let b̂ = {b̂µ} = {x̂k, p̂k} , µ = 1, 2, . . . , 2N , be a local chart of T̂ ∗M(Ê). An
isobasis of T ∗M(Ê) is, up to equivalence, the (ordered) set of isoderivatives ∂̂ =
{∂̂/∂̂b̂µ} = {T̂ ν

2µ∂/∂bν}. A generic element X̂ ∈ T ∗M(Ê) can then be written X̂ =
X̂µ(m̂)∂̂/∂̂b̂µ.

The fundamental one-isoform on T ∗M(Ê) is given in the local chart b̂ by

θ̂ = R̂◦
µ

(
b̂
)

d̂b̂µ = R̂◦
µ (b) Îµ

2ν db̂ν = p̂kd̂x̂k = p̂k Îk
i dx̂i, R̂◦ =

{
p̂, 0̂

}
. (114)

The space T ∗M(Ê), when equipped with the above one-form, is an isobundle denoted
T ∗

1 M(1). The isoexact, nowhere degenerate, isosymplectic two-isoform in isocanonical
realization is given by

ω̂ = d̂θ̂ = d̂
(
R̂◦

µd̂b̂µ
)

= ωµν d̂b̂µ ∧ d̂b̂ν =

2 d̂x̂k ∧ d̂p̂k = Îk
i dx̂i ∧ T̂ j

kdp̂j ≡ dx̂k ∧ dp̂k ≡ ω. (115)

The isospace T ∗M(Ê), when equipped with the above two-isoform, is an isosymplectic
isomanifold in isocanonical realization denoted T ∗

2 M(Ê). The isosymplectic geometry
is the geometry of the isosymplectic isomanifolds. The last identity in (115) show that
the isosymplectic isocanonical two-isoform ω̂ formally coincides with the conventional
symplectic canonical two-form ω.

The abstract identity of the symplectic and isosymplectic geometries is then evi-
dent. This illustrates on geometric grounds Bruck’s [5] statement to the effect that
”the isotopies are so natural to keep in un-noticed”. However, one should remem-
ber that the underlying metric is isotopic, that p̂k = T̂ i

kpi, where pi is the variable
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of the conventional canonical realization of the symplectic geometry, and that iden-
tity (115) no longer holds for the more general isounits Î2 = diag.(Î , Ŵ−1). Also,
the symplectic geometry is local-differential, while the isosymplectic geometry admits
nonlocal-integral terms when embedded in the isounit.

A vector isofield X̂(m̂) defined on the neighborhood N(m̂) of a point m̂ ∈ T ∗
2 M(Ê)

with local coordinates b̂ is called isohamiltonian when there exists an isofunction Ĥ
on N(m̂) over R̂ such that X̂cω̂ = −d̂Ĥ, i.e.,

ωµX̂ν (m̂) d̂b̂µ = d̂Ĥ (m̂) =
(
d̂Ĥ/∂̂b̂µ

)
d̂b̂µ, (116)

which are equivalent to isohamilton equations (83). The isosymplectic geometry is
therefore the geometry underling the isohamiltonian mechanics.

It is straighforward to construct isoforms Φp of arbitrary order p. The proof of
the following property then follows from the properties of the isodifferential calculus.

Lemma 1 (Isopoincaré Lemma): Under the assumed smoothness and regularity
conditions, isoexact p-isoforms are closed, i.e.,

d̂Φ̂p = d̂
(
d̂Φ̂p−1

)
≡ 0. (117)

For the two-dimensional case (see, e.g., [18] or [27]), the conventional Poincaré
lemma is known to provide the necessary and sufficient conditions in geometric form
for the contravariant version ωµν = [(ωαβ)−1]µν of the canonical symplectic tensor
ωµν to be Lie, i.e., for brackets (95) to satisfy the Lie algebra axioms. In this way,
the symplectic geometry is the geometry underlying Lie’s theory.

The isopoincaré lemma for the two-dimensional case provides the necessary and
sufficient conditions for the same contravariant tensor ωµν to be , this time, Lie-
isotopic, i.e., for the isobrackets (97) to verify the Lie axioms in isospaces over isofields
[12, 18, 32, 35]. The isosymplectic geometry is therefore the geometry underlying the
Lie-Santilli isotheory.

The general one-isoform in the local chart b̂ is given by

Θ̂ = R̂µ

(
b̂
)

d̂b̂µ = R̂µ

(
b̂
)

Îµ
2ν

(
t, b̂, d̂b̂/d̂t̂, . . .

)
db̂ν , R̂ =

{
P̂ (x̂, p̂) , Q̂ (x̂, p̂)

}
.

(118)
The general isosymplectic isoexact two-isoform in the same chart is then given by

Ω̂ = d̂
(
R̂µ

(
b̂
)

d̂b̂µ
)

= Ω̂µν

(
t̂, b̂, d̂b̂/d̂t̂, . . .

)
d̂b̂µ ∧ d̂b̂ν , (119)

Ω̂µν =
∂̂R̂ν

∂̂b̂µ
− ∂̂R̂µ

∂̂b̂ν
= T̂α

2µ

∂̂R̂ν

∂̂b̂α
− T̂α

2ν

∂̂R̂µ

∂̂b̂α
. (120)

One can see that, while at the canonical level exact the two-form and its isotopic
extension ω̂ formally coincide, this is no longer the case for exact, but arbitrary two
forms Ω and Ω̂ in the same local chart.

Note that the isoform Ω̂ is isoexact, Ω̂ = d̂Θ̂ , and therefore isoclosed, d̂Ω̂ ≡ 0 in
isospace. However, if the same isoform Ω̂ is projected in ordinary space and called
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Ω, it is no longer necessarily exact and, therefore, it is not generally closed, dΩ = 0.
These properties prove the following lemma.

Lemma 2 (General Lie-Santilli Isobrackets). Let Ω̂ = Ω̂µν d̂b̂µ∧ d̂b̂ν be a general
exact two-isoform, Ω̂ = d̂Θ̂ = d̂(R̂µd̂b̂µ). Then the brackets among sufficiently smooth
and regular isofunctions Â(b̂) and B̂(b̂) on T̂ ∗

2 M(Ê)

[
Â, B̂

]
isot.

=
∂̂Â

∂̂b̂µ
Ω̂µν ∂B̂

∂̂b̂ν
, (121)

Ωµν =

(
∂̂R̂α

∂̂b̂β
− ∂̂R̂β

∂̂b̂α

)−1
µν

, (122)

satisfy the Lie-Santilli axioms in isospace (but not necessarily the same axioms when
projected in ordinary spaces).

An important property of the symplectic geometry is Darboux’s Theorem [7] which
expresses the capability of reducing arbitrary symplectic two-forms to the canonical
form or, equivalently, the reduction of Birkhoff’s to Hamilton’s equations. The fol-
lowing additional property completes the axiom-preserving character of the isotopies
of the symplectic geometry.

Theorem 8 (Isodarboux Theorem): A 2N -dimensional isocotangent bundle
T ∗

2 M(Ê) equipped with a nowhere degenerate, exact, Ĉ∞ two-isoform Ω̂ in the local
chart b̂ is an isosymplectic manifold if and only if there exists coordinate transforma-
tions b̂ → b̂′(b̂) under which Ω̂ reduces to the isocanonical two- isoform ω̂, i.e.,

∂̂b̂µ

∂̂b̂′ α
Ω̂µν

(
b̂
(
b̂′

)) ∂̂b̂ν

∂̂b̂′ β
= ωαβ . (123)

Proof. Suppose that the transformation b̂ → b̂′(b̂) occurs via the following interme-
diate transform b̂ → b̂′′(b̂) → b̂′(b′′(b)). Then there always exists a transform b̂ → b̂′′

such that (
∂̂b̂p/∂̂b̂′′σ

)(
b̂′′

)
= Îρ

σ

(
b̂
(
b̂′′

))
, (124)

under which the general isosymplectic tensor Ω̂µν reduces to the Birkhoffian form
when recompute in the b̂ chart

∂̂b̂µ

∂̂b̂′′ α
Ω̂µν

(
b̂
(
b̂′′

)) ∂̂b̂ν

∂̂b̂′′ β |b̂′′
=

(
∂R̂ν

∂b̂α
− ∂R̂µ

∂b̂ν

)
|b̂′′

= ωαβ |b̂′′ . (125)

The existence of a second transform b̂′′ → b̂′ reducing Ωαβ to ωαβ is then known
to exist (see, e.g., [27]). This proves the necessity of the isodarboux chart. The
sufficiency is proved as in the conventional case. 2
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The isotopies of the remaining aspects of the symplectic geometry (Lie derivative,
global treatment, etc.) can be constructed along the preceding lines and are omitted
for brevity.

Remark 1. The symplectic geometry in canonical realization can geometrize in
the given b-chart only a subclass of Newtonian systems, namely, conservative systems
plus a restricted class of nonconservative systems called nonessentially nonselfadjoint
[26]. The remaining systems can only be geometrized via their representation with
respect to an arbitrary symplectic two-form and its reduction to the canonical form
via the Darboux’s transforms. However, the Darboux transforms are nonlinear and
therefore, as recalled earlier, they cannot be realized in laboratory and imply the loss
of conventional relativities because of the loss of the inertial character of the original
frame.

Remark 2. The direct universality, of the conventional symplectic geometry
for the characterization of all possible local, analytic and regular Newtonian systems
(universality) in the frame of the experimenter (direct universality), was proved in ref.
[27] via the use of the general one-forms on the ordinary cotangent bundle T ∗M(E) =
T ∗M [E(x, δ,R)] in the local chart

Θ = Rµ (b) dbµ, (126)

with corresponding general, exact, symplectic two-form

Ω = Ω(b)µν dbµ ∧ dbν , (127)

where Ωµν is the Birkhoffian tensor (91). A vector field X(m) in the neighborhood
of a point m ∈ T ∗M(E) which is not Hamiltonian in the given chart b results to be
always Birkhoffian in the same chart, i.e., when a function H on N(m) such that
Xcω = −dH does not exist in the b-chart, there always exists a Birkhoffian tensor
Ωµν (b) such that XcΩ = −dH. The maps within a fixed b-chart θ → Θ and ω → Ω
were identified in ref. [25] as a first form of isotopies of the symplectic geometry in
canonical realization.

Remark 3. Despite the achievement of the above direct universality, the sym-
plectic geometry continues to be insufficient for recent applications owing to its local-
differential character. This is due to the recent emergence in Newtonian mechanics,
particle physics and other disciplines of nonlocal-integral systems, such as a space-
ship during re-entry in our atmosphere with necessary terms involving integrals over
the surface of the space-ship. In fact, two space-ships with the same weight and the
same speed at the initiation of the re-entry in atmosphere but different shapes have
different re-entry trajectories.

A second isotopy of the symplectic geometry for the characterization of the addi-
tional nonlocal, integral terms was submitted by this author [29] via the lifting of the
unit and of the associative product while preserving the conventional differential cal-
culus. For instance, the isocanonical one-form on T ∗M(Ê) in the above formulation
is given by

θ̂ = R̂◦
µ

(
b̂
)

Îµ
2νdb̂ν (128)
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and, as such, it coincides with one-isoform (114). In fact, the isotopic degrees of
freedom of the product of the former are merely transferred to the isotopic degrees
of freedom of the differentials in the latter. However, the two-isoforms of these ap-
proaches are different, as one can verify (see ref. [32], Sect. 5.4 for brevity).

The above second isotopy of the symplectic geometry preserves all conventional
axioms, including the Poincaré Lemma, the Darboux’s Theorem, etc. Also, the latter
theorems hold in both isospaces as well as in their projection into the conventional
spaces. In particular, the generalized brackets were Lie-isotopic in both isospace and
in their projection in the conventional space.

The drawback of the above isotopy is that it implies the loss of the basic unit Î2 in
the transition from one- to two-isoforms evidently due to the use of the conventional
calculus (see also ref.s [32], Sect. 5.4 for brevity).

In this section we have introduced the third isotopy of the symplectic geometry,
this time based on the isodifferential calculus. Its main advantage over the preceding
isotopies is its remarkable simplicity, as well as the preservation of the basic unit Î2 =
diag.(Î , T̂ ) for isoforms of arbitrary order. Another advantage is that the conventional
coordinate-free treatment of the symplectic geometry can be preserved in its entirety
for the characterization of the isosymplectic geometry submitted in this section and
merely subjected to a more general realization of the symbols such as dx , dH etc.

Remark 4. The isosymplectic geometry of this section is particularly suited for
the isotopies of symplectic quantization first studied by Lin [16] and then treated in
[33]. These isotopies are significant for the study of nonlocal-integral and nonhamil-
tonian interactions in particle physics, superconductivity and other fields.

Remark 5. The nonlinear, nonlocal and noncanonical character of the isotopies
is evident from the preceding analysis. It is important to point out that linearity is
reconstructed in isospace and called isolinearity, as shown in Eq. (113). Locality is
equally reconstructed in isospace and called isolocality, because one- and two-isoforms
are based on the local isodifferentials d̂x̂ and d̂p̂. Similarly, canonicity is reconstructed
in isospace, and called isocanonicity, because the canonical form pkdxk is preserved
by the isotopic form p̂kdx̂k in isospace. The nonlinear, nonlocal and noncanonical
character of isotopic theories solely emerge when they are projected in the original
spaces.

Numerous other reconstruction of original properties in isospaces occur under
isotopies. As an example, it is easy to see that isogroups (107) are characterized
by nonunitary transforms in an ordinary Hilbert space Ĥ, i.e., for U = exp{iĤT̂ t},
UU† 6= I owing to the noncommutativity of Ĥ and T̂ . However, these transforms
do verify the axiom of unitarity when written in the isohilbert space Ĥ, Eq.s (109).
At any rate, any nonunitary transform UU† = Î 6= I can always be rewritten in the
isounitary form Û Û† = Î via the factorization U = Û T̂ 1/2.

The latter point illustrates again the lack of equivalence between conventional and
isotopic theories which are connected at the classical level by noncanonical transforms
and at the operator level by nonunitary transforms (see [33] for details).
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7 Isoriemannian geometry

The Riemannian geometry [23] is exactly valid for the exterior gravitational problem
in vacuum, because an extended body moving in the homogeneous and isotropic
vacuum (such as Jupiter in its planetary trajectory around the Sun) can be effectively
approximated as a massive point, thus providing the physical foundations of the local-
differential character of the geometry.

The Riemannian geometry is only approximately valid for interior gravitational
problems (such as a space-ship during re-entry in our inhomogeneous and anisotropic
atmosphere) because the shape of the body considered affects its trajectory and the
local- differential treatment is no longer exact. Also, interior problems imply con-
tributions which are nonlinear in the velocities and/or wavefunctions (in addition to
the conventional nonlinearity in the coordinates) as well as nonlocal-integral. These
latter effects are beyond the descriptive capacities of the Riemannian geometry in
its current formulation (for a study of these limitation see Santilli [33], Ch. 9; an
independent appraisal was also provides by E. Cartan [6]).

In the final analysis, astrophysical bodies undergoing gravitational collapse are not
composed of ideal points (as necessary for the exact validity of the Riemannian ge-
ometry but instead of extended and hyperdense hadrons in conditions of total mutual
penetration and compression in large numbers into small regions of space. The need
under the latter conditions of a generalization of the Riemannian geometry which is
arbitrarily nonlinear and nonlocal- integral is beyond scientific doubts.

Numerous deformations-generalizations of the Riemannian geometry have been
studied during the last decades to represent more general conditions, but they gen-
erally imply the abandonment of the Einsteinian axioms in favor of yet un-identified
axioms (because deformed Riemannian spaces are no longer isomorphic to the original
space). This author submitted in 1988 [30] (see [32], Ch. 5 and [33], Ch. 9, for a
comprehensive presentation) the isotopies of the Riemannian geometry, called isorie-
mannian geometry, to achieve the desired representation of arbitrary nonlinear and
nonlocal effects while preserving the original Riemannian, and therefore Einsteinian
axioms. The isogeometry was constructed via the isotopic lifting of the unit and of
the product of the original geometry while preserving the conventional differential cal-
culus. The emerging generalized geometry did result to be an isotopy of the original
one, that is, preserving the original Riemannian axioms, while permitting the rep-
resentation of nonlinear and nonlocal effects via their embedding in the generalized
unit.

In this section we shall present, apparently for the first time, the isoriemannian
geometry formulated via the isotopy of the differential calculus (rather than that of
the product), and show that the latter formulation is more conducive to a single,
unified, abstract formulation of the geometry with different realizations, the conven-
tional local-differential one for the exterior problem in vacuum and the more general
nonlocal-integral isotopic one for interior problems within physical media. Our study
will be again in local realizations representing the fixed inertial reference frame of the
observer while all abstract treatments are left to the interested reader. For the con-
ventional case we shall assume all topological assumptions of Lovelock and Rund [18]
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of which we shall preserve the symbols for clarity in the comparison of the results. For
the isotopic case we shall assume the topological assumption by Tsagas and Sourlas
[35] which are also tacitly implied hereon. Our presentation will be made, specifi-
cally, for the (3 + 1)-dimensional space-time, the extension to arbitrary dimensions
and signatures being elementary.

Let R = R(x, g,R) be a (3 + 1)-dimensional Riemannian space over the reals
R(n, +,×) [18] with local coordinates x = {xµ} = {r, x4}, x4 = c0t, µ = l, 2, 3, 4,
where c0 is the speed of light in vacuum, nowhere singular, symmetric and real-
valued metric g(x) = (gµν) with tangent Minkowski space M(x, η,R) with metric
η = diag.(1, 1, 1,−1). The interval the familiar expression x2 = xµgµν(x)xν ∈ R
with infinitesimal line element ds2 = dxµgµν(x)dxν and related formalism (covariant
derivative, Christoffel’s symbols, etc. [18]).

Let R̂ = R̂(x̂, ĝ, R̂) be an isotopic image of R, called isoriemannian space, first
introduced by this author in ref. [28] of 1983, with local coordinates x̂ = {x̂µ}(= {xµ})
and isometric ĝ = T̂ g, where T̂ = (T̂ ν

µ ) is a nowhere singular, symmetric, real valued
and positive-definite 4 × 4 matrix with C∞ elements. The isospace R̂ is defined
over the isoreals R̂ = R̂(n̂, +, ×̂) with isounit Î = (Îµ

ν ) = T̂−1. The lifting R → R̂
leaves unrestricted the functional dependence of the isounit/isotopic element, which
can therefore depend in an arbitrarity nonlinear and nonlocal-integral way on the
coordinates x̂, velocities v̂ = dx̂/dt, accelerations â = dv̂/dt and any needed additional
quantity of the interior medium, such as density µ, temperature τ , etc. By recalling
that the original unit of R is I = diag.(1, 1, 1, 1), the lifting R → R̂ is characterized
by

I = diag.(1, 1, 1, 1) → Î (x̂, v̂, â, µ, τ, . . .) = T−1, g(x) → ĝ (x̂, v̂, â, µ, τ, . . .) = T̂ g.
(129)

We then have the isoline element

x̂2 = [x̂µĝµν (x̂, v̂, â, µ, τ, . . .) x̂ν ] Î ∈ R̂, (130)

with infinitesimal version

d̂ŝ2 =
(
d̂x̂αĝαβ d̂x̂β

)
Î ∈ R̂. (131)

The capability of representing arbitrarily nonlinear and nonlocal effects of the interior
problem is therefore embedded ab initio in the isoriemannian geometry.

The isonormal coordinates ŷ occur when the isometric ĝ is reduced, not to the
Minkowski metric η, but rather to its isotopic image, i.e., ĝx̂ → η̂ŷ = T̂ŷηŷ and,
as such, they are the conventional normal coordinates. In different terms, the cor-
rect tangent space is not the conventional space M(x, η,R), but the isominkowskian
space M̂(x̂, η̂, R̂) first submitted in ref. [25]. In particular, the isounit and related
isotopic element are the same for both the isoriemannian spaces and its tangent
isominkowskian spaces. Under these conditions, the isonormal coordinates only reduce
the g-component in ĝ = T̂ g to the η-component of η̂ = T̂ η. As a result, isonormal
coordinates coincide with the conventional normal coordinates.
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It is easy to see that, despite the arbitrary functional dependence of the isometric
ĝ, all infinitely possible isotopic images R̂(x̂, ĝ, R̂) of a Riemannian space R(x, g,R)
are locally isomorphic to the latter, i.e., for each given metric g, R̂ ≈ R for all infinitely
possible Î of Kadeisvili’s Class I [13]. This is first due to the preservation by Î of the
axioms of I, as a result of which the field R and its isotopic image R̂ lose any distinction
at the abstract level [31]. Second, the local isomorphism R̂ ≈ R follows from the fact
that, in conjunction with the deformation of the metric elements gµν → ĝµν = T̂α

µ gαν ,
the corresponding unit has been deformed by the inverse amount, Iµ

α → Îµ
α = (T̂α

µ )−1,
thus preserving the original geometric characteristics. In particular, the isospace R
is isocurved, that is (unlike the case for the isoeuclidean spaces), curvature exists in
the original space and persists under isotopy.

To have an idea of the various applications under study with isoriemannian spaces,
the diagonal isotopic element

T̂ = diag.
(
n−2

1 , n−2
2 , n−2

3 , n−2
4

)
, nµ > 0, m = 1, 2, 3, 4, (132)

permits the representation of the locally varying speed c = c0/n4 of electromagnetic
waves within physical media, which occurs via the forth component of the isoline
element

x̂4ĝ44x̂
4 = tc (x̂, µ, τ, . . .) g44 (x) t, c = c0/n4(x̂,m, τ, . . .) (133)

where g44 is the ordinary metric element and n4 is the familiar index of refraction.
This permits a gravitational treatment of the locally varying speed of light in interior
conditions. As an example, light propagating in our atmosphere has a dependence on
the density, and then assumes yet different values when propagating in water, glasses,
etc. It is evident that the representation of the locally varying speed of light is not
possible with the Riemannian geometry or with its tangent Minkowskian geometry.
Also, the decrease of the speed of light within inhomogeneous and anisotropic media
has novel effects, such as a shift of light frequency toward the red which cannot be
predicted via the Riemannian or Minkowskian geometries, but which is quantitatively
treatable in accordance with available experimental data via the isogeometries [33].

The representation technically occurs via the isolight cone d̂ŝ2̂ = d̂x̂µĝµν d̂x̂ν = 0
[33] which is the image in isospace of the deformed light cone in our space-time, as
generated by a locally varying speed of light. In a way similar to the fact that the
isosphere is a perfect sphere in isospace (Sect. 1), the isolight cone is a perfect cone in
isospace (see ref. [33], Ch. 8, for details). This occurrence is not a mere mathematical
curiosity because it is important for numerical examples, such as the correct calcu-
lations of the gravitational horizon in the hyperdense astrophysical chromospheres
where it is well known that the speed of light is locally varying with the temperature,
density, etc. Note that the conventional exterior motion in vacuum is a particular
case of the isoriemannian geometry occurring for Î = I.

In the first formulation of the isoriemannian geometry [30], differentials of con-
travariant isofields X̂β on R̂ where defined by dX̂ = (∂X̂) ∗ dx̂ = (∂µX̂)T̂µ

ν dx̂ν 6=
dX = (∂µX)dxµ, ∂µ = ∂/∂xµ. The isodifferential calculus allows us to introduce the
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following alternative definition

d̂ X̂β =
(
∂̂µX̂β

)
d̂x̂µ = T̂ ρ

µ

(
∂ρX̂

β
)µ

σ
dx̂σ ≡

(
∂µX̂βdx̂µ

)
, (134)

namely, isodifferential of isovector fields coincide with ordinary differentials.
The isocovariant differential can be defined by

D̂ X̂β = ∂̂ X̂ + Γ̂β
αγX̂α d̂x̂γ , (135)

with corresponding isocovariant derivative

X̂β

|̂µ
= ∂̂µX̂β + Γ̂β

αµX̂α, (136)

where the isochristoffel’s symbols are given by

Γ̂αβγ =
1
2

(
∂̂αĝβγ + ∂̂γ ĝαβ − ∂̂β ĝαγ

)
= Γ̂γβα , (137)

Γ̂β
αγ = ĝβρΓ̂αργ = Γ̂β

γα , ĝβρ =
[
(ĝµν)−1

]βρ

, (138)

and one should note the abstract identity of the conventional and isotopic connections.
The extension to covariant isofields and covariant or contravariant tensor isofields is
consequential and it is hereon assumed (see also[36]).

The repetition of the proof of [18] pag. 80-81, yields to the following:

Lemma 3 (Isoricci Lemma) Under the assumed conditions, the isocovariant deriva-
tives of all isometrics on isoriemannian spaces are identically null,

ĝ
αβ|̂γ ≡ 0, α, β, γ = 1, 2, 3, 4. (139)

Despite the similarities with the conventional case, the lack of equivalence of the
Riemannian and isoriemannian geometries can be illustrated via the isotorsion

τ̂β
αγ = Γ̂β

αγ − Γ̂β
γα , (140)

which is identically null for the isoriemannian geometry here considered, but its pro-
jection in the original space R is not necessarily null. Interior gravitational models
treated with the isoriemannian geometry are therefore theories with null isotorsion but
generally non-null torsion as requested for a realistic treatment of interior problems.

The occurrence also illustrates the property, verified at subsequent levels later
on, that departures from conventional geometric properties must be studied in the
projection of isoriemannian spaces in the original spaces because, when treated in their
respective spaces, the two geometries coincide. Stated in different terms, when using
the conventional Riemannian geometry, exterior gravitation can only be studied in
the spaces R. On the contrary, when using the isogeometry, interior gravitation can
be studies in two different spaces, the isoriemannian spaces R̂ and their projection
into R.
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Another way of identifying the differences between the Riemannian and isorieman-
nian geometries is by considering the following isotopic Newton equations in isorie-
mannian space

D̂x̂β

D̂τ̂
=

d̂vβ

d̂τ̂
+ Γ̂αβγ (x̂, v̂, â, . . .)

d̂x̂α

d̂τ̂

d̂x̂γ

d̂τ̂
= 0, (141)

where v̂ = d̂x̂/d̂τ = Î0
0dx/dτ , τ̂ is the proper isotime and Î0

0 the related isounit. The
preceding equations must then be compared with the conventional equations

Dxβ

Ds
=

dvβ

ds
+ Γ̂αβγ (x)

dxα

ds

dxγ

ds
= 0. (142)

It is evident that the latter equations are at most quadratic in the velocities while
the isotopic equations are arbitrarily nonlinear in the velocities, as it occurs already
in a flat space (Sect. 3). Also, the latter equations are local-differential while the
former admit nonlocal-integral term.

We now introduce: the isocurvature tensor

R̂β
αγδ = ∂̂δΓ̂β

αγ − ∂̂γΓ̂β
αδ + Γ̂β

ρδΓ̂
ρ
αγ − Γ̂β

ργΓ̂ρ
αδ ; (143)

the isoricci tensor
R̂µν = R̂β

µνβ ; (144)

the isocurvature isoscalar
R̂ = ĝαβR̂αβ = R̂µ

µ ; (145)

the isoeinstein tensor
Ĝµν = R̂µν − 1

2
R̂ (146)

and the isotopic isoscalar

Θ̂ = ĝαβ ĝγδ
(
Γ̂ραδΓ̂

ρ
γβ − ΓραβΓ̂ρ

γδ

)
= Γ̂ραβΓ̂ρ

γδ

(
ĝαδ ĝγβ − ĝαβ ĝγδ

)
, (147)

the latter one being new for the isoriemannian geometry (see below).
Tedious but simple calculations then yield the following basic properties of the

isoriemannian geometry:
Property l: Antisymmetry of the last two indices of the isocurvature tensor

R̂β
αγδ = −R̂β

αδγ ; (148)

Property 2: Symmetry of the first two indices of the isocurvature tensor

R̂αβγδ = R̂βαγδ ; (149)

Property 3: Vanishing of the totally antisymmetric part of the isocurvature ten-
sor

R̂β
αγδ + R̂β

γδα + R̂β
δαγ ≡ 0 ; (150)
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Property 4: Isobianchi identity

R̂β

αγδ |̂ ρ
+ R̂β

αργ |̂ δ
+ R̂β

αδρ |̂ γ
≡ 0 ; (151)

Property 5: Isofreud identity (see Freud [9] for the original form, Pauli [22] for
a subsequent treatment, Rund [24] for a more recent presentation and Santilli [32],
Ch. 5, for a general review)

Ŝα
β = R̂α

β = −1
2
δα
β R̂ − 1

2
δα
β Θ̂ = Ûα

β + ∂̂ρV̂
αρ
β , (152)

where Θ̂ is the isotopic isoscalar (147) and

Ûα
β = −1

2
∂̂Θ̂

∂̂ĝαβ
|̂β

, (153)

V̂ αρ
β =

1
2
[ĝγδ(δα

β Γ̂ρ
αδ − δρ

βΓ̂ρ
γδ)+

(δρ
β ĝαγ − δα

β ĝργ)Γ̂δ
γδ + ĝργΓ̂α

βγ − ĝαγΓ̂α
βγ ] . (154)

Note the abstract identity of the conventional and isotopic properties. This con-
firms that the conventional and isotopic geometries can be treated at the realization-
free level via one single set of axioms, as desired.

The repetition of the proof of the Theorem of [18], p. 32l, leads to the following
property first identified in 1988 [30] (see also [33]) and which is here recovered via the
isodifferential calculus.

Theorem 9 (Fundamental Theorem for Interior Gravitation) Under the as-
sumed regularity and continuity conditions, the most general possible isolagrange equa-
tions Êαβ = 0 along an actual path P̂0 on a (3 + 1)-dimensional isoriemannian space
satisfying the properties:

1. Symmetry condition
Êαβ = Êβα, (155)

2. Contracted isobianchi identity

Êαβ
|̂β ≡ 0 (156)

3. The isofreud identity

Ŝα
β = R̂α

β − 1
2
δβ
αR̂ − 1

2
δα
β Θ̂ = Ûα

β + ∂̂ρV̂
αρ
β , (157)

are given by

Êαβ = α ĝ
1
2

(
R̂αβ − 1

2
ĝαβR̂ − 1

2
ĝαβΘ̂

)
+ βĝαβ − ĝ

1
2 D̂αβ = 0, (158)
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where ĝ
1
2 = (det ĝ)1/2, α and β are constants and D̂αβ is a source tensor. For

α = 1 and β = 0 the interior isogravitation field equations can be written

Ŝαβ = R̂αβ − 1
2
ĝαβ − 1

2
ĝαβΘ̂ = t̂αβ − τ̂αβ = Ûα

β + ∂̂ρV̂
αρ
β , (159)

where t̂αβ is a source tensor and τ̂αβ is a stress-energy tensor.

Note the appearance in Eq.s (159) of the isotopic isoscalar Θ̂ in the l.h.s and
of source terms in the r.h.s., the latter ones originating from the isofreud identity.
Additional studies not reported here for brevity (see [33], Ch. 9) have shown that the
tensors t̂αβ is nowhere null and of first order in magnitude. This implies that, at the
isonormal coordinates the isometric ĝ is indeed reduced to the tangent isominkowski
metric η̂ = Tη , but the source t̂αβ cannot be rendered null (this occurrence is called
isoequivalence principle).

A vector isofield X̂β on R̂ is said to be transported by isoparallel displacement
from a point m̂(x̂) on a curve Ĉ on R̂ to a neighboring point m̂′(x̂ + d̂x̂) on Ĉ if

D̂ X̂β = d̂ X̂β + Γ̂β
αγX̂αd̂x̂γ ≡ 0, (160)

or in integrated form

X̂β (m̂′) − X̂β (m) =
∫̂ m̂′

m̂

∂̂X̂β

∂̂x̂α

d̂x̂α

d̂s
d̂s . (161)

The isotopy of the conventional case [18] then yield the following:

Lemma 4 Necessary and sufficient conditions for the existence of an isoparallel trans-
port along a curve on a (3 + 1)-dimensional isoriemannian space are that all the
following conditions are identically verified along Ĉ

R̂β
αγδX̂

α = 0, β, γ, δ = 1, 2, 3, 4. (162)

Note, again, the abstract identity of the conventional and isotopic parallel trans-
port. Along similar lines, we say that a smooth path x̂α on R̂ with isotangent
v̂α = d̂x̂α/d̂ŝ is an isogeodesic when it is solution of the isodifferential equations

D̂x̂β

D̂ŝ
=

d̂v̂β

d̂ŝ
+ Γ̂αβγ

d̂x̂α

d̂ŝ

d̂x̂γ

d̂ŝ
= 0. (163)

It is easy to prove the following:

Lemma 5 The isogeodesics of an isoriemannian space R are the curves verifying the
isovariational principle

δ̂

∫̂ [
ĝαβ (x̂, v̂, â, µ, τ, . . .) d̂x̂αd̂x̂β

]1/2

= 0. (164)
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Finally, we point out the property which is inherent in the notion of isotopies as
realized in this paper:

Lemma 6 Geodesic trajectories in ordinary space remain isogeodesics in isospace.

For instance, if a circle is originally a geodesic, its image under isotopy in isospace
remains the perfect circle, the isocircle of Sect. 1, and the same happens for other
curves. As it is the case for all other aspects, the differences between a geodesic
and an isogeodesic emerge when projecting the latter in the space of the former. As
recalled in Sect. 3, the projection of the isocircle in the conventional space becomes
an ellipse under the assume topology (and can be a hyperbola when relaxing the
positive-definite character of 1) [32].

We can say in figurative terms that interior physical media ”disappear” under their
isoriemannian geometrization, in the sense that actual trajectories under resistive
forces due to physical media (which are not geodesics of a Riemannian space) are
turned into isogeodesics in isospace with the shape of the geodesics in the absence
of resistive forces. This property is inherent in the very conception of the isotopic
Newton equations, e.g., in representation (42), and it is only re-expressed in this
section in an isocurved space.

Remark l: A question raised in this section is: why use in interior problems
the Riemannian geometry with metric g(x) when the same axioms permit metrics
ĝ(x̂, v̂, â, . . .) with a more general functional dependence in the velocities and other
variables as needed for interior conditions ? In fact, at the abstract level we have the
identities I ≡ Î, dx ≡ d̂x̂, R(n, +,×) ≡ R̂(n̂, +, ×̂) and R(x, g,R) ≡ R̂(x̂, ĝ, R̂) with
consequential unique abstract geometric axioms for both spaces R and R̂. Within
such a setting, R emerges as a simpler realization of the Riemannian axioms, and R̂
as a more general realization.

Besides the representation of internal nonlinear, nonlocal and noncanonical effects,
the isotopic treatment of gravitation permit novel advances, such as in gravitational
collapse. In fact, under the decomposition ĝ = T̂ η , where η is the Minkowski metric,
gravitational horizons are the zeros of the isotopic element T̂ (x̂, v̂, . . . = 0, while
gravitational singularities are the zeros of the isounit Î(x̂, v̂, . . .) = 0. This illustrates
the significance of the singular isotopies of Kadeisvili’s Class IV [13].

Remark 2: Once the basic unit I = diag.(1, 1, 1) of the Riemannian geometry
has been lifted into an arbitrary 4× 4 matrix Î, numerous possibilities emerge which
are precluded by theories based on I. In this paper we have studied the simplest
possible class of liftings I → Î , the axiom-preserving isotopies of Kadeisvili’s Class
I. The isotopies of Kadeisvili’s Class II are characterized by the isodual map

Î → Îd = −Î < 0, (165)

which characterizes isodual isofields R̂d(n̂d,+, ×̂d), with isodual isonumbers n̂d = −n̂,
isodual isoproduct n̂d×̂dm̂d = n̂dαT dαm̂d = −n̂×̂m̂, isodual norm |̂n̂d |̂ =| n | Îd <

0, isodual isoriemannian spaces R̂d(x̂, ĝd, R̂d) with isodual metric ĝd = T̂ dg = −ĝ,
isodual isoseparation x̂2̂d = (x̂µĝd

µν x̂ν)Îd ≡ (x̂µĝµν x̂ν)Î = x̂2̂, isodual isochristoffel
symbols, isodual isocurvature, etc.
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The emerging isodual isoriemannian geometry has been studied in detail in [32, 33]
because, when formulated at the operator level, the isodual map is equivalent to charge
conjugation. As a result, the isoriemannian geometry can be used for the study of
interior gravitational problems of matter, while the isodual isoriemannian geometry
provides a novel representation of interior gravitational problems of antimatter.

The emerging predictions are intriguing. For instance, the isoriemannian geometry
preserves the attractive character of gravitation for matter within the field of matter.
Similarly, the isodual isoriemannian geometry preserve the attractive character of
antimatter within the field of antimatter (this is due to the fact that curvature,
which is now negative-definite, is referred to the underlying isofield with a negative-
definite norm, thus resulting in attraction). However, the projection of the isodual
isogeometry for antimatter in the space of matter results in repulsion, i.e., in the
prediction that an antiparticle (such as a positron or an antineutron) experiences a
repulsion when in the gravitational field of Earth [33].

The origin of this particular model of antigravity is significant per se. It is due to
the fact that the isoriemannian treatment of interior gravitation implies the transition
from the traditional description of the field in vacuum, to a theory on the origin of
the gravitational field. Within such a setting, the old problem of the unification of the
gravitational and electromagnetic fields is turned into their identification. As it is well
known, the primary origin of the mass of elementary particles is of electromagnetic
type (plus short range weak and strong corrections). This implies the presence of
an electromagnetic field in the exterior of particles or of astrophysical masses which
is of electromagnetic origin and of first-order in magnitude even for bodies with null
total charge (otherwise the established electromagnetic origin of the mass of neutral
particles such as the π◦ would be violated). In particular,. the t̂µν source tensor in
Eq.s (159) is precisely of electromagnetic origin, that is, it represents the established
electromagnetic origin of mass. Antigravity is then a mere consequence. In fact, the
identification of the gravitational and electromagnetic fields implies the equivalence
in their behavior, i.e., the reversal of the sign of the force for particle-particle or
antiparticle-antiparticle when passing to particle-antiparticle (see ref. [33] Ch. 8 for
a relativistic treatment and Ch. 9 for the gravitational counterpart). Note the role
plaid by the isodual isoriemannian geometry for the above prediction of antigravity.

Remark 3: The isotopic theories presented in this paper and their isodual images
indicated above are only the beginning of a hierarchy of structural generalizations of
contemporary mathematics which are permitted by the generalization of the unit. The
next level of generalization is that in which the generalized unit is no longer symmetric.
These latter theories were first submitted by the author [25] in ref. [25] under the
name of genotopies, and they preserve the original axioms under a certain ordering
and differentiation of the isomultiplication to the right and that to the left [31].
This implies the construction of genofields, genospaces, genoalgebras, genogeometries,
genomechanics, etc., all admitting their isotopic counterpart as a particular case.
As an illustration of the possibilities of the genotopies, note that the isotopies of
the Riemannian geometry studied in this section preserve the symmetric character
of the metric. By comparison, the genotopies of the Riemannian geometry, called
genoriemannian geornetry [32] are capable of preserving the Riemannian axioms at the
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abstract level, yet they permit the relaxation of the symmetric character of the metric.
The isoriemannian geometry results to per particularly suited for the treatment of
interior gravitational problems with nonlinear, nonlocal and nonhamiltonian internal
effects and time-reversal invariant trajectories of their center of mass, as it is the
case, say, for the structure of Jupiter. The broader genoriemannian geometry results
instead to be particularly suited for the study of open irreversible interior gravitational
conditions, such as for the vortices in the Jovian atmosphere with continuously varying
angular momenta while considering the rest of the system as external (see [33] for
details). The genotopic extension of the isodifferential calculus and its applications
to mechanics and geometries are contemplated for study in a next paper.

The genotopies themselves are particular cases of a more general level of math-
ematical formulations based on multivalued hyperstructures [37] with consequential
multivalued hyperfields, hyperspaces, hypermechanic, hypergeometries, etc., all admit-
ting the corresponding genotopic and isotopic structures as particular cases. In fact,
the generalized unit of the isotopies and genotopies is unique per each considered sys-
tem. Multivalued hypergeneralization occur when the generalized unit is constituted
by a (finite or infinite and ordered or non-ordered) set of elements, and result to be
particularly promising for the study of systems more complex than those appearing
in physics, such as those in theoretical biology. The further multivalued extension of
the genodifferential calculus and its expected applications are also contemplated for
study at a future time.
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