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Abstract

This paper studies a special class of curves, called by the author i-derivable
curves. The special circles define an interesting Lagrangean structure permitting
to characterize the special circles. The existence of the circular points on the
special circles leads to a central symmetry for the inverse of the given i-derivable
curve. An interesting metric spaces class is highlighted, so that the distance
between two close points has the same Lagrangean form as those described by
special circles.
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We shall consider in the two-dimensional Euclidean plane known the concepts:
curve, closed curve, convex set, tangent in a point to a curve as it appears in [1], [4].
Let P0 be a fixed point belonging to a given curve c : I ⊂ IR → IR2 and let P be a
variable point on c in the neighborhood U(P0) ∩ c of P0.

Definition 1 The curve c is called dual derivable if the limit of the intersection of
the tangents in P0 and P , when P is moving on curve to P0, is the fixed point P0.

Observation 1 The dual derivability excludes the existence of rectilinear compo-
nents of the curve.

Observation 2 Obviously, a simple closed curve having its interior as convex set is
not dual derivable.

Definition 2 We shall call parallel derivable curve any simple closed curve belonging
to the two-dimensional Euclidean plane which satisfies the conditions:

i) for any direction it allows just two tangents parallel with a given direction;

ii) the tangents described above do not intersect again the interior of the curve.
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Observation 3 The parallel derivability does not imply necessary a dual derivability
for a curve, such that the following definition makes sense.

Definition 3 We shall call that the curve K is i-derivable if K is a simple closed
curve of the two-dimensional Euclidean plane which proceeds from a parallel and
dual derivable curve K∗ by geometric inversion of an arbitrary power with respect to
an arbitrary point as pole, pole which is contained in the interior of K∗.

Lemma 1 A parallel and dual derivable curve K∗ has as interior a convex set.

Proof. If not, there exist M,N ∈ K∗ such that the segment line MN intersects
K∗. That means K∗ has points in the both sides of MN . In each side there exists,
using Lagrange’s theorem, tangent lines parallel with MN . It is obvious that one of
this tangent will intersect the interior of K∗, in collision with the parallel derivability
of K∗. ¤

Lemma 2 An i-derivable curve is dual and parallel derivable and its interior is a
convex set.

Proof. Consider a point A contained in the interior of the given i-derivable curve
denoted by K.

Taking into account that the inverse K∗ is dual and parallel derivable, the geomet-
ric inversion I(A,µ) of arbitrary power will conserve both the angles between curves
and the tangence, that means that K will be a dual and parallel derivable curve.

The convex interior of K∗ in Lemma 1 will be transformed into a convex set
bounded by the initial curve K,with respect to I(A, µ).¤

Lemma 3 In any point A situated in its interior, an i-derivable curve K permits a
pair of circles both mutually tangent in A and being each one also tangent in a unique
point at K. The common tangent line in A of the two circles may have any direction.

Proof. The i-derivable curve K proceeds from the inversion of K∗ with respect to
A, an interior point of K∗. The parallel lines having a given direction are transformed
in tangent circles passing by A with the tangent line in A parallel with ∆. Taking
into account Lemma 2, the circles tangent in A will intersect each one K in only one
point.¤

Denote by s, S the tangent points at K of the circles described by Lemma 3 and
by r, R the length of the radii of the same circles. We can observe that r, R depend
on the point A and by the direction ∆.

Definition 4 We shall call special circle, the circle determined by the points s, A
and S.

Lemma 4 An i-derivable curve allows a Lagrangean structure in its interior.



SOME REMARKS ON I-DERIVABLE CURVES 33

Proof. Using x1, x2 as usual coordinates in the plane of the curve, we shall consider
the arclength element described by

ds = M (x1, x2, ẋ1, ẋ2)
√

dx2
1 + dx2

2,

where we denote by M (x1, x2, ẋ1, ẋ2) the expression
1
2
(
1
r

+
1
R

), according to the

special circle determined by A and ∆ =
ẋ2

ẋ1
.

Suppose that M is a differentiable function and let us denote by
L (x1, x2, ẋ1, ẋ2) := M (x1, x2, ẋ1, ẋ2)

√
ẋ2

1 + ẋ2
2. Taking into account that the ze-

ros of the first differential form
∂L

∂ẋ1
dx1 +

∂L

∂ẋ2
dx2 over IR2 are straightlines having

like equation
∂L

∂ẋ1
x1+

∂L

∂ẋ2
x2 with a precise slope, it is justified the following definition

by the colligation slope-transversal direction.

Definition 5 We shall call transversal direction the expression
dx2

dx1
defined by

∂L

∂ẋ1
dx1 +

∂L

∂ẋ2
dx2 = 0.

Theorem 1 If L(x1, x2, ẋ1, ẋ2) is a differentiable function then the transversal direc-
tion in the point A is coincident with the orthogonal direction to the tangent in A at

the special circle determined by the point A and the direction ∆ =
ẋ2

ẋ1
.

Proof. It is obvious that L may be thought as M(x1, x2,
ẋ2

ẋ1
)
√

ẋ2
1 + ẋ2

2 or as

M(x1, x2, θ)
√

ẋ2
1 + ẋ2

2, where θ = arctan ẋ2
ẋ1

.
We have successively:

∂L
∂ẋ1

=
∂

(
M

√
ẋ2

1 + ẋ2
2

)
∂ẋ1

=
∂M

∂ẋ1

√
ẋ2

1 + ẋ2
2 + M

∂
(√

ẋ2
1 + ẋ2

2

)
∂ẋ1

=

dM

dθ
· dθ

dẋ1

√
ẋ2

1 + ẋ2
2 + M

ẋ1√
ẋ2

1 + ẋ2
2

=
√

ẋ2
1 + ẋ2

2

dM

dθ
·

− ẋ2
ẋ2
1

1 +
(

ẋ2
ẋ1

)2 + M · ẋ1√
ẋ2

1 + ẋ2
2

.

Analogously, we have:

∂L
∂ẋ2

=
√

ẋ2
1 + ẋ2

2 ·
dM

dθ
·

1
ẋ1

1 +
(

ẋ2
ẋ1

)2 + M · ẋ1√
ẋ2

1 + ẋ2
2

.

Then the transversal direction is defined by:√
ẋ2

1 + ẋ2
2

dM

dθ

− ẋ2
ẋ2
1

1 +
(

ẋ2
ẋ1

)2 + M
ẋ1√

ẋ2
1 + ẋ2

2

 dx1+
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√
ẋ2

1 + ẋ2
2

dM

dθ

1
ẋ1

1 +
(

ẋ2
ẋ1

)2 + M
ẋ1√

ẋ2
1 + ẋ2

2

 dx2 = 0

By calculating we obtain:

dM

dθ
: M =

ẋ1dx1 + ẋ2dx2

ẋ2dx1 − ẋ1dx2
. (1)

Consider the geometric inversion having A as pole and 1 as power. The two tangent
circles described in Lemma 3 become two parallel tangent lines at K∗ orthogonal to

the direction ẋ2
ẋ1

. These parallel lines have the point A between them, spaced at
1
2r

,

1
2R

respectively. Obviously, M =
1
2

(
1
r

+
1
R

)
is the distance between the parallel

lines.

Figure 1.

Consider two pairs of orthogonal circles corresponding both to the point A and
to the sufficiently close directions ∆ and ∆′, so that dθ is the angle between ∆
and ∆′. Denoting by dA, dA′ the orthogonal directions corresponding to ∆ and ∆′

respectively, and by Sε, sε the contacts with the curve of the second pair of circles,
we will obtain after the inversion

S∗s∗ =
M

sin ϕ
=

M + dM

sin (π − ϕ − dθ)
,

where S∗, s∗ are the inverses of Sε, sε and ϕ is the angle between the transverse circle
and K. Therefore

M + dM

M
= 1 + dθ · cot ϕ,
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or, equivalent,
dM

dθ
: M = cot ϕ. (2)

Thus, (1) and (2) imply

ẋ1dx1 + ẋ2dx2

ẋ2dx1 − ẋ1dx2
= cotϕ. (3)

Figure 2.

Let us use Figure 2 and let us denote by:

i) α the slope of the tangent line of the first pair of circles (therefore tanu = α);

ii) τ1 the slope of the tangent line in A at the first special circle (therefore tan v =

τ1 and also
ẋ2

ẋ1
= τ1).

It results
cot ϕ = cot (u − v) =

1 + ατ1

α − τ1
=

ẋ1dx1 + ẋ2dx2

ẋ2dx1 − ẋ1dx2
. (4)

Using (3) and (4) we obtain(
1 +

ẋ2

ẋ1

dx2

dx1

)
(α − τ1) =

(
ẋ2

ẋ1
− dx2

dx1

)
(1 + ατ1) ,

or, in the final form,(
ẋ2

ẋ1
− α

)(
1 +

dx2

dx1
· τ1

)
=

(
1 +

ẋ2

ẋ1
α

)(
dx2

dx1
− τ1

)
.

Since 1+
ẋ2

ẋ1
α = 0 , it results 1+

dx2

dx1
·τ1 = 0, or, in the older form,

− ∂L
∂ẋ1

∂L
∂ẋ2

·τ1 = −1.

This means that the transverse direction is orthogonal in A to the special circle
corresponding to the direction ∆. ¤
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We shall show that a particular distance that we shall introduce in the interior of
an i-derivable curve leads to the same finslerian metric as the one introduced by the
simple circles of i-derivable curves.

Consider A and B as fixed points in the interior of the i-derivable curve denoted
by K and P an arbitrary point on K.

The Euclidean distances ‖PA‖, ‖PB‖ determine a function f(P ) :=
‖PA‖
‖PB‖

, f :

K → IR∗
+, which has a maximum MAB and a minimum mAB , when P is moving on

K.

Theorem 2 d(A, B) := ln MAB · m−1
AB is a distance between A and B.

Proof. If A = B then f(P ) =
‖PA‖
‖PB‖

for any P ∈ K and that means ln
MAB

mAB
=

ln 1 = 0. If ln
MAB

mAB
= 0 for a pair A, B then MAB = mAB and that means that

the function is constant. Or, if A 6= B, it results that P which belongs to K also
belongs to the Apolloniu’s circle of the pair A, B. But A and B are separated by the
Apolloniu’s circle which coincides with K, in collision with A, B ∈ int K.

For d(A, B) = d(B,A), it is enough to observe that

min
P∈K

‖PA‖
‖PB‖

=
1

max
P∈K

‖PB‖
‖PA‖

.

We wish to prove that for any three points A, B, C in intK we have

d(A,B) + d(B,C) ≥ d(A,C). (5)

Let S1, S2, S3; s1, s2, s3 be the points for which the maximum and the minimum
of the three ratios is reached:

‖S1A‖
‖S1B‖
‖s1A‖
‖s1B‖

=
MAB

mAB
;

‖S2B‖
‖S2C‖
‖s2B‖
‖s2C‖

=
MBC

mBC
;

‖S3A‖
‖S3C‖
‖s3A‖
‖s3C‖

=
MAC

mAC
.

Therefore, for the substitutions with minorant role S1, S2 → S3 ; s1, s2 → s3 ,
we obtain

MAB

mAB
· MBC

mBC
≥ ‖S3A‖

‖S3C‖
:
‖s3A‖
‖s3C‖

=
MA

mA
,

equivalently with (5). See also [2] , [3]. ¤
Let A be a point belonging to the interior of the i-derivable curve K, ∆ be a given

direction and A + dA be another point in a small neighborhood of A such that dA is
orthogonal to ∆. In accordance with Theorem 1 the special circle determined by A
and ∆ has dA as tangent; let us denote by R, r the radii of the circles which appear
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in Lemma 3, and by ds the infinitesimal distance established by Theorem 2, between
the points A and A + dA ,i.e.

ds = d (A, A + dA) = ln
max
P∈K

‖PA‖
‖P (A+dA)‖

min
P∈K

‖PA‖
‖P (A+dA)‖

.

Let us denote by d the Euclidean distance between the points A, A + dA.

Theorem 3 The distance between two close points A, A + dA has the same form as
the Lagrangean arclength determined by the special circle corresponding to the point
A and to the direction ∆.

Proof. We have to prove that ds =
1
2
(
1
R

+
1
r
)dσ.

In the given conditions ds =
MA(A+dA) − mA(A+dA)

mA(A+dA)
. For A, A + dA, P with the

coordinates (x1, x2), (x1
1, x

1
2), (x1, x2) the Apolloniu’s circle determined by A, A+dA

and the constant
√

λ has the equation

2∑
i=1

((
xi − xi

)2 − λ
(
xi − x1

i

)2
)

= 0.

Its radius will be

ρ2 =
λ

(1 − λ)2

2∑
1

(
xi − x1

i

)2
.

For the maximum MA(A+dA) and the minimum mA(A+dA) of the expression
‖PA‖

‖P (A + dA)‖
, it appears

R2 =
MA(A+dA)(

1 − MA(A+dA)

)2 dσ2, r2 =
mA(A+dA)(

1 − mA(A+dA)

)2 dσ2,

so it results:

MA(A+dA) − mA(A+dA)

mA(A+dA)
=

2
(√

dσ2 + 4r2 +
√

dσ2 + 4R2
)
dσ(

−dσ +
√

dσ2 + 4R2
) (

dσ +
√

dσ2 + 4r2
) .

Taking into account that we can neglect small infinities of second order, we obtain
2 dσ

dσ +
√

dσ2 + 4a2
=

dσ

a
and also ds =

1
2
(
1
R

+
1
r
)dσ.

Definition 6 The point Q belonging to the interior of an i-derivable curve denoted
by K is called a circular point if:

i) after the revolution with π as angle of the direction ∆ the points s∆,S∆ describe
completely the curve K and,
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ii) on each special circle which passes through Q there exists a point O∆ such that
after the previous revolution the set of points O∆ determines a simple closed
curve.

Theorem 4 If an i-derivable curve allows a circular point, then its inverse with
respect to the circular point allows a central symmetry.

Proof. Consider a geometric inversion with an arbitrary power having as pole the
circular point. We shall show that the set of points O∆ from the previous definition
is formed by an element only. We introduce a system of cartesian coordinates and
let ∆ be an arbitrary direction having as slope tan ϕ. Let S∗, s∗ be the contacts of
tangent lines parallel with ∆. We shall give up ∆ in our notations.

We have that the inverse of the point O, denoted by O∗, belongs to the segment
line s∗S∗.

Let (x1, x2) , (x∗
1, x

∗
2) , (X∗

1 , X∗
2 ) be the coordinates of the points O∗, s∗, S∗ and

tan Ψ be the slope of the straightline s∗S∗. Then we have:

x∗
1 = x1 + λ cosΨ,

x∗
2 = x2 + λ sinΨ,

X∗
1 = x1 + ΛcosΨ,

X∗
2 = x2 + ΛsinΨ, (6)

where λ := o∗s∗, Λ := O∗S∗ are oriented segments and

‖s∗S∗‖ = Λ − λ.

Therefore O∗ describes a continuous bounded curve Ω∗ which is contained in the
interior of K∗, the inverse of K. Both the coordinates functions (x1, x2) for Ω∗ and
tan Ψ depend continuously by tanϕ. We observe that tanΨ is strictly increasing and
that means dΨ > 0. We have {

dx1 = cosΨ dω
dx2 = sinΨ dω

,

where dω2 = dx2
1 + dx2

2. The condition of parallelism of the two tangent lines at K∗

can be written: ∣∣∣∣ dx∗
1 dx∗

2

dX∗
1 dX∗

2

∣∣∣∣ = 0

so, in accordance with (6), we obtain∣∣∣∣ d (ω + Λ) cosΨ − ΛdΨsinΨ d (ω + Λ) sinΨ + ΛdΨ cosΨ
d (ω + λ) cosΨ − λdΨ sinΨ d (ω + λ) sinΨ + λdΨcosΨ

∣∣∣∣ = 0

or, equivalently,∣∣∣∣ cosΨ − sinΨ
sinΨ cosΨ

∣∣∣∣ · ∣∣∣∣ d (ω + Λ) d (ω + λ)
Λ λ

∣∣∣∣ · dΨ = 0
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i.e. ∣∣∣∣ d (ω + Λ) d (ω + λ)
Λ λ

∣∣∣∣ = 0. (7)

If we denote by ρ =
λ

Λ − λ
, we have

dρ =
∆dλ − λdΛ
(Λ − λ)2

and using (7) we obtain
dω

Λ − λ
+

∆dλ − λdΛ
(Λ − λ)2

= 0

or, equivalently, dρ = − dω

Λ − λ
.

This means that

ρ = −
∫ ϕ

0

dω

Λ − λ
, ρ0 = −

∫ ϕ0

0

dω

Λ − λ
,

where λ0 = λ(ϕ0), Λ0 = Λ(ϕ0). Taking into account the geometric signification of
the revolution with 2π we obtain

λ0 = − (Λ0 − λ0)
∫ ϕ0

0

dω

Λ − λ

and

λ0 = − (Λ0 − λ0)
∫ ϕ0+2π

0

dω

Λ − λ
.

The last two relations lead to ∫ ϕ0+2π

0

dω

Λ − λ
= 0. (8)

But the geometric meaning of the ratio
dω

Λ − λ
leads to a constant positive sign

during the previous revolution. This and (8) assert that dω = 0 for any ϕ ∈ [0, 2π),
that means dx1 = 0, dx2 = 0. It results that the coordinates of the point O∗ are
constants. Since after a revolution of the segment line S∗s∗ having π as angle we
have s∗ → S∗,s∗ → S∗, it results that O∗ is the midpoint of the segment line S∗s∗.
Therefore it appears the symmetry for the curve K∗.
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