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Abstract

The paper describes the procedure used in the fibered Finslerian approach,
for obtaining the generalized Einstein-Yang Mills equations and the equation of
stationary curves on vector bundles. As applications, in §2 and §3 are presented
these equations for a certain generalized Lagrange space GLn, which provides a
convenient relativistic model, having the E.P.S. conditions satisfied [13].
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1 Preliminaries

Let ξ = (E, p,M) be a vector bundle having the local coordinates (xi, ya), i =
1, n, a = 1,m, (n = dimM, m = dimE − n), endowed with a non-linear con-
nection N = {Na

i (x, y)}, a (h, v)-metric given by the d-tensor fields {gij(x, y)} and
{hab(x, y)}, and the covariant derivations ([14, 6])

(1)

{
DiT

b
j = δiT

b
j + Lb

ciT
c
j − Lk

jiT
b
k = T b

j|i
DaT b

j = ∂̇aT b
j + Cb

caT c
j − Ck

jaT b
k = T b

j |a
,

where δi = ∂i − Na
i ∂̇a, ∂i = ∂

∂xi , ∂̇a = ∂
∂ya , i = 1, n, a = 1,m and

(2) DΓ(N) = {Li
jk, La

bk, Ci
ja, Ca

bc}

are the coefficients of a d-connection ([6, 4, 5, 11]).
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Let the torsion d-tensor fields of DΓ(N) be given by

(3) T i
jk = Li

(jk), Ra
jk = δ(kNa

j), P a
kb = ∂̇bN

a
k − La

bk, P i
ja = Ci

ja, Sa
bc = Ca

(bc),

where we denote µ(ij) = µij − µji, µ{ij} = µij + µji, and let the curvature d-tensor
fields described in [11, 15, 6]

(4) {Rj
i
kl, Rb

a
kl, Pj

i
kc, Pb

a
kc, Sj

i
cd, Sb

a
cd}.

By generalized gauge transformation on ξ we shall understand an automorphism
of a fixed subgroup H of Aut(ξ) ([6]).

A d-tensor field ([11, 14]) whose components in the local adapted basis of X (M)
obey tensorial transformation rules relative to H ([4]), will be called generalized gauge
tensor field (g.t.f.), and a function of F(E) which is invariant under H will be called
gauge scalar field (g.s.f.) on ξ ([2, 3, 6]).

We shall assume that the non-linear connection N and the linear d-connection
DΓ(N) satisfy certain transformation laws ([4]) with respect to the action of H on
ξ, which are provided by the requests that δi applied to gauge scalar fields produces
a g.t.f and that the associated h-and v-covariant derivatives of DΓ(N) preserve the
gauge tensorial character of the g.t.f. . In this case, the associated h- and v-covariant
derivation laws are called generalized gauge covariant derivations (g.c.d.) and the
non-linear connection N is called generalized gauge non-linear connection (g.n.c.).

Let denote by {Xα} = {δi, ∂̇a}, α = 1, n + m, i = 1, n, a = 1,m, the local basis
of X (E) adapted to N , and the corresponding dual basis {δξα} = {dxi, δya} ([11,
15]). A linear connection D on ξ has in the adapted basis the coefficients given by
DXγ

Xβ = Γα
βγXα, β, γ = 1, n + m, has the torsion given by T (Xγ , Xβ) = T α

βγXα,
where T α

βγ = Γα
(βγ) + wα

βγ , and the coefficients of non-holonomy wα
βγ are given by

[Xβ , Xγ ] = wα
βγXα. The associated curvature is described by

R(Xδ, Xγ)Xβ = Rα
βγδXα, with Rα

βγδ = X(δΓα
βγ) + Γα

φ(δΓα
βγ) + Γα

βφwα
βδ

The coefficients of the covariant derivation (1) provide the coefficients (2) of a linear
connection D having

Γi
jk = Li

jk, Γa
bk = La

bk, Γi
ja = Ci

ja, Γa
bc = Ca

bc; Γi
aα = 0, Γa

iα = 0.

In this case the non-holonomy coefficients are given by

wi
jk = 0, wi

bk = 0, wi
bc = 0, wi

jb = 0, wa
bc = 0, wa

jk = Ra
jk, wa

kb = −wa
bk = ∂̇bN

a
k ,

the torsion coefficients T α
βγ are described by the d-tensor fields (3)

T i
jk = T i

jk, T i
ja = −T i

ja = Ci
bc, T i

bc = 0, T a
kl = Ra

kl, T a
kb = −T a

bk = P a
kb, T a

bc = Sa
bc

and the curvature Rα
β γδ is represented by the d-tensor fields (4)

Rj
i
kl = Rj

i
kl, Rb

a
kl = Rb

a
kl, Rj

i
kc = Pj

i
kc, Rb

a
kc = Pb

a
kc,
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Rj
i
cd = Sj

i
cd, Rb

a
cd = Sb

a
cd, Rb

i
αβ = Ri

b
αβ = 0.

The Ricci tensor field of D has the components Rαβ = Rα
δ
βδ, given by

Rij = Rij = Ri
h

jh, Ria = −
2

P ja = −Pi
h

ha,

Rai =
1

P ai = Pa
b
ib, Rab = Sab = Sa

c
bc

and the scalar curvature is R = GαβRαβ = R + S, R = gijRij , S = habSab, where
Gαβ is the inverse of the matrix associated to the metric

(5) G = gijdxi ⊗ dxj + habδy
a ⊗ δyb = Gαβδξα ⊗ δξβ .

Then the Einstein equations on ξ are ([11])

(6) Rαβ − 1
2
RGαβ = κTαβ ,

where κ is the gravitational constant and Tαβ are the components of the energy-
momentum tensor field in the adapted basis {Xα}.

I. Let L be a Lagrangian g.s.f. depending functionally on

Φ ∈ {Γα
βγ ,Gαβ , Na

i } = F ,

and let L = L(det(G))1/2 be the associated density. Then the variational problem

δ

∫
Ldxdy = 0

provides the Euler-Lagrange equations

(7)
δL
δΦ

= ∂k

(
∂L

∂(∂kΦ)

)
+ ∂̇a

(
∂L

∂(∂Φ/∂ya)

)
− ∂L

∂Φ
= 0.

The general case was developed in [4, 6, 7], where the explicit form of the Einstein -
Yang Mills (E.Y.M.) equations were obtained, and they were shown to have a gauge
covariant character. We remark that if the g.c.d. DΓ(N) and N depend only on G,
and L depends on the family of gauge fields F , then the associated E.Y.M. equations
become

δL
δΦ

= 0, Φ ∈ F .

We shall exemplify this case in the following paragraph.
II. The geodesics of the fibration ξ can be defined considering the variational

problem

(8) δ

∫
C

L

(
x, y,

dx

dt
,
dy

dt

)
dt = 0
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for the Lagrangian L given by the length of a smooth curve in E parametrized by
t, C = (xi(t), ya(t)). Denoting the h- and v-velocities by

Ai = ẋi =
dxi

dt
, Aa =

dya

dt
+ Na

i

dxi

dt
,

then the Euler-Lagrange equations associated to L with respect to {xi, ya} yield the
gauge covariant equations of stationary curves. Their explicit expressions, for ξ and
GLn will be presented in §3.

2 The generalized Einstein-Yang Mills equations for
the space GLn = (M, gij(x, y) = e2σ(x,y)γij(x))

Let Mn = (M, gij(x, y)) be a generalized Lagrange space (GLS) endowed with the
nonlinear connection N and a linear connection Γ(N) = (Li

jk, Ca
bc), ([15, 11, 14]).

For ξ = (TM, p,M) and hab = δi
aδj

bgij , the normal lift of Γ(N) to ξ produces the
d-connection DΓ(N) having

(9) La
bk = δa

i δj
bL

i
jk, Ci

ja = δi
bδ

c
jC

b
ca.

Let {γij(x)} be a Riemannian metric tensor field on M , with γi
jk and rj

i
kl given by

ri
jkl = ∂(lγ

i
jk) + γi

h(lγ
h
jk), γi

jk = gih(∂{kγhj} − ∂hγjk)/2,

having the Ricci tensor field rij , and the scalar curvature r; let also the non-linear
connection be given by Na

i = γa
0i, where the null index denotes contraction by y. Let

the metric tensor field be defined on ˜TM by

g(x, y) = e2σ(x,y)γij(x),

where σ ∈ F( ˜TM) is continuous on TM and C2- differentiable on ˜TM = TM \ {0}.
This metric was studied in [14], and provides a nontrivial example of GLS, non-
reducible in general to a Lagrange or Finsler space, and still obeying the Ehlers-
Pirani-Schild (E.P.S.) postulates.

Assuming further that σ and γij(x) are g.s.f. and g.t.f., respectively, we can state
Proposition 1. The canonical metrical connection Γ(N) for GLn ([14, 12]) provides
via (9) a gauge linear d-connection DΓ(N); it has the coefficients

Li
jk = γi

jk + Λi
jk, Ci

jk = δi
{j σ̇k} − γjkγisσ̇s,

where
Λi

jk = δi
{jσk} − γjkγisσs, σk = δkσ, σ̇k = ∂̇kσ.

Proposition 2. a) The torsions of the metrical canonical d-connection DΓ(N) are
the g.t.f. given by

{P a
kb = −Λa

kb, Ra
kl = δ(lN

a
k) = r0

a
kl, Ci

jk, T i
jk = Si

jk = 0}.
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b) The curvature tensor fields of DΓ(N) are the g.t.f. given by

Rb
a

kl = rb
a

kl + δa
(kσbl) − γasγb(kσsl + γbcσ̇

(cr0
a)

kl,

Pb
a

kc = δa
k

1
σbc − δa

c

1
σkb − γas(γbk

1
σsc − γbc

1
σks) + γasγckσ(sσ̇b),

Sb
a
cd = δa

(cσ̇bd) − γasγb(cσ̇sd),

where we use the notations

σsl = σs|l + σsσl −
1
2
γsl

H

σ,

1
σsl = σs |l +σsσ̇l −

1
2
γsl

M

σ,

σ̇sl = σs |l +σ̇sσ̇l −
1
2
γsl

V

σ

and
H

σ = σkσk,
M

σ = σkσ̇k,
V

σ = σ̇kσ̇k,

σk|l = δlσk − Ls
klσs, σk |l= ∂̇lσk − Cs

klσs.

c) The following Lagrangian functions are g.s.f. :

L1 = Rk
a

lR
k

a
l, L2 = Cj

i
aCj

i
a = (3n − 2)

V

σe−2σ,

(10) L3 = Pb
a

kP b
a

k = (3n − 2)
H

σe−2σ,

L4 = R =
[
r − 2(n − 1)γijσij + 2rscy

sσ̇c
]
e−2σ,

L5 = S = 2(1 − n)γij σ̇ije
−2σ, L0 =

5∑
i=1

niLi, n ∈ R, L = L0 + Λ,

where Λ is a g.s.f. on ˜TM , R and S are the horizontal and vertical scalar curvatures
of DΓ(N) respectively, and the raising/lowering of the indices is performed using the
metric g.t.f. ([2, 6]).

The proof is computational ([12]). We remark that the Lagrangians considered
above depend essentially on the gauge fields

Φ ∈ {γij(x), σ(x, y)}

and their derivatives. From relation (6) we can infer the following result.
Theorem 1 ([11]). The Einstein equations of the space GLn are given by

Rij −
1
2
gij(R + S) = κ

H

T ij , Sij −
1
2
gij(S + R) = κ

V

T ij ,

where
H

T ij and
V

T ij are the h- and v-components of the energy-momentum g.t.f., and

Rij , Sij are the h- and v-Ricci g.t.f. of DΓ(N).
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Applying the variational Hilbert-Palatini method to the Lagrangian density L =
GL, where G = |det(gij)|, we obtain the following

Theorem 2. If L is a Lagrangian of the form (10), then the following generalized
Einstein - Yang Mills equations for L = GL take place

Rij −
1
2
gij(R + S) = κ

1

T ij , Sij −
1
2
gij(S + R) = κ

2

T ij

where
1

T ij = gijL
∗ − γiagjb

[
1
G

∂k

(
∂(L∗G)
∂Bkab

)
− grs ∂Rrs

∂γab
− 1

2
∂L

∂γab

]
,

2

T ij = gijL
∗ − γiagjb

[
1
G

∂k

(
∂(L∗G)
∂Bkab

)
− grs ∂Srs

∂γab
− 1

2
∂L

∂γab

]
,

Lh = L − R, Lv = L − S, L∗ = (L + Lh + Lv)/2 and Bkab = ∂kγab.
Corollary 1. For L = R, the first E.Y.M. set of equations described above have

the equivalent expressions

rij −
1
2
γij =

1

T ij ,

where {
tij = uij + γij [u + (1 − n)γrsσ̇rs], u = (1 − n)γrsσrs + rocσ̇

c,
uij = γrsγi(jσsr) − γisσ̇

(sr0
t)

jt + (n − 1)σij , rij = ri
s
js

.

Proposition 3. The E.Y.M. equations for the Lagrangian L = L6 =
1

P/[2(1−n)]

with respect to γij(x) are given by
1

P ab =
M

T ab,

where

M

T ab =
1

Pgab − γiagjb

 1
G

∂k

(
∂LG

∂Bkij

)
− γrs

∂
1

P rs

∂γij

 ,
1

P =
1

P ijg
ij ,

1

P ij = Pi
s
js .

Theorem 3. a) The E.Y.M equations for the Lagrangian

L = n1L1 + n2L2 + n3L3

with respect to γij have the form

δL
δγlm

= n1

{
1
G

∂k

(
G

∂L1

∂Bklm

)
−

(
γlmL1 +

∂L1

∂γlm

)}
+ n2(3n − 2)µ(γlmV

σ − σ̇lσ̇m)+

+n3(3n − 2)
{

2
G

∂k

(
µσs ∂σs

∂Bklm

)
+ µ

(
σlσm − σs ∂σs

∂γlm

)
− glmH

σ

}
= 0 ,

where µ = e−2σ.
b) The generalized Einstein-Yang Mills equation for the Lagrangian L (10) corre-

sponding to σ is given by δL
δσ = 0.
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3 Stationary curves in the fibered Finslerian ap-
proach

Applying the gauge variational principle for the classical Lagrangian

(11) L = (Gαβ(x, y)VαVβ)1/2,

where {Vα} = {Ai, Aa}, we can infer the subsequent result.
Theorem 4. The equations of geodesics for the Lagrangian (11) are

(12)
DAi

dt
= F i,

DAa

dt
= F a, i = 1, n, a = 1,m ,

where

DAi

dt
=

dAi

dt
+ Li

jkAjAk + Ci
jaAjAa,

DAa

dt
=

dAa

dt
+ La

bkAbAk + Ca
bcA

bAc

and the occuring h- and v-forces have the expressions

F i =
[
−AjAkgil(glj|k − 1

2
gjk|l + Tljk) − AbAjgik(gkj |b +Pkjb − Rkjb)

]
+

+AbAc

(
1
2
gijhbc|j − P i

bc

)
+ Ai dlnL

dt
,

F a = −AbAchad

(
hdc |b −

1
2
hbc |d +Sdbc

)
− AbAjhad

(
hdb|j + Pjdb

)
+

+AjAkhad

(
1
2
gjk |d +Pjkd

)
+ Aa dlnL

dt
.

The same procedure, applied for the Lagrangian L considered by G.S.Asanov in the
fibered Finslerian ansatz, is given by ([2, 3])

(13) L = αLH + βLv, α, β ∈ R,

where
LH = (gij(x, y)AiAj)1/2, LV = (hab(x, y)AaAb)1/2,

and provides the following result.
Theorem 5. ([4, 6]) The equations of geodesics for the gauge connection DΓ(N)

and G.S.Asanov’s Lagrangian (13) and (12), provide the expressions of the forces are

F i =
[
Ai d lnLH

dt
− AjAkgil(glj|k − 1

2
gjk|l + Tljk) − AbAjgik(gkj |b +Pkjb)

]
+

βLH

αLV

[
1
2
AbAcgijhbc|j − AbAjRi

bj − AbAcP i
bc

]
,
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F a =
[
Aa d lnLV

dt
− AbAchad(hdc |b −

1
2
hbc |d +Sdbc) − AbAjhad(hdb|j + Pjdb)

]
+

+
αLV

βLH
AjAkhad

(
1
2
gjk |d +Pjkd

)
.

Remark. The equations (12) represent the horizontal and the vertical part of the
equations of geodesics, respectively; F i and F a are forces produced by the geometry
of the fibre. The proof of the theorem is computational. For the particular case
considered in §2, these forces get simpler expressions, as follows

Proposition 4. The forces which occur in the equations of geodesics ([12]) for
the canonical connection Γ(N) described in Proposition 1 are given by

F i = Ai d ln Lh

dt − AjAkP i
jb + βLh

αLv
(AbAcΛi

bc − AbAjgikrobkj),
F a = Aa d ln Lv

dt − AbAjgadΛjdb .

Conclusions. Using the gauge variational principle, the generalized Einstein-
Yang Mills equations (7) for a vector bundle endowed with a (h, v)-metric g.t.f., a
nonlinear gauge connection N and a g.c.d. DΓ(N), are infered. In particular, in §2,
for the canonical connection on a generalized Lagrange space we derive the explicit
form of the generalized Einstein equations. Also, in §3, using the same principle,
the equations of stationary curves are obtained for the classical and for G.S.Asanov’s
extended approach.
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