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Abstract

We study the low-energy approximation for calculation of the heat kernel
which is determined by the strong slowly varying background fields in strongly
curved quasi-homogeneous manifolds. A new covariant algebraic approach,
based on taking into account a finite number of low-order covariant deriva-
tives of the background fields and neglecting all covariant derivatives of higher
orders, is proposed. It is shown that a set of covariant differential operators
together with the background fields and their low-order derivatives generates a
finite dimensional Lie algebra. This algebraic structure can be used to present
the heat semigroup operator in the form of an average over the corresponding
Lie group. Closed covariant formulas for the heat kernel diagonal are obtained.
These formulas serve, in particular, as the generating functions for the whole
sequence of the Hadamard-Minakshisundaram-De Witt-Seeley coefficients in all
symmetric spaces.
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1 Introduction

The heat kernel is an important tool in quantum field theory and mathematical physics
[1-13]. In particular, the one-loop contribution of quantized bosonic fields on a Rie-
mannian manifold (M, g) to the effective action is given by the functional determinant
of some elliptic differential operator ∆ acting on the smooth sections ϕ ∈ C∞(V ) of
a vector bundle V over the manifold M [1]

Γ(1) =
1
2

log Det∆. (1.1)

Using the standard spectral ζ-function [14]

ζ(p) = Tr∆−p, (1.2)
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where ”Tr” means the functional trace, one can present the effective action in terms
of the derivative of the zeta-function at p = 0:

Γ(1) = −1
2
ζ ′(0). (1.3)

The most convenient way to evaluate the zeta-function in the general case is to express
it in terms of the corresponding heat kernel exp(−t∆) [15]

ζ(p) =
1

Γ(p)

∞∫
0

dt tp−1

∫
M

d vol trU(t), (1.4)

where ”tr” means the usual bundle (matrix) trace and U(t) is the heat kernel diagonal,
i.e. the restriction to the diagonal M × M of the heat kernel:

U(t) = exp(−t∆)δ(x, x′)
∣∣
x=x′ , (1.5)

where δ(x, x′) is the covariant distribution on M × M .
By choosing the appropriate gauge and parametrization one can almost always

reduce the problem to the Laplace type operators:

∆ = − +Q + m2, (1.6)

where = gµν∇µ∇ν is the generalized Laplacian, ∇ is the covariant derivative on
C∞(V ), Q is an arbitrary endomorphism of the vector bundle V and m is a mass
parameter.

The effective action and the zeta function are determined by the spectrum of
the operator ∆ and are very complicated functionals of the background fields, i.e.
the metric g, the bundle connection ∇ and the endomorphism Q. Obviously, the
effective action can be calculated exactly only for some very specific simple back-
grounds. In quantum field theory, however, one needs the effective action for the
generic background. Therefore, one has to develop consistent approximate methods
for its calculation. Moreover, these approximations should be manifestly covariant,
i.e. they have to preserve the gauge invariance at each order.

For the essentially local analysis that is carried out in this paper it is sufficient to
characterize the background fields only by the local covariant objects, i.e. the curva-
tures, the Riemann curvature of (M, g) and the curvature of the bundle connection ∇,
and their covariant derivatives. We denote the components of the Riemann curvature
and the curvature of the bundle connection by Rµναβ and Rµν and call below all the
quantities < = {Rµναβ ,Rµν , Q} just the background curvatures.

Further, following [16] we introduce the infinite set of all covariant derivatives of
the curvatures:

J = {<(i); (i = 1, 2, . . .)}, <(i) = {∇ · · ·∇︸ ︷︷ ︸
i

<} (1.7)

and call them the background jets. The whole set of jets, J completely describes the
background locally.
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Since it is not possible to calculate the heat kernel exactly, one is forced to con-
sider different asymptotic expansions. A consistent way to construct the asymptotic
expansions was developed in [16]. The idea is the following. One makes a deformation
of the background fields with two deformation parameters, α and ε,

g → g(α, ε), ∇ → ∇(α, ε), Q → Q(α, ε), (1.8)

in such a way that the jets transform uniformly

<(i) → αεi<(i). (1.9)

This deformation changes the operator ∆ and, of course, the heat kernel U(t):

U(t) → U(t; α, ε) (1.10)

and is manifestly covariant because of the transformation law (1.9).
Thus it gives a natural framework to develop various asymptotic expansions with

respect to the parameter t and the deformation parameters α and ε. The limit t → 0
corresponds to small background jets, t1+i/2<(i) ¿ 1, the limit α → 0 corresponds to
the situation when the powers of curvatures are much smaller than the derivatives of
them, so called short-wave, or high-energy approximation, ∇∇< À <<, and the limit
ε → 0 corresponds to the case when the derivatives of the curvatures are much smaller
than the products of the curvatures of corresponding dimension, so called long-wave,
or low-energy approximation, ∇∇< ¿ <<. For a more detailed discussion see [16-22].

As t → 0, one has the well known asymptotic expansion [1-9]

U(t) ∼ (4πt)−d/2 exp(−tm2)
∞∑

k=0

(−t)k

k!
bk, (1.11)

where d is the dimension of the manifold. The coefficients bk are the famous Hadamard-
Minakshisundaram-De Witt-Seeley (HMDS) coefficients [1,4-9,23-28]. They are purely
local universal invariants built from the background curvatures and their covariant
derivatives that do not depend on the global structure of the manifold and the bound-
ary conditions. They play a very important role both in physics and mathematics
[6,27,28]. The HMDS-coefficients are known now in general case up to b4 [4,5,23-26].
The b4 coefficient in general case was calculated for the first time in our PhD thesis
[4] and has been published then in [24,25,5].

However, the asymptotic expansion (1.11) is of very limited applicability. It is
absolutely inadequate for large t (t< À 1) in strongly curved manifolds and strong
background fields. Therefore, this approximation cannot describe essentially nonper-
turbative nonlocal and nonanalytical effects. The investigation of such effects requires
consideration of other approximation schemes.

In the high-energy limit, α → 0, there is an expansion [16]

U(t; α, ε) ∼ (4πt)−d/2 exp(−tm2)
∞∑

n=0

(αt)nhn(t; ε), (1.12)
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where hn(t; ε) are some nonlocal functionals. They are resummed perturbative objects.
This approximation was studied in details in our PhD thesis [4] and in the papers
[5,29,30], where the explicit form of the functionals h1 and h2 was obtained and
analyzed. The third coefficient h3 has been investigated in [31].

The long-wave (or low-energy) approximation is determined by strong slowly vary-
ing background fields. It corresponds to the asymptotic expansion of the deformed
heat kernel as ε → 0 [16]

U(t; α, ε) ∼ (4πt)−d/2 exp(−tm2)
∞∑

l=0

(ε2t)lul(t; α). (1.13)

The coefficients ul are essentially non-perturbative functionals. They cannot be ob-
tained in any perturbation theory and are much complicated than the HMDS-coefficients
bk and the high-energy functionals hn.

We consider in this paper mostly the zeroth order of this approximation, i.e. the
coefficient u0, which corresponds simply to covariantly constant background curva-
tures

∇µRαβγδ = 0, ∇µRαβ = 0, ∇µQ = 0. (1.14)

The coefficient u0 depends, of course, on the global structure of the manifold. How-
ever, the asymptotic expansion of u0 as t → 0 is purely local and determines all the
terms without covariant derivatives in all HMDS-coefficients bk. Therefore, it can be
viewed on as the generating function for all HMDS-coefficients in covariantly constant
background.

The conditions (1.14) determine the geometry of locally symmetric spaces [32,33].
The globally symmetric manifold satisfies additionally some topological restrictions
and the condition (1.14) is valid everywhere in the manifold. However, in typical
physical problems, the situation is rather different. One has usually a complete
noncompact asymptotically flat space-time manifold without boundary that is home-
omorphic to IRd. In the low-energy approximation a finite (not small, in general)
region of the manifold exists that is locally strongly curved and quasi-homogeneous,
i.e., the local invariants of the curvature in this region vary very slowly. Then the
geometry of this region is locally very similar to that of a symmetric space. However,
globally, the manifold can be completely different from the symmetric space and one
should keep in mind that there are always regions in the manifold where the condition
(1.14) is not fulfilled. See the discussion in [17-22].

Thus the problem is to calculate the low-energy heat kernel diagonal (1.5) for
covariantly constant background (1.14). In other words one has to construct a local
covariant function of the invariants of the curvatures that would describe adequately
the low-energy limit of the heat kernel diagonal and that would, when expanded
in curvatures, reproduce all terms without covariant derivatives in the asymptotic
expansion of the heat kernel. If one finds such an expression, then one can simply
determine the ζ-function, (1.4), and, therefore, the effective action, (1.3).
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2 Algebraic approach

There exist a very elegant indirect way to construct the heat kernel without solving
the heat equation but using only the commutation relations of some covariant first
order differential operators [16-22]. The main idea is in a generalization of the usual
Fourier transform to the case of operators and consists in the following.

Let us consider for a moment a trivial case, where the curvatures vanish but not
the potential term:

Rαβγδ = 0, Rαβ = 0, ∇Q = 0. (2.1)

In this case the operators of covariant derivatives obviously commute and form to-
gether with the potential term an Abelian Lie algebra

[∇µ,∇ν ] = 0, [∇µ, Q] = 0. (2.2)

It is easy to show that the heat semigroup operator can be presented in the form

exp(−t∆) = (4πt)−d/2 exp[−t(m2 + Q)]

×
∫

IRd

dkg1/2 exp
(
− 1

4t < k, gk > +k · ∇
)
,

(2.3)

where < k, gk >= kµgµνkν , k · ∇ = kµ∇µ and g1/2 =
√

det gµν . Here, of course, it is
assumed that the covariant derivatives commute also with the metric

[∇µ, gαβ ] = 0. (2.4)

Acting with this operator on the δ-function and using the obvious relation

exp(k · ∇)δ(x, x′)
∣∣
x=x′ = g−1/2δ(k), (2.5)

one integrates easily over k and obtains the heat kernel diagonal

U(t) = (4πt)−d/2 exp[−t(m2 + Q)]. (2.6)

In fact, the commutators of the covariant differential operators ∇ do not vanish
but are proportional to the curvatures <. The commutators of covariant derivatives
∇ with the curvatures < give the first derivatives of the curvatures, i.e. the jets
<(1), the commutators of covariant derivatives with <(1) give the second jets <(2),
etc. Thus the operators ∇ together with the whole set of the jets J form an infinite
dimensional Lie algebra G = {∇,<(i); (i = 1, 2, . . .)} [16]. To evaluate the low-energy
heat kernel one can take into account a finite number of low-order jets, i.e. the low-
order covariant derivatives of the background fields, {<(i); (i ≤ N)}, and neglect all
the higher order jets, i.e. the covariant derivatives of higher orders, i.e. put <(i) = 0
for i > N . Then one can show that there exist a set of covariant differential operators
that together with the background fields and their low-order derivatives generate a
finite dimensional Lie algebra G′ = {∇,<(i); (i = 1, 2, . . . , N)} [16].
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Thus one can try to generalize the above idea in such a way that (2.3) would
be the zeroth approximation in the commutators of the covariant derivatives, i.e. in
the curvatures. Roughly speaking, we are going to find a representation of the heat
semigroup operator in the form

exp(−t∆) =
∫

IRD

dk Φ(t, k) exp
(
− 1

4t
< k, Ψ(t)k > +k · T

)
, (2.7)

where < k, Ψ(t)k >= kAΨAB(t)kB , k·T = kATA, (A = 1, 2, . . . , D), TA = Xµ
A∇µ+YA

are some first order differential operators and the functions Ψ(t) and Φ(t, k) are
expressed in terms of commutators of these operators, i.e., in terms of the curvatures.

In general, the operators TA do not form a closed finite dimensional algebra be-
cause at each stage taking more commutators there appear more and more derivatives
of the curvatures. It is the low-energy reduction G → G′, i.e. the restriction to the low-
order jets, that actually closes the algebra G of the operators TA and the background
jets, i.e. makes it finite dimensional.

Using this representation one could, as above, act with exp(k ·T ) on the δ-function
on M to get the heat kernel. The main point of this idea is that it is much easier to
calculate the action of the exponential of the first order operator k·T on the δ-function
than that of the exponential of the second order operator .

3 Heat kernel in flat space

3.1 Covariantly constant potential term

Let us consider now the more complicated case of nontrivial covariantly constant
curvature of background connection in flat space:

Rαβγδ = 0, ∇µRαβ = 0, ∇µQ = 0. (3.1)

Using the condition of covariant constancy of the curvatures (1.14), one can show
that in this case the covariant derivatives form a nilpotent Lie algebra

[∇µ,∇ν ] = Rµν ,
[∇µ,Rαβ ] = [∇µ, Q] = 0
[Rµν ,Rαβ ] = [Rµν , Q] = 0.

(3.2)

For this algebra one can prove a theorem expressing the heat semigroup operator
in terms of an average over the corresponding Lie group [17,18]

exp(−t∆) = (4πt)−d/2 exp[−t(m2 + Q)] det
(

tR
sinh(tR)

)1/2

×
∫

IRd

dkg1/2 exp
(
− 1

4t < k, gtR coth(tR)k > +k · ∇
)
,

(3.3)
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where k · ∇ = kµ∇µ, R means the matrix with coordinate indices R = {Rµ
ν},

Rµ
ν = gµλRλν , and the determinant is taken with respect to these indices, other

(bundle) indices being intact.
It is not difficult to show that also in this case we have:

exp(k · ∇)δ(x, x′)
∣∣
x=x′ = g−1/2δ(k). (3.4)

Subsequently, the integral over kµ becomes trivial and we obtain immediately the
heat kernel diagonal

U(t) = (4πt)−d/2 exp[−t(m2 + Q)] det
(

tR
sinh(tR)

)1/2

. (3.5)

Expanding it in a power series in t one can find all covariantly constant terms in all
HMDS-coefficients bk.

As we have seen the contribution of the bundle curvature Rµν is not as trivial as
that of the potential term. However, the algebraic approach does work in this case too.
It is a good example how can one get the heat kernel without solving any differential
equations but using only the algebraic properties of the covariant derivatives.

3.2 Contribution of two first derivatives of the potential term

In fact, in flat space it is possible to do a bit more, i.e. to calculate the contribution of
the first and the second derivatives of the potential term Q [22]. That is we consider
the case when the derivatives of the potential term vanish only starting from the third
derivative, i.e.

Rαβγδ = 0, ∇µRαβ = 0, ∇µ∇ν∇λQ = 0. (3.6)

Besides we assume the background to be Abelian, i.e. all the nonvanishing background
quantities, Rαβ , Q, Q;µ ≡ ∇µQ and Q;νµ ≡ ∇ν∇µQ, commute with each other. Thus
we have again a nilpotent Lie algebra

[∇µ,∇ν ] = Rµν ,
[∇m, Q] = Q;µ,
[∇m, Q;ν ] = Q;νµ,

(3.7)

all other commutators being zero.
By parametrizing the potential term according to

Q = Ω − αikNiNk, (3.8)

where (i = 1, . . . , q; q ≤ d), αik is some constant symmetric nondegenerate q × q
matrix, Ω is a covariantly constant matrix and Li are some matrices with vanishing
second covariant derivative:

∇µΩ = 0, ∇µ∇νNi = 0, (3.9)
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and introducing the operators XA = (∇µ, Ni), (A = 1, . . . , d+ q), one can rewrite the
commutation relations (3.7) in a more compact form [22]

[XA, XB ] = FAB ,
[XA,FCD] = [XA, Ω] = 0,
[FAB ,FCD] = [FAB ,Ω] = 0,

(3.10)

where FAB is a matrix

(FAB) =
(

Rµν Ni;µ

−Nk;ν 0

)
, (3.11)

with Ni;µ ≡ ∇µNi.
The operator (1.6) can now be written in the form

∆ = −λABXAXB + Ω + m2, (3.12)

where

(λAB) =
(

gµν 0
0 αik

)
. (3.13)

The algebra (3.10) is a nilpotent Lie algebra of the type (3.2). Thus one can apply
the theorem (3.3) in this case too to get [22]

exp(−t∆) = (4πt)−D′/2 exp[−t(Ω + m2)] det
(

sinh(tF)
tF

)−1/2

×
∫

IRd+q

dkλ1/2 exp
(
− 1

4t
< k, λtF coth(tF)k > +k · X

)
,

(3.14)

where λ = det λAB, < k, λtF coth(tF))k >= kAλAB(tF coth(tF))A
CkC , k · X =

kAXA.
Thus we have expressed the heat semigroup operator in terms of the operator

exp(k·X). The integration over k in (4.16) is Gaussian except for the noncommutative
part. Splitting the integration variables (kA) = (qµ, ωi) and using the Campbell-
Hausdorf formula we obtain [22]

exp(k · X)δ(x, x′)
∣∣∣
x=x′

= g−1/2 exp(ω · N)δ(q), (3.15)

where ω · N = ωiNi.
Further, after taking off the trivial integration over q and a Gaussian integral over

ω, we obtain the heat kernel diagonal in a very simple form [22]

U(t) = (4πt)−d/2Φ(t) exp
[
−t(m2 + Q) +

1
4
t3 < ∇Q,Ψ(t)g−1∇Q >

]
, (3.16)

where < ∇Q,Ψ(t)g−1∇Q >= ∇µQΨµ
ν(t)gνλ∇λQ,

Φ(t) = det
(

sinh(tF)
tF

)−1/2

det(1 + t2C(t)P )−1/2, (3.17)
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Ψ(t) = {Ψµ
ν(t)} = (1 + t2C(t)P )−1C(t), (3.18)

P is the matrix determined by second derivatives of the potential term,

P = {Pµ
ν} , Pµ

ν =
1
2
gµλ∇ν∇λQ, (3.19)

and the matrix C(t) = {Cµ
ν(t)} is defined by

C(t) =
∮
C

dz

2πi
t coth(tz−1)(1 − zR− z2P )−1. (3.20)

The formula (3.16) exhibits the general structure of the heat kernel diagonal.
Namely, one sees immediately how the potential term and its first derivatives enter the
result. The complete nontrivial information is contained only in a scalar, Φ(t), and a
tensor, Ψµν(t), functions which are constructed purely from the curvature Rµν and the
second derivatives of the potential term, ∇µ∇νQ. So we conclude that the coefficients
bk of the heat kernel asymptotic expansion (1.11) are constructed from three different
types of scalar (connected) blocks, Q, Φ(n)(R,∇∇Q) and ∇µQΨµν

(n)(R,∇∇Q)∇νQ.

4 Heat kernel in symmetric spaces

Let us now generalize the algebraic approach to the case of the curved manifolds with
covariantly constant Riemann curvature and the trivial bundle connection [19,20]:

∇µRαβγδ = 0, Rαβ = 0, ∇µQ = 0. (4.1)

First of all, we give some definitions [32,33]. The condition (4.1) defines, as we
already said above, the geometry of locally symmetric spaces. A Riemannian locally
symmetric space which is simply connected and complete is globally symmetric space
(or, simply, symmetric space). A symmetric space is said to be of compact, noncom-
pact or Euclidean type if all sectional curvatures K(u, v) = Rabcdu

avbucvd are positive,
negative or zero. A direct product of symmetric spaces of compact and noncompact
types is called semisimple symmetric space. A generic complete simply connected
Riemannian symmetric space is a direct product of a flat space and a semisimple
symmetric space.

It should be noted that our analysis in this paper is purely local. We are looking
for a universal local function of the curvature invariants, u0 (introduced in Sect.1)
that describes adequately the low-energy limit of the heat kernel diagonal U(t). Our
minimal requirement is that this function should reproduce all the terms without
covariant derivatives of the curvature in the local asymptotic expansion of the heat
kernel (1.11), i.e. it should give all the HMDS-coefficients bk for any symmetric space.

It is well known that the HMDS-coefficients have a universal structure, i.e. they are
polynomials in the background jets (just in curvatures in case of symmetric spaces)
with the numerical coefficients that do not depend on the global properties of the
manifold, on the dimension, on the signature of the metric etc. [6].
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It is obvious that any flat subspaces do not contribute to the HMDS-coefficients bk.
Therefore, to find this universal structure it is sufficient to consider only semisimple
symmetric spaces. Moreover, since HMDS-coefficients are analytic in the curvatures,
one can restrict oneself only to symmetric spaces of compact type. Using the factor-
ization property of the heat kernel and the duality between compact and noncompact
symmetric spaces, one can obtain then the results for the general case by analyti-
cal continuation. That is why in this paper we consider only the case of compact
symmetric spaces when the sectional curvatures and the metric are positive definite.

Let eµ
a be a covariantly constant (parallel) frame along the geodesic. The frame

components of the curvature tensor of a symmetric space are, obviously, constant and
can be presented in the form [19,20]

Rabcd = βikEi
abE

k
cd, (4.2)

where Ei
ab, (i = 1, . . . , p; p ≤ d(d−1)/2), is some set of antisymmetric matrices and βik

is some symmetric nondegenerate p × p matrix. The traceless matrices Di = {Da
ib}

defined by
Da

ib = −βikEk
cbg

ca = −Da
bi (4.3)

are known to be the generators of the holonomy algebra H

[Di, Dk] = F j
ikDj , (4.4)

where F j
ik are the structure constants.

In symmetric spaces a much richer algebraic structure exists [19,20]. Indeed, let
us define the quantities CA

BC = −CA
CB , (A = 1, . . . , D; D = d + p):

Ci
ab = Ei

ab, Ca
ib = Da

ib, Ci
kl = F i

kl, (4.5)

Ca
bc = Ci

ka = Ca
ik = 0,

and the matrices CA = {CB
AC} = (Ca, Ci):

Ca =
(

0 Db
ai

Ej
ac 0

)
, Ci =

(
Db

ia 0
0 F j

ik

)
. (4.6)

One can show that they satisfy the Jacobi identities

[CA, CB ] = CC
ABCC (4.7)

and, hence, define a Lie algebra G of dimension D with the structure constants CA
BC ,

the matrices CA being the generators of the adjoint representation.
In symmetric spaces one can find explicitly the generators of the infinitesimal

isometries, i.e. the Killing vector fields ξA, and show that they form a Lie algebra
of isometries that is (in case of semisimple symmetric space) isomorphic to the Lie
algebra G (4.7), [20]

[ξA, ξB ] = CC
ABξC . (4.8)
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Moreover, introducing a symmetric nondegenerate D × D matrix

γAB =
(

gab 0
0 βik

)
, (4.9)

that plays the role of the metric on the algebra G, one can express the operator (1.6)
in semisimple symmetric spaces in terms of the generators of isometries [20]

∆ = −γABξAξB + Q + m2, (4.10)

where γAB = (γAB)−1.
Using this representation one can prove a theorem that presents the heat semi-

group operator in terms of some average over the group of isometries G [19,20]:

exp(−t∆) = (4πt)−D/2 exp
[
−t(Q + m2 − 1

6
RG)

]
×

∫
IRD

dkγ1/2 det
(

sinh(k · C/2)
k · C/2

)1/2

exp
(
− 1

4t
< k, γk > +k · ξ

)
,

,

(4.11)
where γ = det γAB , k ·C = kACA, k · ξ = kAξA and RG is the scalar curvature of the
group of isometries G

RG = −1
4
γABCC

ADCD
BC . (4.12)

Acting with this operator on the delta-function δ(x, x′) one can, in principle,
evaluate the off-diagonal heat kernel exp(−t∆)δ(x, x′), i.e. for non-coinciding points
x 6= x′ [20]. Since in this paper we are going to calculate only the heat kernel
diagonal (1.5), it is sufficient to compute only the coincidence limit x = x′. Splitting
the integration variables kA = (qa, ωi) and solving the equations of characteristics
one can obtain the action of the isometries on the δ-function (Lemma 2 in [20])

exp (k · ξ) δ(x, x′)
∣∣∣
x=x′

= det
(

sinh(ω · D/2)
ω · D/2

)−1

η−1/2δ(q), (4.13)

where ω · D = ωiDi and η = det gab. Using this result, one can easily integrate over
q in (4.11) to get the heat kernel diagonal. After changing the integration variables
ω →

√
tω it takes the form

U(t) = (4πt)−d/2 exp
[
−t

(
m2 + Q − 1

8R − 1
6RH

)]
×(4π)−p/2

∫
IRp

dω β1/2 exp
(
−1

4 < ω, βω >
)

×det
(

sinh(
√

tω·F/2)√
tω·F/2

)1/2

det
(

sinh(
√

tω·D/2)√
tω·D/2

)−1/2

,

(4.14)

where ω ·F = ωiFi, Fi = {F j
ik} are the generators of the holonomy algebra H, (4.4),

in adjoint representation, and

RH = −1
4
βikFm

ilF
l
km (4.15)
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is the scalar curvature of the holonomy group.
The remaining integration over ω in (4.14) can be done in a rather formal way.

Namely, one can prove that for any analytic function f(ω) that falls off at the infinity
there holds [20]

(4π)−p/2

∫
IRp

dω β1/2 exp
(
−1

4 < ω, βω >
)
f(ω)

= f
(
i ∂
∂q

)
exp

(
− < q, β−1q >

) ∣∣∣
q=0

,

(4.16)

where < q, β−1q >= qjβ
jkqk.

Introducing an abstract dynamical system with a normalized ”vacuum state” |0 >,

< 0|0 >= 1, (4.17)

and the ”coordinate” and ”momentum” operators q̂i and p̂k satisfying the commuta-
tion relations

[p̂j , q̂k] = iδj
k, (4.18)

[p̂i, p̂k] = [q̂i, q̂k] = 0,

and the rules
p̂i|0 >= 0, < 0|q̂k = 0, (4.19)

one can present the equation (4.16) in the form

(4π)−p/2

∫
IRp

dω β1/2 exp
(
− 1

4 < ω, βω >
)
f(ω)

=< 0|f (p̂) exp
(
− < q̂, β−1q̂ >

)
|0 > .

(4.20)

Using this equation we have finally from (4.14) the heat kernel diagonal in an formal
algebraic form, without any integration

U(t) = (4πt)−d/2 exp
[
−t

(
m2 + Q − 1

8R − 1
6RH

)]
×

〈
0
∣∣∣ det

(
sinh(

√
tp̂·F/2)√

tp̂·F/2

)1/2

det
(

sinh(
√

tp̂·D/2)√
tp̂·D/2

)−1/2

× exp
(
− < q̂, β−1q̂ >

) ∣∣∣0〉
,

, (4.21)

where p̂ · F = p̂kFk and p̂ · D = p̂kDk. This formal solution should be understood as
a power series in the operators p̂k and q̂k and determines a well defined asymptotic
expansion in t → 0.

Let us stress that the formulae (4.14) and (4.21) are exact (up to topological
contributions) and manifestly covariant because they are expressed in terms of the
invariants of the holonomy group H, i.e. the invariants of the Riemann curvature
tensor. They can be used now to generate all HMDS-coefficients bk for any symmetric
space, i.e. for any manifold with covariantly constant curvature, simply by expanding
it in an asymptotic power series as t → 0. Thereby one finds all covariantly constant
terms in all HMDS-coefficients in a manifestly covariant way. This gives a very
nontrivial example how the heat kernel can be constructed using only the Lie algebra
of isometries of the symmetric space.
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5 Conclusion

In present paper we have presented our recent results in studying the heat kernel
obtained in the papers [16-22]. We discussed some ideas connected with the problem
of developing consistent covariant approximation schemes for calculating the heat
kernel. Especial attention is payed to the low-energy limit of quantum field theory. It
is shown that in the local analysis there exists an algebraic structure (the Lie algebra
of background jets) that turns out to be extremely useful for the study of the low-
energy approximation. Based on the background jets algebra we have proposed a new
promising approach for calculating the low-energy heat kernel.

Within this framework we have obtained closed formulas for the heat kernel diag-
onal in the zeroth order, i.e. in case of covariantly constant background curvatures.
Besides, we were able to take into account the first and second derivatives of the
potential term in flat space (Sect. 3.1).

The obtained formulas are exact, covariant and general, i.e. they are applica-
ble for any covariantly constant background fields. This enables to treat the re-
sults of this paper as the generating functions for the whole set of the Hadamard-
Minakshisundaram-De Witt-Seeley-coefficients. In other words, we have calculated
all covariantly constant terms in all HMDS-coefficients. This is the opposite case to
the leading derivatives terms which were calculated in [4,29,30,5] and [34].

Needless to say that the investigation of the low-energy effective action is of great
importance in quantum gravity and gauge theories because it describes the dynamics
of the vacuum state of the theory. The algebraic approach described in this paper
was applied to calculate explicitly the effective potential in Yang-Mills theory and to
study the structure of the vacuum of this model [35].
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