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Abstract

The aim of the present paper is to study the influence of the spectra of
different second order elliptic differential operators, on the cross sections of
different vector bundles over a compact Riemannian manifold (M, g), on the
Ricci structure of (M, g).
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1 Introduction

Let (M, g) be a Riemannian manifold of dimension n. If the Ricci tensor field ρ
on (M, g) is parallel (resp. zero), that means ∇ρ = 0 (resp. ρ = 0), the (M, g) is
called Ricci manifold (resp. flat Ricci manifold). One of the problems of Differential
Geometry is to study Ricci manifolds as well as flat Ricci manifolds.

Let ∆k, k = 0, 1, . . . , n, be the Laplacian acting on the vector space Λk(M, IR) of
differential exterior k-forms. The spectrum of ∆k is denoted by Sp(M, g, ∆k) or briefly
Sp(M, ∆k). We also consider the Bochner-Laplace operator Bk, k = 0, 1, . . . , n − 1,
acting on Λk(M, IR) whose spectrum is denoted by Sp(M,Bk). Let Dε

k = ε∆k +(1−
ε)Bk, k = 0, 1, . . . , n− 1, be one parameter family of second order elliptic differential
operators on Λk(M, IR), whose spectrum is denoted by Sp(M,Dε

k) = {λm,k(ε)}. This
spectrum is distinct and each eigenvalue has finite multiplicity. The following theorem
has been proved ([6]).

Theorem 1.1 Let (M, g) and (M ′, g′) be two compact Riemannian manifolds. Let
Sp(M, ∆k) = Sp(M ′, ∆k), k = 0, 2 and Sp(M,Dε

1) = Sp(M ′, Dε
1) for n + 1 distinct

values of ε. If | ∇ρ |2 (M) = 0, then | ∇ρ′ |2 (M) = 0 and the eigenvalues of the
Ricci tensor fields ρ and ρ′ on M and M ′ respectively are the same.

The aim of the present paper is to improve this theorem. We also atudy some
other properties of Ricci manifold and flat Ricci manifold.

The improvement of the theorem 1.1 can be stated as follows
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Theorem 1.2 Let (M, g) and (M ′, g′) be two compact Riemannian manifolds. If
Sp(M, ∆k) = Sp(M ′, ∆k), k = 0, 1, 2 and Sp(M,Dε

1) = Sp(M ′, Dε
1) only for three

distinct values of ε 6= 0, then if (M, g) is locally Ricci manifold, the, so is (M ′, g′).

This paper contains five paragraphs. Each of them is analised as follows.
The second paragraph includes a general theory for Ricci manifolds and flat ricci

manifolds. It also contains the relation between Ricci and Einstein manifolds.
The general theory of second order eliptic differential operator is studiedin the

third paragraph.
The fourth paregraph has the proof of theorem 1.2, another basic theorem and

some other isospectral properties of the Ricci tensor field.
Exemples of manifolds, which carry or not parallel Ricci tensor fields, are given in

the last paragraph. Some spectra of these manifolds are studied in this paragraph.

2

Let (M, g) be a compact Riemannian manifold of dimension n. Let (U,ϕ) be a chart
of M with local coordinate system (x1, . . . xn). If the restriction of the Ricci tensor
field ρ on U satisfies the relation

∇ρ = 0 (1)

then (M, g) is called locally Ricci manifold. If this property (1) is valid for the whole
manifold, then M is called Ricci manifold. Similarly we can define locally flat Ricci
manifold and as well as flat Ricci manifold.

Proposition 2.1 Let (M, g) be a Ricci manifold.Then the scalar curvature of (M, g)
is constant.

Proof. It is known that the curvature tensor field R, with components (Rhijk) on
the chart (U,ϕ) with local coordinate system (x1, . . . , xn), satisfies the relations :

∇lR
h
ijk + ∇jR

h
ikl + ∇kRh

ilj = 0

which can be written

∇lR
h
ijk −∇jR

h
ilk + ghm∇kRmilj = 0 (2)

Contracting (2) for h and k we obtain

∇lρij −∇jρil + ghm∇kRmilj = 0 (3)

Multiplying (3) by gil we get

∇lρ
l
j −∇jT + ∇lρ

l
j = 0 (4)

which implies
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∇lρ
l
j =

1
2
∇lT =

1
2

∂T

∂xj
, (5)

where

ρl
j = glmρmj (6)

T the scalar curvature on M and (ρij) the components of ρ on U with respect to
(x1, . . . , xn).

From 6 we obtain

∇lρ
l
j = ∇lg

lmρmj = glm∇lρmj + ρmj∇lg
lm

= glm∇lρmj .
(7)

If the Riemannian manifold (M, g) is Ricci manifold, then from (7) we have

∇lρ
l
j = 0 (8)

From (5) and (8) we obtain
∂T
∂xi = 0 ⇒ T = const. 2

Proposition 2.2 Let (M, g) be a compact Riemannian manifold of dfimension n.
(M, g) is a Ricci manifold if and only if the Einstein tensor field G is parallel.

Proof. Let (U,ϕ) be a chart of (M, g) with local coordinate system (x1, . . . , xn).
If G is the Einstein tensor field on M , then we have

Gij = ρij −
T

n
gij , (9)

where {Gij} are the components of G with respect to (x1, . . . , xn).
From (9) we obtain

∇lGij = ∇lρij −∇l
T

n
gij = ∇lρij −

1
n

gij∇lT. (10)

If (M, g) is Ricci, then ∇lρij = 0, ∇lT = 0 and (10) implies
∇lGij = 0 ⇒ G is parallel.
Conversely if G is parallel then from (10) we have

∇lρij =
1
n

gij∇lT

which by means of (5) becomes

2n∇lρij = gij∇lρ
l
j . (11)

If (x1, . . . , xn) is a normal coordinate system with center the point P ∈ U such
that

gij(P ) =
{

1 if i = j
0 if i 6= j.
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Then the relation (10) implies

2n∇lρij = ∇lρij ⇒ ∇lρij = 0.

From the continuity of ρ we conclude

∇lρ = 0

which means the Riemannian manifold (M, g) is Ricci. 2

Let ρ be the Ricci tensor field on the Riemannian manifold (M, g). Then for each
point P ∈ M ρ(P ) is a symmetric contravariant tensor field of order two obtained
by the tangent space TP (M) of M at P . If {e1, . . . , en} is an orthonormal base of
TP (M), then ρ(P ) can be represented by the symmetric matrix

ρ11(P ) ρ12(P ) . . . ρ1n(P )
ρ21(P ) ρ22(P ) . . . ρ2n(P )

. . . . . . . . . . . .
ρn1(P ) ρn2(P ) . . . ρnn(P )

 (12)

with respect to {e1, . . . , en}. The eigenvalues of (12) are real numbers

λ1(P ), λ2(P ), . . . , λn(P ).

If λi(P ) > 0 (resp. λi(P ) < 0) i = 1, . . . , n for every P ∈ M , then the Ricci
tensor field ρ is called positive definite (resp. negative definite). If λ1(P ) ≥ 0 (resp.
λi(P ) ≤ 0) i = 1, . . . , n for every P ∈ M , then the Ricci tensor field ρ is called
semi-positive (resp. semi-negative).

If λi(P ) = 0 i = 1, . . . , n for every P ∈ M , then ρ = 0 and (M, g) is Ricci flat
manifold.

3

Let (M, g) be a compact Riemannian manifold of dimension n. Let (U,ϕ) be a chart
of M with local coordinate system (x1, . . . , xn). The Riemannian metric ρ on U takes
the form

ds2 = gijdxidxj .

Let
[
gij

]
be the metric on the cotangent bundle T ∗M over M and let dM be the

Riemannian measure of M .
Let V be a smooth vector bundle over M . We consider

D : C∞(V ) → C∞(V )

a second order elliptic differential operator with leading symbol given by the metric
tensor g. We choose a local orthonormal frame(

∂

∂x1
, . . . ,

∂

∂xn

)
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for V which corresponds to the chart (U,ϕ) with local coordinate system (x1, . . . , xn).
Hence D in a local level can be expressed by

D = −(gij∂2/∂xi∂xj + Pk∂/∂xk + S)

where Pk and S are square matrices which are not invariantly defined but depend on
the choise of frame and local coordinates.

Let Vx be the fibre of V over x. We choose a smooth fibre metric on V . Let L2(V )
be the completion of C∞(V ) with respect to global integtaded inner product, that is

L2(V ) =

S ∈ C∞(V )/
∫
M

|| S || dM < ∞

 .

As a banach space L2(V ) is independent on the Riemannian and fibre metric and
for t > 0

exp(−tD) : L2(V ) → C∞(V )

is an infinitely smoothing operator of trace class. Let K(t, x, y) : Vy → Vx be the
Kernell of exp(−tD). K is a smooth endomorphism valued function of (t, x, y).

We define
f(t,D, x) = TraceVx(K(t, x, x))

and
f(t,D) =

∫
M

K(t, x, x)dM.

It is known that f(t,D, x) has an asymptotic expansion, that is ([2])

f(t,D, x) ∼= (4nt)−n/2
∞∑

m=0
αm(D,x)tm

t → 0+

The coefficients αm(D,x) are smooth functions of x, which can be estimated
functionally of the derivatives of the total symbols of the differential operator D. If
we integrate the function

αm(D,x) : M → IR, m = 0, 1, 2, . . .

on the manifold M we obtain the numbers

αm(D) =
∫
M

αm(D,x)dM

It is known that the numbers αm(D), m = 0, 1, 2, . . ., are isospectral invariants.
Let D = ∆q, q = 0, 1, . . . , n, be the Laplacian which is a second order elliptic

differential operator with leading symbol defined by the metric tensor on the cross
sections of the vector bundle of exterior q-form Λq(M) over the manifold M , that is

∆q = dδ + δd : C∞(Λq(M)) → C∞(Λq(M)),
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where d and δ are the exterior differentiation and codifferentiation respectively.
The coefficients αm(∆q) for m = 0, 1, 2, 3 and for q = 0, 1, 2 are given by ([1],[4],[6])

α0(∆0) = V ol(M), α1(∆0) = −1
6

∫
M

T dM (13)

α2(∆0) =
1

360

∫
M

(
5T 2 − 2 | ρ |2 +2 | R |2

)
dM (14)

α3(∆0) = 1
9·7!

∫
M

[−142 | ∇T |2 −26 | ∇ρ |2 −7 | ∇R |2 −35T 3+

42T | ∇ρ |2 −42T | R |2 +35 | ρ |3 −20L1 + 8L2 − 24L3]dM
(15)

α0(∆1) =
(

n

1

)
V ol(M), α1(∆1) =

6 − n

6

∫
T dM (16)

α2(∆1) = 1
360

∫
M

[(5n − 60)T 2 − (2n − 180) | ρ |2 +

(2n − 30) | R |2] dM
(17)

α3(∆1) = 1
4·7!·9·10

∫
M

[−(5680n + 980) | ∇T |2 −(104n + 1078) | ∇ρ |2 +

+(280n + 49) | ∇R |2 −(1400n − 215)T 3 + (1680n − 1568)T | ρ |2 +
+(343 − 1680n)T | R |2 +(1440 + 2548) | ρ |3 −(800n − 392)L1+

+(320n − 1392)L2 − (960n − 147)L3]dM

(18)

α0(∆2) =
(

n

2

)
V ol(M), α1(∆2) =

(n − 1)(n − 12)
12

∫
T dM (19)

α2(∆2) = 1
720

∫
M

[(5n2 − 125n + 600)T 2 + (2n2 + 362n − 2 | ρ |2 +

+(2n2 − 62n + 480) | R |2)] dM
(20)

α2(∆2) = 1
4·7!·9·10

∫
M

[−(2840n2 − 3330n − 2438) | ∇T |2 +

+(−52n2 − 1026n + 8036) | ∇ρ |2 +(−140n2 + 149n − 1568) | ∇R |2 −
−(−720n2 + 265n − 1960)T 3 + (840n2 − 2408n + 17836)T | ρ |2 +

(−800n2 + 1192n − 18421)L1 + (160n2 − 1532n + 26246)L2−
−(−480n2 + 627n − 4708)L3]dM

(21)

where
L1 = ρijρkmRijkm, L2 = ρijRiklmRjklm (22)

L3 = RijkmRljuvRknmv (23)

and R, ρ and T the curvature tensor field, Ricci tensor field, Ricci tensor field and
the scalar curvature respectively, | R | and | ρ | the norm of R and ρ respectively,
(ρij) and (Rijkl) are the components of ρ and R, respectively with respect to the local
coordinate system (x1, . . . , xn) on the chart (U,ϕ) of the manifold M and ∇T , ∇ρ,
∇R are the covariant derivatives of T , ρ, R respectively.
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Now, we can definethe reduced or Bochner Laplacian operator B∇
k by the following

diagram

B∇
k : C∞(M) → C∞(T ∗M ⊗ V )

∇g⊗1+1⊗∇−→ C∞(T ∗M ⊗ T ∗M ⊗ V ) →
−g⊗1−→ C∞(V )

(24)

where g is the Riemannian metric on M , ∇g the Levi-Civita connection on TM ,
extend ∇g on the tensor fields of all type and 6 ∇ any connection on V . The Bochner
Laplacian B∇

k defined by Levi-Civita connection in local coordinate system has the
form

B∇
k = −gij∇i∇j (25)

Now, we form one parameter family of second order elliptic differential operators

Dε
k = ε∆k + (1 − ε)Bk (26)

The coefficients αm(Dε
k) for m = 0, 1, 2, 3 are given by ([4])

α0(Dε
1) = nV ol(M), α1(Dε

1) =
6ε − 1

6

∫
M

T dM (27)

α2(Dε
1) =

1
360

∫
M

[(5n − 6ε)T 2 − (180ε2 − 2n) | ρ |2 +(2n − 30) | R |2]dM (28)

α3(Dε
1) = 1

360·7!
∫
M

[(−98 + 588ε − 5680n) | ∇T |2 +

+(392 − 1470ε2 − 2480n) | ∇ρ |2 +(49 − 280n) | ∇R |2 +(245 − 1400n)T 3+
+(−980 − 1470ε2 + 1680n)T | ρ |2 +(245 + 98ε − 1680n)T | R |2 +

+(245 + 245ε − 1400n) | ρ |3 +(392 + 800n)L1+
(98 − 1470ε2 + 320n)L2 + (147 − 960)L3]dM

(29)

4

Now we prove the theorem

Theorem 4.1 Let (M, g) and (N,h) be two compact Riemannian manifolds with the
properties Sρ(M,∆k) = Sρ(N, ∆k), k = 0, 1, 2 and Sp(M,Dε

k) = Sp(N,Dε
k) for three

distinct values of ε 6= 0. If (M, g) is Ricci, so is (N,h).

Proof. From the assumptions of the theorem we obtain

αk(M, ∆ν) = αk(N, ∆ν), ν = 0, 1, 2 k = 0, 1, 2, 3 (30)

αk(Dε
1,M) = αk(Dε

1, N), k = 0, 1, 2, 3 (31)
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for three distinct values of ε 6= 0. From (30) for k = 0, 1, 2 and by means of (13), (14),
(16), (17), (19) and (20) we get∫

M

TMdM =
∫
N

TNdN,

∫
M

T 2
MdM =

∫
N

T 2
NdN (32)

∫
M

| ρ |2M dM =
∫
N

| ρ |2N dN,

∫
M

| R |2M dM =
∫
N

| R |2N dN. (33)

Since the Riemannian manifold M is locally Ricci we obtain

TM = constant (34)

The relations (32), by means of (34), imply

TM = TN = constant (35)

which yields ∫
M

| ∇T |3M dM =
∫
N

| ∇T |3N dN = 0 (36)

The equalities (33) by virtue of (35) give

∫
M

(T | R |2)MdM =
∫
N

(T | R |2)NdN,

∫
M

(T | ρ |2)MdM =
∫
N

(T | ρ |2)NdN (37)

From (30) for k = 3 for ν = 0, 1, 2 and (31) for k = 3 which by means of (15),
(18) and (21), taking under the consideration (36) and (37), we obtain the following
relations ∫

M

[26 | ∇ρ |2 +7 | ∇R |2 −35 | ρ |3 +20L1 − 8L2 + 24L3]dM =

=
∫
N

[26 | ∇ρ′ |2 +7 | ∇R′ |2 −35 | ρ′ |3 +20L′
1 − 8L′

2 + 24L′
3]dN (38)

∫
M

[α1(n) | ∇ρ |2 +α2(n) | ∇R |2 −α3(n) | ρ |3 +α4(n)L1 −α5(n)L2 +α6(n)L3]dM =

=
∫
N

[α1(n) | ∇ρ′ |2 +α2(n) | ∇R′ |2 −α3(n) | ρ′ |3 +α4(n)L′
1 − α5(n)L′

2+

+α6(n)L′
3]dM

(39)

∫
M

[β1(n) | ∇ρ |2 +β2(n) | ∇R |2 −β3(n) | ρ |3 +β4(n)L1 − β5(n)L2 + β6(n)L3]dM =
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=
∫
N

[β1(n) | ∇ρ′ |2 +β2(n) | ∇R′ |2 −β3(n) | ρ′ |3 +β4(n)L′
1 − β5(n)L′

2+

+β6(n)L′
3]dM

(40)

∫
M

[γ1(n, ε) | ∇ρ |2 +γ2(n, ε) | ∇R |2 −γ3(n, ε) | ρ |3 +γ4(n, ε)L1 − γ5(n, ε)L2+

+γ6(n, ε)L3]dM =

=
∫
n,ε

[γ1(n, ε) | ∇ρ′ |2 +γ2(n, ε) | ∇R′ |2 −γ3(n, ε) | ρ′ |3 +γ4(n, ε)L′
1 − γ5(n, ε)L′

2+

+γ6(n, ε)L′
3]dM

(41)
where without (’) and with (’)we mean quantities for M and N respectively and

α1(n) = −(5680n + 980), α2(n) = −104n + 1078, α3(n) = 280n + 49 (42)

α4(n) = −(800n + 392), α5(n) = 320n − 1372, α6(n) = 360n + 49 (43)

β1(n) = −(52n2 − 1026n + 8036, β2(n) = −140n2 + 149n − 1568 (44)

β3(n) = 720n2 + 1112n − 28616, β4(n) = −800n2 + 1192n − 18421 (45)

β5(n) = 160n2 − 1532n + 26246, β6(n) = −480n2 + 627n − 4708 (46)

γ1(n, ε) = 392 − 1470ε2 − 2480n, γ2(n, ε) = 49 − 290n (47)

γ3(n, ε) = 245 + 98ε − 1680n, γ4(n, ε) = 382 + 80n (48)

γ5(n, ε) = 98 − 147ε + 320n, γ6(n, ε) = 147 − 960n (49)

The equations (38), (39), (40) and other three of the type (41) for three distinct
values of ε 6= 0 form an homogenous linear system of six equations with six unknowns.

X1 =

∫
M

| ∇ρ |2 dM−
∫
N

| ∇ρ′ |2 dN

 , X2 =

∫
M

| ∇R |2 dM−
∫
N

| ∇R′ |2 dN



X3 =

∫
M

| ρ |3 dM−
∫
N

| ρ′ |3 dN

 , X4 =

∫
M

L1dM−
∫
N

L′
1dN


X5 =

∫
M

L2dM−
∫
N

L′
2dN

 , X6 =

∫
M

L3dM−
∫
N

L′
3dN


If we choose the three distinct values of ε 6= 0, say ε1, ε2, ε3, such that∣∣∣∣∣∣∣∣∣∣∣∣

26 7 −35 20 −8 24
α1(n) α2(n) α3(n) α4(n) α5(n) α6(n)
β1(n) β2(n) β3(n) β4(n) β5(n) β6(n)

γ1(n, ε1) γ2(n, ε1) γ3(n, ε1) γ4(n, ε1) γ5(n, ε1) γ6(n, ε1)
γ1(n, ε2) γ2(n, ε2) γ3(n, ε2) γ4(n, ε2) γ5(n, ε2) γ6(n, ε2)
γ1(n, ε3) γ2(n, ε3) γ3(n, ε3) γ4(n, ε3) γ5(n, ε3) γ6(n, ε3)

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0 (50)
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then the homogenous linear system has only the unique trivial solution

X1 = X2 = X3 = X4 = X5 = X6 = 0 (51)

From (51) we have

X1 =
∫
M

| ∇ρ |2 dM−
∫
N

| ∇ρ′ |2 dN = 0 (52)

Since the manifold (M, g) is Ricci, that means

∇ρ = 0 ⇒ ∇ρ′ = 0 (53)

which means the manifold (N,h) is Ricci. 2

Now we prove the theorem

Theorem 4.2 Let (M, g) and (N,h) be two compact Riemannian manifolds with the
properties Sp(M, ∆k) = Sp(N, ∆k) for k = 0, 1. If (M, g) is Ricci flat, so is (N,h).

Proof. From the assumption we have

Sp(M, ∆0) = Sp(N, ∆0), Sp(M, ∆1) = Sp(N, ∆1) (54)

which imply
α2(M, ∆0) = α2(N, ∆0), α2(M, ∆1) = α2(N, ∆1) (55)

and
dimM = dim N = n (56)

The equalities (55) yield∫
M

(
5T 2 − 2 | ρ |2 +2 | R |2

)
dM =

∫
N

(
5T ′2 − 2 | ρ′ |2 +2 | R′ |2

)
dN (57)

∫
M

[(5n − 60)T 2 − (2n − 180) | ρ |2 +(2n − 30) | R |2] dM =

∫
N

[(5n − 60)T ′2 − (2n − 180) | ρ′ |2 +(2n − 30) | R′ |2] dN = (58)

From (57) and (58) we conclude∫
M

[
(10n + 15)T 2 + 150 | ρ |2

]
dM =

∫
N

[
(10n + 15)T ′2 + 150 | ρ′ |2

]
dN (59)

Since the manifold (M, g) is Riicci flat we obtain

T = 0 and ρ = 0 (60)
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and therefore (59), by means of (60), implies∫
N

[
(10n + 15)T ′2 + 150 | ρ′ |2

]
dN = 0 (61)

which gives
T ′ = 0 and ρ′ = 0

and hence (N,h) is Ricci flat. 2

5

Let (M,J, g) be a compact Käler manifold of complex dimension n. Let (U,ϕ) be a
chart on M with complex coordinates (z1, . . . , zn). Unless otherwise stated, Greek
indices α, β, γ, . . ., run from 1 to n, while Latin capitals A,B,C, . . ., run through
1, . . . , n, 1̄, . . . , n̄. We set

Zα = ∂/∂zα, Zᾱ = Z̄α = ∂/∂z̄α.

If g is a Hermitian metric, then we have

gAB = g(ZA, ZB).

Then the metric g in local coordinate system has the following components

gαβ = gᾱβ̄ = 0, gαβ̄ 6= 0, gᾱβ 6= 0,

and therefore the metric ds2 can be written

ds2 = 2
∑
α,β

gαβ̄dzαdz̄β .

It is known that necessary and sufficient conditions for g to be a Käler metric, are
the following

∂gαβ̄/∂zγ = ∂gγβ̄/∂zα or ∂gαβ̄/∂z̄γ = ∂gαγ̄/∂zβ (62)

The components ρAB of the Ricci tensor field ρ are given by

ραβ̄ = −
∑

γ

Γγ
αγ/∂zβ , ραβ̄ = ρ̄αβ̄ , ραβ = ρᾱβ̄ = 0 (63)

where Γγ
αγ are the Chistoffel’s symbols of the Levi-Civita connection defined by the

metric tensor g.
To every Käler manifold (M,J, g) we can associate an exterior 2-form ϕ which can

be defined as follows
ϕ = −2i

∑
α,β

ραβ̄dzα ∧ dz̄β , (64)



106 Gr. Tsagas

which can be written with the form

ϕ = −2idd̄ ln G (65)

where G is the determinant of the matrix
(
gαβ̄

)
.

From the (64) we can obtain the theorem

Theorem 5.1 Let (M,J, g) be a compact Käler manifold. (M,J, g) is Ricci (resp.
flat Ricci), if and only if, the exterior 2-form ϕ is parallel (resp. zero).

Now we can prove the following theorem

Theorem 5.2 Let (M1, J1, g1) and (M2, J2, g2) be two compact Käler manifolds with
the property Sp(M1, ∆k) = Sp(M2, ∆k), k = 1, 2. If the restricted linear holonomy
group of M1 is contained in SU(n), then the same is true for the restricted holonomy
group of M2.

Proof. From the property of the restricted holonomy group of M1, which is con-
tained in SU(n), we conclude that the manifold M1 is flat Ricci.

From the relations

Sp(M1, ∆0) = Sp(M1, ∆0) and Sp(M1, ∆1) = Sp(M2, ∆1)

we obtain that M2 is flat Ricci and therefore its restricted linear holonomy group of
M2 is contained in SU(n). 2

Let E be a complex vector bundle over the Käler compact manifold (M,J, g). For
each integer i ≥ 0, we have the i-th Chern class

c1(E) ∈ H1(M, IR).

We assume that the fibre of E is the CΓ and the the structure group is the
GL(Γ,C). Let P be its associate principal fibre bundle.

We define first polinomial functions

f0, f1, . . . , fΓ

on the Lie algebra gl(Γ,C) by the relation

det
(

λIΓ − 1
2π

√
−1

X

)
=

r∑
k=0

fk(X)λΓ−k for X ∈ gl(Γ,C).

These are invariant by ad (gl(Γ,C)). Let w be a connection on P and Ω its
curvature form. It is known that there exist a unique closed 2k-form γk on M such
that

p∗(γk) = fk(Ω)

where p : P → M is the projection. The cohomology class determinated by γk is
independent of the choice of the connection w.
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Therefore the k-th Chern class ck(E) of the complex vector bundle E over M is
represented by the closed 2k-form γk defined above.

The first Chern class c1(E) can be represented by the closed 2-form

γ1 = − 1
2π

√
−1

n∑
i,j=1

ρijdzi ∧ dz̄j

If ρ
>=
<

0, then γ1
>=
<

0.

If ρ is parallel, then γ1 is parallel and conversely.

Theorem 5.3 Let (M,J) and (M ′, J ′) be two compact complex manifolds. We as-
sume that the first Chern class of M is zero. If there are two Käler metrics g and
g′ on M and M ′ respectively with the properties Sp(M, ∆k) = Sp(M ′,∆k), k = 0, 1,
then (M ′, J ′) has its first Chern Class equal to zero.

Proof. It is known that the first Chern class γ1 of M is given by

γ1 = − 1
2π

√
−1

n∑
i,j=1

ρijdzi ∧ dz̄j (66)

Since γ1 = 0, we conclude that the Ricci tensor field ρ = 0. From the assumption
and theorem 4.2 we conclude that the Ricci tensor field ρ′ = 0, which by means of
(66), we obtain γ′

1 = 0, which is the first Chern class of M ′. 2
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