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Abstract

In this note we present the rudiments of the nonlinear, nonlocal- integral
and noncanonical- nonhamiltonian, yet axiom- preserving isotopic liftings of the
Pythagorean theorem, trigonometric and hyperbolic functions for the simplest
possible liftings of Kadeisvill’s Class I; we study some of their properties includ-
ing the unification of trigonometric and hyperbolic functions via the isotopies
of Class III; and we identify a number intriguing open geometrical problems.
The note, written by a physicist, is intended to illustrate that the removal of
the current restriction in effect since biblical times of the entire mathematical
knowledge to the simplest conceivable unit +1, and the use of structurally more
general units, imply a rather vast broadening of all mathematical, beginning
with the simplest possible notions of angles, triangles, and ordinary functions,
and then passing to all remaining mathematical structures, with basically novel
applications in a variety of disciplines.
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1 Foreword

This note is devoted to the so-called isotopies which are nonlinear, nonlocal - integral
and noncanonical-nonhamiltonian maps of any given linear, local and hamiltonian
structure, yet they are axiom-preserving in the sense of being able to reconstruct lin-
earity, locality and canonicity in certain generalized spaces and fields called isospaces
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and isofields. To avoid unnecessary length, we refer the reader to [1] for all back-
ground notions in isotopies and to [2, 3] for aspects pertaining to algebras, topologies,
and manifolds.

It was pointed out in Vol. I, ref. [1], that the conventional Pythagorean theorem,
the notion of angle, the trigonometric and hyperbolic functions and other familiar
methopds are inapplicable under isotopies for numerous independent reasons, such as
: the loss of the conventional unit I in favor of generalized units I with an arbitrary,
nonlinear and integro-differential dependence on local quantities and their derivatives
; the inapplicability of the Euclidean distance; the generally curved character of the
lines which prohibit the preservation of conventional angles; etc.

In this note, written by a physicist, we study the rudiments of the isotopic liftings
of the Pythagorean theorem, trigonometric and hyperbolic functions which were pre-
liminarily studied the first time in Appendix 6. A, Vol. I, ref. [1], under the respective
names of Isopythagorean Theeorem, isotrigonometric and isohyperbolic. These gen-
eralizations are a necessary pre-requisite for : the isotopies of the Legendre functions,
spherical harmonics, and other special functions; the study of the isorepresentation
theory of the Lie-Santilli isogroup O(3) [2] ( the most general known nonlinear, nonlo-
cal and noncanonical realization of the rotation group; the application to a scattering
theory capable of incorporating the conventional action-at-a-distance, potential in-
teractions as well as additional contact, nonpotential effects due to the extended,
nonspherical and deformable character of the colliding particles ( for applications, see
Vol. II, ref. [1] ).

All symbols and conventions of [1] will be preserved for clarity in the comparison
of the results. For instance, the symbols, etc. denote quantities computed in isospace
and etc, denote their projection in the original space.

2 Isopythagorean Theorem.

Consider a conventional two-dimensional Euclidean space E = E(r, θ,R) with con-
travariant coordinates r = (rk) = (x, y) and metric δ = diag.(1, 1) over the field
R = R(n,+, ∗) of real numbers n with conventional sum + and multiplication ∗ and
respective additive unit 0 and multiplicative unit 1. The fundamental notion of this
space is the assumption of the basic unit 1 = diag. (1, 1) wich implies the assumption
of the same basic (dimensionless) unit +1 for both x− and y 6 −axes, resulting in the
familiar Euclidean distance among two points x, y ∈ E

D = [(x1 − x2)(x1 − x2) + (y1 − y2)(y1 − y2)]
1/2 ∈ R(n, +, ∗) (1)

The quantity D2 = D ∗ D, ∗ ∈ R, then represents the celebrated Pythagorean
theorem expressing the hypothenuse D of a right triangle with sides A and B according
to the familiar law D2 = A2 + B2.

The flat geometry of the plane R(n, +, ∗) permits the introduction of the trigono-
metric notion of ” angle α” between two intersecting straight vectors, and of ”cosinus
of α” which, for the case when the vectors initiate at the origin 0 ∈ E and go to two
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points P1(x1, y1) and P2(x2, y2) is given by

cos α =
x1x2 + y1y2

(x1x1 + y1y1)
1/2 (x2x2 + y2y2)

1/2
(2)

From the above definition one can derive the entire conventional trigonometry.
For instance, by assuming that the points are on a circle of unit radius D = 1,
for P1(x1, y1) and P2(1, 0) we have cos α = x1, for P1(x1, y1) and P2(0, 1) we have
sin α = y1, with consequential familiar properties, such as sin2 α + cos2 = 1, etc.

Consider now the two-dimensional isoeuclidean space of Kadeisvili’s Class 1, Ê =
Ê(r̂, δ, R̂) (Sect 1.3.3 of [1]) over the isofield of isoreal numbers n̂ = n× 1̂, where n ∈ R
and, from the Class 1 condition, 1̂ is a positive-definite matrix whose elements have a
well behaved but otherwise arbitrary dependence on time t, the local coordinates r and
their derivatives of arbitrary order 1̂ = 1̂(t, ṙ,

..
r, . . .) equipped with the conventional

sum + and additive unit 0, and with the isomultiplication n̂× m̂ = n̂× 1̂× m̂. Under
the condition assumed herein 1̂ = T̂−1, 1̂ is the correct left and right unit of R̂, called
isounit, 1̂×̂n̂ = n̂×̂1̂ = n̂, ∀n̂ ∈ R̂, T̂ is called the isotopic element, and R̂ satisfies all
conditions to be a field [1].

The realization of Ê studied in this note is the simplest possible one of Class I,
that with diagonal isounit, of the type

Ê = Ê(r̂, δ̂, R̂) = (r̂k) = (x̂, ŷ) ≡ (rk) = (x, y), r̂k =
δ̂kir̂

i 6= rk = δkir
i, (a)

δ̂ = T̂ (t, ṙ,
..
r, . . .)δ = diag.(b2

1, b
2
2), bk = bk(t, ṙ,

..
r, . . .) > 0 (b)

1̂ = T̂−1 = diag.(b−2
1 , b−2

2 ), k = 1, 2. (c)

(3)

As one can see, the isospace is constructed via the most general possible signature-
preserving deformation of the original metric δ via a positive-definite, but otherwise
arbitrary 2 × 2 matrix T̂ , δ → δ̂ = T̂ δ, while jointly deforming the original two-
dimensional unit by an amount which is the inverse of the deformation of the metric,
1 → 1̂ = T̂−1 . This mechanism permits the preservations under isotopies of all
axioms of the Euclidean geometry, to such an extend that the Euclidean and isoeu-
clidean geometry coincide at the abstract level [1]. Alternatively, we can say that the
isotopies permit the use of the most general possible functional dependence of the
metric δ̂(t, ṙ,

..
r, . . .) while preserving all Euclidean axioms, including that of flatness,

caled isoflatness. Note also that the isounit of the base isofield concides with that of
the isospace.

The central notion of the isoeuclidean plane is the assumption of new (dimen-
sionless) units, the quantitties b−2

1 for the x̂-axix and b−2
2 for the ŷ-axis. Thus, not

only the unit is now different than +1, but different axes have different units and, in
addition, each of them is a function of the local variables.

Consider now two points P1(x̂1, ŷ1) and P2(x̂2, ŷ2) ∈ Ê(r̂, δ̂, R̂). Then the conven-
tional distance is (uniquely) generalized into the isoeuclidean distance [1]

D̂ =
[
(x1 − x2)b2

1(x1 − x2) + (y1 − y2)b2
2(y1 − y2)

]1/2 ∗ 1̂ ∈ R̂ (4)
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were one should note the final (ordinary) multiplication by 1̂ as a necessary condition
for D̂ to be an element of the isofield R̂.

Despite the visible difference between D and D̂, all conventional notions in E are
preserved under isotopies provided that they are computed in Ê over R̂. in this way,
we have the nitions of isolines, isotraight line, isotriangle, isostraight triangle, etc.

By using notation indicated in Sect. 1, we then have the following:

Theorem 2.1 ( Isopythagorean theorem ) [1] : The following property holds in
the isoeuclidean plane Ê(r̂, δ̂, R̂) of Class I, Eq. (3),

D̂ = D̂×̂D̂ = Â2 + B̂2 = Â×̂Â + B̂×̂B̂ ∈ R̂, (5)

with projection in the conventional plane E(r, δ, R)

D̂2 =
[
Ab2

1(t, ṙ,
..
r, . . .)A + Bb2

2(t, ṙ,
..
r, . . .)B

]
× 1̂, (6)

that is, the isosquare of the isohypothenuse of an isoright isotriangle is the sum of the
isosquare of the isosides.

To understand the geometric mwaning of the above theorem, we recall that all
isotopic nitions have, in general, three different interpretations [1], the first in isospace
Ê(r̂, δ̂, R̂), the second via the projection in the original space (E(r, δ, R), and the third
in a conventional Euclidean space E(r̄, δ, R) over the conventional reals R(n, +, ∗)
whose interval coincides with that in isospace. The latter condition is easily verified
by the the assumption

x̄ = x̂b1(t, x, y, ẋ, ẏ, . . .), ȳ = x̂b2(t, x, y, ẋ, ẏ, . . .)

under which [
(x1 − x2)b2

1(x1 − x2) + (y1 − y2)b2
2(y1 − y2)

]1/2 ≡[
(x̄1 − x̄2)b2

1(x̄1 − x̄2) + (ȳ1 − ȳ2)b2
2(ȳ1 − ȳ2)

]1/2
.

The properties in isospace follow the general rules of all isotopies, that is, the
preservation of all original properties, including their numerical values. Thus, straight
lines in conventional space are mapped into isostraight isolines in isospace, i.e. lines
which coincide with their tangent when computed in isospace; perpendicular lines in
conventional space are mapped into isoperpendicular isolines whose angle is indeed
90◦ when measured in isospace, that is, with respect to its own isounit (see below );
etc.

In this sense, a right triangle in the conventional plane remains so in isoplane, and
the conventional Pythagorean Theorem holds also in isospace.

To understand the remaining geometric meaning we also have to consider the pro-
jection of Theorem 2.1 in the original Euclidean plane . Recall [1] that the isotopic
lifting of the circle C in E yields the so-called isocircle Ĉ in Ê which preserves the
original geometric character and value of the radius. This is due to the main mech-
anism of isotopies according to which the original semiaxes of the circle are lifted
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to arbitrary values lk → b2
k(t, r,

..
r, . . .), k = 1, 2, yielding an ellipse in conventional

space E. But jointly the units of each axis are deformed in an amount inverse of the
deformation of the semiaxes, lk → b−2

k (t, r,
..
r, . . .),, and this implies the preservation

of the perfect circle in isospace over isofields.

ISOPYTHAGOREAN THEOREM
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Figure I. A schematic view of the Isopythagorean Theorem, first identified in ... for
an isoright isotriangle as in Diag. (a) i.e, a triangle in isoeuclidean plane Ê(r̂, δ̂, R̂)
(isotriangle) with a 90◦ angle masured with respect to its own isounit (isoright angle-
see below for irs identification, and its projection in the conventional plane E(r, δ, R)
given by the Diag. (b).

We also recall that isotopic maps are not transitive, in the sense that the lifting
of the circle C on into the isocircle Ĉ on Ê is axiom-preserving, but the projection of
the isocircle Ĉ on the original space E is not, being in fact an ellipse, because such a
projection does not imply the return to the original unit 1 = diag.(1, 1).

By using the reformulation in conventional space Ê, it is easy to see that lines
which are straight in become curved in Ê(r̂, δ̂, R̂), according to the rule:

â×̂x̂ + b̂×̂ŷ + ĉ = 0 →

→ a×̄b−1
1 (t, x, y, . . .) + bȳb−1

2 (t, x, y, . . .) = 0, â, b̂, ĉ ∈ R̂. (7)

The projection of the Isopythagorean Theorem in a conventional plane then results
in the map of a right triangle into a geometric figure in which the sides are curved,
with one intersection per pair as in Figure I.

A conjecture on the Inverse Isopythagorean Theorem is presented in the concluding
remarks.

3 Isotrigonometric functions.

Let us use again the convention according to which the symbols â, b̂, ĉ, etc, denote
quantities computed in isospace Ê(r̂, δ̂, R̂) the symbols ā, b̄, c̄, etc, denote correspond-
ing quantities when computed in the plane E(r̄, δ, R), and the symbols a, x, y, etc,
denote the projection in the conventional space E(r, δ, R).
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Suppose that the two points P1(x̂1, ŷ1) and P2(x̂2, ŷ2) represent isostraight isovec-
tors initiating from the origin 0̂ ∈ Ê(r̂, δ̂, R̂). Let us denote with α̂ the isoangle
between these two isovectors to be identified below. Consider their identical reformu-
lation in the conventional space E(r̄, δ, R), in which case the angle persists. We can
then introduce the conventional cos α̂ in Ê(r̂, δ̂, R̂)

cos α̂ =
x̄1x̄2 + ȳ1ȳ2

(x̄1x̄1 + ȳ1ȳ1)
1/2 (x̄2ȳ2 + ȳ2ȳ2)

1/2
(8)

with projection in E(r, δ, R)

cos α̂ =
x1b

2
1x2 + y1b

2
2y2

(x1b2
1x1 + y1b2

2y1)
1/2 (x2b2

1x2 + y2b2
2y2)

1/2
(9)

We now assume that the points P1(x̂1, ŷ1) and P2(x̂2, ŷ2) are on the unit isocircle

D̂ = (xb2
1x + yb2

2y) × 1̂ = 1̂, i.e. (a)
xb2

1x + yb2
2y = 1 (b)

(10)

wich imply that for y = 0, x = b−1
1 and for x = 0, y = b−1

2 .

Definition 3.1 By assuming the points P1(x̂1, ŷ1) and P2(b−1
1 , 0), we have ( for 0 <

α̂ < π/2)
cos α̂ = x1b1, (11)

and for the points P1(x̂1, ŷ1) and P2(0, b−1
2 ) we have

sin α̂ = y1b2 (12)

Definition 3.2 The ”isosinus”, ”isocosinus” and other isotrigonometric functions on
the isoeuclidian plane E(r̄, δ, R) are defined by (for 0 < α̂ < π/2)

isosin α̂ = b−1
2 sin α̂, (a)

isocos α̂ = b−1
1 cos α̂, (b)

isotan α̂ = isosin α̂
isocos α̂ , (d)

isocot α̂ = isocos α̂
isosin α̂ , (e)

isosec α̂ = 1/isocos α̂, isocosec α̂ = 1/isosin α̂ (f)

(13)

with basic property

isocos 2α̂ + isosin2 α̂ = b2
1isocos

2α̂ + b−2
2 isosin2 α̂ =

cos2 α̂ + sin2 α̂ = 1
(14)

and general rules for an isosquare isotriangle with isosides Â and B̂ and isohy-
pothenuse D̂ as in Diag.(a) of Fig.1

Â = D̂ isocos γ̂, B̂ = D̂ isosin γ̂, Â/B̂ = isotan γ̂, etc. (15)
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The isoangles have been identified from the representation theory of isorotations
in a plane (see Vol. II, Ch.6[1]), and results to be given by

b1b2α = α̂ (16)

where the factor b1b2 is fixed for all possible isoangles of a given isoeuclidian space.
This means that the isotopy of the trigonometric angles is given by

α → b1b2α = α̂, (17)

with consequetial angular isotopic element

T̂α̂ = b1b2 = (Det T̂ )1/2 (18)

and angular isounit
1̂α̂ = b−1

1 b−1
2 = (Det 1̂)1/2 (19)

where T̂ and 1̂ are the isotopic element and isounit, respectively, of the isoeuclidian
plane, Eq.s (3).

Isoangles α̂ have a nonlinear and integro-differential dependence on the local plane
with expression but they have constant values in isospace because measured with
respect to the local coordinates and their derivates when projected in the original
Euclidean plane with expression

α̂ = b1(t, x, y, ẋ, ẏ, . . .)b2(t, x, y, ẋ, ẏ, . . .)α, (20)

but they have constant values in isospace because measured with respect to the angle
unit 1̂α̂ = b−1

1 b−1
2 . We reach in this way the following property:

Proposition 3.1 The isotopies of the plane geometry preserve the numerical value
of the original angles, that is, if the original angle α = 90◦ is so is the value of the
corresponding isoangle is isospace.

In fact, a given isotopic deformation of the angle α → b1b2α occurs under the
joint inverse deformation of the basic unit 1 → 1̂ = b−1

1 b−1
2 , thus leaving the original

numerical value a unchanged.
With respect to Fig. I we therefore have α̂ = 90◦ and α̂+ β̂ + γ̂ = 180◦. However,

after the lifting α = 90◦ → α̂ = 90◦, the projection of latter in the original plane
does not yield back the angle α = 90◦, but an angle a such that α̂ = b1b2α = 90◦

and similarly we have α + β + γ 6= 90◦ but α̂ + β̂ + γ̂ = b1b2(α + β + γ) = 180◦. It
is then easy to see that the isitrigonometric functions are periodic as in conventional
case, i.e.

isosin (α̂ + 2kπ) ≡ isosin α̂ (a)
isocos (α̂ + 2kπ) = isocos α̂, k = 1, 2, 3, . . . (b) (21)

and preserve the conventional symmetry under the inversion of the angles

isocos − α̂ = isocos α̂, isosin − α̂ = −isosin α̂ (22)
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Similarly, we have the Theorems of Isoaddition [1]

isosin
(
α̂ ± β̂

)
= b−1

1

(
isosin α̂ isocos β̂ ± isocos α̂ isosin β̂

)
(a)

isocos
(
α̂ + β̂

)
= b2

1

(
b−2
2 isocos α̂ isocos β̂ ± b−2

1 isosin α̂ isosin β̂
)

(b)

isosin α̂ + isosin β̂ = 2b−1
1 isosin 1

2

(
α̂ + β̂

)
isocos 1

2

(
α̂ − β̂

)
(c)

(23)

The interested reader can then work out the isotopies of other trigonometric prop-
erties.

We are now equipped to introduce the following

Definition 3.3 The ”isopolar coordinates” are the polar coordinates of the unit iso-
circle in the isoeuclidean plane Ê(r̂, δ̂, R̂), and can be written

x̂ = isocos α̂, ŷ = isosin α̂, (24)

with projection in the conventional Euclidean plane E(r, δ, R)

x = b−1
1 cos (b1b2α) , ŷ = b−1

2 isosin (b1b2α) (25)

and property

x̂2 + ŷ2 = xb2
1x + yb2

2y =
= b2

1isocos
2 α̂ + b2

2isosin
2 α̂ = cos α̂ + sin α̂ = 1 (26)

The exponential formulation of trigonometric functions also admits a simple, yet
unique and effective isotopic image. It requires the lifting of the conventional en-
veloping associative algebras ξ and their infinite-dimensional basis with conventional
unit 1 and product ∗ ( the Poincaré-Birkhoff-Witt Theorem ) into the enveloping
isoassociative algebras ξ (or isoenvelopes for short) with isotopic image of the original
infinite basis characterized by the isounit 1̂ and the isotopic product ∗̂ = ∗ ↑ ∗ ( the
Poincaré-Birkhoff-Witt Theorem [1]).
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THE ISOCIRCLE
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Â Ĉ x̂

Ô
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FIGURE 2 : A schematic view of the isotrigonometric functions on the isocircle
(Sect. 1.5.2. of [1]), that is, the circle in isospace, Diag. (a) and in its projection in
conventional space, Diag. (b). Isotrigonometry shows that the geometric structure of
the circle is indeed axiomatic in the sense that is persist under isotopies. This is illus-
trated by the preservation under isotopy of the polar coordinates on the conventional
circle (Diag. (a) )

x = cos α → x̂ = isocos α̂,
y = sinα → ŷ = isosin α̂ .

However, the projection of the above structure back to the conventional plane
implies the deformation of the circle into the ellipse ( Diag. (b) ), with deformation
of the polar coordinates

x = cos α → x = b−1
1 cos(b1b2α),

y = sinα → x = b−1
2 sin(b1b2α).

The reader is warned not to attempt the computation of isotrigonometric prop-
erties in the conventional Euclidean plane . This is due to the fact that the x̂ and ŷ
isostraight axes in Ê are mapped into curves in E, as depicted in Diag. (b). Mathe-
matical consistency of the isotrigonometry is then achieved only in isospace.

The isotrigonometric functions can then be expressed in term of the isoexponen-
tiation according to the rule

êiα̂ = 1̂ + (iα̂) /1! + (iα̂) ↑ (iâ) /2! + · · · =

= 1̂α̂ ∗ eiT̂α̂α = (b1b2)
−1 ∗ ei(b1b2)α =

= b−1
2 isocos α̂ + ib−1

1 isosin α̂ , (27)

where ê denotes isoexponentiation and e conventional exponentiation .
The interested reader can then work out additional properties of the isotrigono-

metric functions.
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4 Isohyperbolic functions.

The application of the preceding method to the lifting of the hyperbolic functions is
straighforward, leading to the following:

Definition 4.1 The ”Isohyperbolic functions ” on isoeuclidean space Ê(r̂, δ̂, R̂) of
Class I are given by

isocosh α̂ = b−1
1 cosh (b1b2α) (a)

isosinh α̂ = b−1
2 sinh (b1b2α) , (b)

(28)

with basic property

b2
1isosin

2α̂ − b2
2isosinh2 = 1, (29)

and derivation via the isoexponentiation

êα̂ = 1̂α̂eT̂α̂α = (b1b2)
−1

e(b1b2)α\ =

= b−1
1 isocosh α̂ + b−1

2 isosinh α̂. (30)

The interested reader can then work out the remaining properties of the isohyper-
bolic functions.

We now show the property that the distinction between trigonometric and hyper-
bolic functions is essentially due to the excessive simplicity of the basic unit custom-
arily used in contemporary mathematics, whille such a distinction is lost under more
general units.

To understand this point we note that we have used until now for clarity the sim-
plest possible isotopies, those of Kadeisvill’s Class I, for which the isounit is smooth,
bounded, nowhere null, Hermitean and positive-definite, 1̂ > 0 (used for the represen-
tation of matter [1] ). The isotopies of Class II are the same as those of Class I except
that isounit is negative definite, 1̂ < 0 ( used for the representation of antimatter [loc.
cit.] ). The isotopies of Class III are those in which the isounit is the same as in Class I
except that it has an indefine signature and can be either positive-or negative-definite
(used for mathematical unification of compact and noncompact structures [loc.cit.]).
The isotopies of Class IV are those of ClassIII plus the singular isounit (used for
the representation of gravitational collapse, the value 1̂ = 0 representing gravitational
singularities [loc. cit.]). Finally, the isotopies of Class V are those of Class IV plus
arbytrary isounits given by distributions, step-functions, lattices, etc. ( used for novel
treatment of deformable crystal, biological structures, etc. [loc. cit. ] ).

The unifying power of the isotopies is illustrated by the following:

Lemma 4.1 [1]Isotrigonometric and isohyperbolic functions lose any distinction on
isoeuclidean planes Ê(r̂, δ̂, R̂) of Class III.
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Proof. Assume the realization of the isounits 1̂ and 1̂α̂ of Class III,

1̂ = diag.
(
g−1
11 , g−1

22

)
, 1̂α̂ = (g11g22)

−1/2
, (31)

were the functions gkk = gkk(t, x, y, ẋ, ẏ, . . .) are smooth, real-valued and nowhere null
but otherwise arbitrarily positive or negative. Then, the isoexponential relization of
the isotrigonometric functions (27) and of the isohyperbolic functions (30) are unified
into the form

êα̂ = 1̂α̂eT̂α̂α = (g11g22)
−1/2

e(g11g22)
1/2α, (32)

where the isotrigonometric functions occur when the product g11g22 is positive
and the isohyperbolic functions occur when the same product is negative .2

Lemma 4.1 also unifies the conventional trigonometric and hyperbolic functions,
the former occurring for 1̂ = 1 = diag.(1, 1) and the latter for
1̂ = diag.(+1,−1) pr Diag.(−1,+1) (the latter being the isodual of the former [1]).

5 Open problems

In this note we have merely presented the rudiments of the isotopies of the Pythagorean
Theorem, trigonometric and hyperbolic functions for the simplest possible isotopies
of Class I in wich the isounit is positive-definite and diagonal, Eq. (3c). Numerous
problems remain open for the interested reader, among which we indicate the study
of the isopythagorean Theorem, isotrigonometric and isohyperbolic functions for :

1) Isotopies of Class II, requiring the study of the isostraight lines, isoangles,
isotriangle and isocircles with negative unit.

2) Isotopies of Class III, requiring the study of isostraight lines, isoangles, isotri-
angle and isocircles with units of undefined signature.

3) Isotopies of Class IV, requiring the study of isostraight lines, isoangles, isotri-
angle and isocircles with singular units.

4) Isotopies of Class V, requiring the study of isostraight lines, isoangles, isotri-
angle and isocircles with unrestricted-e.g., discontinuous- units.

All the above studies are referred to diagonal isounits of the type

1̂ =
(

g−1
11 0
0 g−1

22

)
. (33)

Additional open problems are given by the study of the isopythagorean Theorem,
isotrigonometric and isohyperbolic functions of Classes I-V with nondiagonal isounits
of the type

1̂ =
(

0 g−1
33

g−1
33 0

)
, (34)

as well as those with general isounits of the type

1̂ =
(

g−1
11 g−1

33

g−1
33 g−1

22

)
, (35)

which are unknown at this writing.
The study of the following conjecture may also be of some interest:
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Conjecture 5.1 ( Inverse Isopythagorean Theorem) : Given a geometric figure con-
sisting of of three smooth but otherwise arbitrary curves in a conventional Euclidean
plane intersecting each other as per Diagram (b) of Fig.I, there always exists an iso-
topy of the unit of Class I, 1 → 1̂ under which said geometric figure is mapped into the
isoright isotriangle in isoeuclidean space for which the isopythagorean theorem holds.

If correct, the above conjecture would establish that the abstract geometric struc-
ture of the historical Pythagorean theorem applies to a much broader class of figures
and it is in fact universal for all ”triangles with” curved sides”.

Note that the proof of Conjecture I appears to be possible for the case of nondiago-
nal isounits of type (35) because they contain three arbitrary functions gkk(t, x, y, . . .)
as needed to characterize the three independent curves of the ”triangle”. A more dif-
ficult case is whether the isotopic lifting of Disg. (b) into (a) of Fig.I exists also for a
diagonal isounit with two independent functions gkk while we have three independent
curves.

The author hopes to have illustrated in this note that the removal of the current
restriction of our entire mathematical knowledge to the trivial unit identified since
biblical times, and the use of structurally more general units, implies a rather vast
broadening of all of mathematics, beginning from the most elementary ones such
as numbers and angles, and then following with all remaining structures, with for
basically novel applications in a variety of fields.
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