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Abstract

In this paper, two supplementary vector subbundles E′ and E′′ of a vector
bundle E, are studied. Given a non-linear connection C on E, a canonical
method to induce non-linear connections C′ on E′ and C′′ on E′′ is indicated.
Kinds of Gauss and Codazzi equations are given. In the particular case of a
linear connection C on E, the method and the equations of Gauss and Codazzi
given in [2] are found. The vertical and horizontal lifts defined in the present
paper extend the classical ones.
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All the manifolds and maps are C∞, the manifolds are paracompact and all the
vector bundles have finite dimensional vector spaces as fibers. F(M) is the real algebra
of C∞-real functions on the manifold M , X (M) and S(ξ) are the F(M)-modules of
vector fields on M and of sections on the vector bundle ξ = (E, π,M) respectively.
V ξ = ker τπ is the vertical bundle of ξ (where τπ : τE −→ τM is the differential map
of π) and there is a canonical isomorphism V E ' π∗E.

First we show the basic constructions and results from [3] which are used in the
sequel.

Let ξ = (E, π,M) be a vector bundle, ξ′ = (E′, π′,M) and ξ′′ = (E′′, π′′, M)
be two supplementary vector subbundles, P ′ and P ′′ be the projections of ξ on ξ′,
ξ′′. I ′ : ξ′ −→ ξ and I ′′ : ξ′′ −→ ξ be the inclusion morphisms. Consider the
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vector bundles η′ = (E,P ′, E′) and η′′ = (E,P ′′, E′′) and their vertical bundles
V ′ξ = ker τP ′′ and V ′′ξ = ker τP ′. Since π = π′ ◦ P ′ = π′′ ◦ P ′′, it easily follows that
V ′ξ and V ′′ξ are vector subbundles of V ξ.

Throughout the paper we consider vectorial coordinates on E which are adapted(i.e.,
local coordinates on E adapted to the vector bundle structure) which induce also on E′

and E′′ adapted vectorial coordinates. More precisely, around every y ∈ E, π(y) = x,
P ′(y) = y′, P ′′(y) = y′′ we have as adapted coordinates: x : (xi), y′ : (xi, yα), y′′ :
(xi, yu), y : (xi, yα, yu), where i = 1,m, α = 1, k1, u = 1, k2 and k = k1 + k2. The
change rules are: xi′ = xi′(xi), yα′

= hα′

α (xi)yα, yu′
= hu′

u (xi)yu.

Proposition 1 [3] a) There are canonical isomorphisms

V ′E ' π∗E′ and V ′′E ' π∗E′′

.
b) In every point u ∈ E we have (V E)u = (V ′E)u ⊕ (V ′′E)u .
c) In every u′ ∈ E′ and u′′ ∈ E′′ we have

(τI ′)u′(V E′)u′ = (V ′E)u′ , (τI ′′)u′′(V E′′)u′′ = (V ′′E)u′′ .

According to b) from Proposition 1, it follows that V ′E and V ′′E are supple-
mentary vector subbundles of V ξ, and the projectors of these subbundles on V ξ are
denoted as Q′ and Q′′.

Let C : τE −→ V ξ be a non-linear connection on E, i.e. (cf. [2]), a vector bundle
morphism such that C ◦ i = idV E where i : V ξ −→ τE is the inclusion morphism and
consider the following sequence of vector bundle morphisms:

Tξ′
τI′

−→ Tξ
C−→ V ξ

Q′

−→ V ′ξ
P ′

1−→ V ξ′. (1.1)

where P ′
1 = τP ′

|V′ξ : V ′ξ −→ V ξ′ is a left inverse of τI ′|V ξ′ .

Proposition 2 [3] C ′ = P ′
1 ◦ Q′ ◦ C ◦ τI ′ : TE′ −→ V E′ is a non-linear connection

on the vector bundle E′.

It is easy to see that, in an adapted vectorial system of coordinates, the local
components of C are (Nα

i (xj , yβ , yv), Nu
i (xj , yβ , yv)). In [3], it is proved that the local

components of the induced non-linear connection C ′ are: Ñα
j (xi, yβ) = Nα

j (xi, yβ , 0).
Notice that a non-linear connection C ′′ can be induced in the same way on ξ′′, and

the local components of C ′′ are: ˜̃
N

u

j (xi, yv) = Nu
j (xi, 0, yv).

Giving the non-linear connection C and the supplementary vector subbundles ξ′

and ξ′′ on ξ, it follows that for every u ∈ E we have:

(TE)u = (HE)u ⊕ (V E)u = (HE)u ⊕ (V ′E)u ⊕ (V ′′E)u (1.2)

Denoting as:

(H′E)u = (HE)u ⊕ (V ′′E)u , (H′′E)u = (HE)u ⊕ (V ′E)u
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we have
(TE)u = (H′E)u ⊕ (V ′E)u , (TE)u = (H′′E)u ⊕ (V ′′E)u .

There are defined the vector bundles H′ξ and H′′ξ of τE which have as supplementary
vector subbundles V ′ξ and V ′′ξ respectively. Denote the supplementary projectors as
H′ and V ′, respectively H′′ and V ′′. It is easy to see that V ′ = Q′ ◦ v, V ′′ = Q′′ ◦ v
where v is the vertical projector associated to the non-linear connection C. In an
adapted vectorial system of coordinates, these projectors have the forms:

V ′(X) = (Xα + XiNα
i )

∂

∂yα
(= Q′ ◦ v(X)),

H′(X) = Xi

(
∂

∂xi
− Nα

i

∂

∂yα

)
+ Xu ∂

∂yu
(= X − V ′(X));

V ′′(X) = (Xu + XiNu
i )

∂

∂yu
(= Q′′ ◦ v(X)),

H′′(X) = Xi

(
∂

∂xi
− Nu

i

∂

∂yu

)
+ Xα ∂

∂yα
(= X − V ′′(X)),

where X = Xi ∂

∂xi
+ Xα ∂

∂yα
+ Xu ∂

∂yu
.

Proposition 3 [3]Every non-linear connection C on the vector bundle ξ induces non-
linear connections on the vector bundles η′ and η′′ such that the vertical bundle of one
of these vector bundles is a subbundle of the horizontal bundle of the connection on
the other vector bundle.

Conversely, every two non-linear connections which have this property, induce a
non-linear connection C on ξ.

We shall define now the vertical and horizontal lifts associated to sections on ξ′,
ξ′′, τE′ and τE′′.

Let s′ ∈ S(ξ′). Since the π′-morphism P ′ : E −→ E′ of vector bundles E
P ′′

−→ E′′

and E′ π′

−→ M is an epimorphism and an isomorphism on fibers, it follows, using this

isomorphism, that there is an unique section s̃′ on the vector bundle E
P ′′

−→ E′′ such
that P ′(s̃′) = s′.

We can consider the vertical lift of s̃′ in the vector bundle E
P ′′

−→ E′′ denoted as
(s′)V

′ ∈ S(V ′ξ) and called the ξ′′-vertical lift of the section s′.
In the same way we can define the ξ′-vertical lift (s′′)V

′′ ∈ S(V ′′ξ) of a section
s′′ ∈ S(ξ′′).

In an adapted vectorial system of coordinates, the sections and the vertical lifts
have the same components in the adapted bases.

It is easy to see that for s ∈ S(ξ), denoting as s′ = P ′(s) and s′′ = P ′′(s) (s =
s′+s′′) and considering the vertical lift sV of s (cf. [2]), we have: sV = (s′)V

′
+(s′′)V

′′
.

In the particular case when ξ = ξ′ and ξ′′ is the null vector bundle, then the
ξ′-vertical lift of a section s ∈ S(ξ) is the same as the vertical lift of s.
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We define now horizontal lifts of vector fields on E′ and E′′ with respect to the non-
linear connections defined in the first part of Proposition 3. For every X ′′ ∈ X (E′′),
X ′ ∈ X (E′), we denote (X ′′)H

′ ∈ S(H′ξ), (X ′)H
′′ ∈ S(H′′ξ), and we call them the

ξ′-horizontal lift and ξ′′-horizontal lift of X ′′ and X ′, respectively. In an adapted
system of coordinates we have:

(X ′′)H
′
= Xi(xj , yv)

(
∂

∂xi
− Nα

i (xj , yβ , yv)
∂

∂yα

)
+

+Xu(xj , yv)
∂

∂yu
∈ S(H′E)

where
X ′′ = Xi(xj , yv)

∂

∂xi
+ Xu(xj , yv)

∂

∂yu
∈ X (E′′)

and

(X ′)H
′′

= Xi(xj , yβ) ·
(

∂

∂xi
− Nu

i (xj , yβ , yv)
∂

∂yu

)
+

+Xα(xj , yβ)
∂

∂yα
∈ S(H′′E),

where
X ′ = Xi(xj , yβ)

∂

∂xi
+ Xα(xj , yβ)

∂

∂yα
∈ X (E′).

In the particulary case when ξ = ξ′ and ξ′′ is the null vector bundle, then the
ξ′′-horizontal lift of X ′ ∈ X (M) is the same as the horizontal lift of X ′, and the
ξ′-horizontal lift of X ′′ ∈ X (E) is X ′′.

Generally, for a vector bundle ξ = (E, π,M) and M ′ ⊂ M a submanifold of M ,
we denote as ξ|M ′ = i∗ξ, and for s ∈ S(ξ) we denote as s|M ′ the induced section on
ξ|M ′ . With these notations we have:

Proposition 4 . a) If Y ′′ ∈ S(V ξ′′) then

(Y ′′)H
′

|E′′ = τI ′′(Y ′′).

Particularly if Y ∈ S(ξ′′) then

(Y V ′′
)H

′

|E′′ = τI ′′(Y V ′′
)

.
b) If X ∈ X (M), then (

(Xh′′
)H

′
)
|E′′

= Xh
|E′′

.
c) If X ′′ ∈ X (E′′), then for every u′′ ∈ E′′ we have

V ′′
u′′

(
(X ′′)H

′
)

u′′
= (τI ′′)u′′(V ′′X ′′)u′′ .
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Proof. Using an adapted vectorial system of coordinates, the local expression of

Y ′′ = Xu(xj , yv)
∂

∂yu
we have (Y ′′)H

′
= Xu(xj , yv)

∂

∂yu
and the first equality

follows since τI ′′ sends
∂

∂yu
in

∂

∂yu
. If X = Xi(xj)

∂

∂xi
both sides of b) are equal to

Xh′′
= Xi(xj)

(
∂

∂xi
− Nα

i (xj , yα, 0)
∂

∂yα
− Nu

i (xj , yα, 0)
∂

∂yu

)
,

because on E′′ we have yα = 0. For the last assertion, taking X ′′ = Xi(xj , yv)
∂

∂xi
+

Xu(xj , yv)
∂

∂yu
∈ X (E′′) and using the local form of V ′′, we have:

V ′′
u′′

(
(X ′′)H

′
)

u′′
=

(
Xu(xj , yv) + Xi(xj , yv)Nu

i (xj , 0, yv)
) ∂

∂yu
=

= (τI ′′)u′′(V ′′X ′′)u′′ .

(q.e.d.)

Proposition 5 . For every X,Y ∈ X (M) we have:

Ω(Xh, Y h)|E′′ = τI ′′(Ω′′(Xh′′
, Y h′′

)) + ([Xh′′
, Y h′′

]H
′
− [Xh, Y h])|E′′ (1)

Ω(Xh, Y h)|E′ = τI ′(Ω′(Xh′
, Y h′

)) + ([Xh′
, Y h′

]H
′′
− [Xh, Y h])|E′ , (2)

where Ω, Ω′ and Ω′′ are the curvatures of the connections C, C ′ and C ′′ respectively.

Proof. Using
Ω(Xh, Y h) = [X,Y ]h − [Xh, Y h] ,

(∀) X,Y ∈ X (M) (see [2]) for C ′′ we have:

Ω′′(Xh′′
, Y h′′

)H
′
= ([X,Y ]h

′′
)H

′
− [Xh′′

, Y h′′
]H

′

Using Proposition 4, it follows:

τI ′′(Ω′′(Xh′′
, Y h′′

) = [X,Y ]h|E′′ − ([Xh′′
, Y h′′

]H
′
)|E′′ =

= Ω(Xh, Y h)|E′′ + ([Xh, Y h] − [Xh′′
, Y h′′

]H
′
)|E′′

(this holds on the fibers of V E|E′′). (q.e.d.)
If we apply V ′′

|E′′ in (1) and using Proposition 1 b) and c), it follows:

(V ′′Ω(Xh, Y h))|E′′ = τI ′′(Ω′′(Xh′′
, Y h′′

)) + V ′′([Xh′′
, Y h′′

]H
′
− [Xh, Y h])|E′′ ,

which we call the vectorial equation of Gauss on E′′. If we apply V ′
|E′′ , then we

obtain the relation:

(V ′Ω(Xh, Y h))|E′′ = −V ′([Xh, Y h])|E′′
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which we call the vectorial equation of Codazzi on E′′. In an analogous way, we define
the vectorial equations of Gauss and Codazzi on E′ as:

(V ′Ω(Xh, Y h))|E′ = τI ′(Ω′(Xh′
, Y h′

)) + V ′([Xh′
, Y h′

]H
′′
− [Xh, Y h])|E′

(V ′′Ω(Xh, Y h))|E′ = −V ′′([Xh, Y h])|E′ .

In adapted vectorial coordinates we give them a more simple form and we show
that these equations are a natural extension of those of [1], denoting as in [2]:

δ

δxi
=

∂

∂xi
− Nα

i

∂

∂yα
− Nu

i

∂

∂yu

δ′

δ′xi
=

∂

∂xi
− Ñα

i

∂

∂yα
, Ñα

i (xj , yβ) = Nα
i (xj , yβ , 0)

δ′′

δ′′xi
=

∂

∂xi
− ˜̃

N
u

i

∂

∂yu
,

˜̃
N

u

i (xj , yv) = Nu
i (xj , 0, yv)

Ω
(

δ

δxi
,

δ

δxj

)
= Ωα

ij

∂

∂yα
+ Ωu

ij

∂

∂yu
; Ω̃

(
δ′

δ′xi
,

δ′

δ′xj

)
= Ω̃α

ij

∂

∂yα

˜̃Ω (
δ′′

δ′′xi
,

δ′′

δ′′xj

)
= ˜̃Ωu

ij

∂

∂yu
.

By a straightforward computation we obtain:

Ωu
ij(x

k, 0, yv) = ˜̃Ωu

ij(x
k, yv) + Nα

j (xk, 0, yv) · Nu
i,α(xk, 0, yv)−

−Nα
i (xk, 0, yv) · Nu

j,α(xk, 0, yv) (Gauss)

Ωα
ij(x

k, 0, yv) =
δ

δxi
(Nα

j )(xk, 0, yv) − δ

δxj
(Nα

i )(xk, 0, yv) (Codazzi)

and the analogous ones for E′.
If C is a linear connection, then C ′ and C ′′ are also linear connections, and the

above equations of Gauss and Codazzi agree with those of [1].
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