ON THE SUPPLEMENTARY VECTOR SUBBUNDLES

Marcela Popescu

Abstract

In this paper, two supplementary vector subbundles E^{\prime} and $E^{\prime \prime}$ of a vector bundle E, are studied. Given a non-linear connection C on E, a canonical method to induce non-linear connections C^{\prime} on E^{\prime} and $C^{\prime \prime}$ on $E^{\prime \prime}$ is indicated. Kinds of Gauss and Codazzi equations are given. In the particular case of a linear connection C on E, the method and the equations of Gauss and Codazzi given in [2] are found. The vertical and horizontal lifts defined in the present paper extend the classical ones.

AMS Subject Classification: 53C60, 53C40c
Key words: supplementary vector subbundles, non-linear connection, Gauss and Codazzi equations

All the manifolds and maps are C^{∞}, the manifolds are paracompact and all the vector bundles have finite dimensional vector spaces as fibers. $\mathcal{F}(M)$ is the real algebra of C^{∞}-real functions on the manifold $M, \mathcal{X}(M)$ and $S(\xi)$ are the $\mathcal{F}(M)$-modules of vector fields on M and of sections on the vector bundle $\xi=(E, \pi, M)$ respectively. $V \xi=\operatorname{ker} \tau \pi$ is the vertical bundle of ξ (where $\tau \pi: \tau E \longrightarrow \tau M$ is the differential map of π) and there is a canonical isomorphism $V E \simeq \pi^{*} E$.

First we show the basic constructions and results from [3] which are used in the sequel.

Let $\xi=(E, \pi, M)$ be a vector bundle, $\xi^{\prime}=\left(E^{\prime}, \pi^{\prime}, M\right)$ and $\xi^{\prime \prime}=\left(E^{\prime \prime}, \pi^{\prime \prime}, M\right)$ be two supplementary vector subbundles, P^{\prime} and $P^{\prime \prime}$ be the projections of ξ on ξ^{\prime}, $\xi^{\prime \prime} . I^{\prime}: \xi^{\prime} \longrightarrow \xi$ and $I^{\prime \prime}: \xi^{\prime \prime} \longrightarrow \xi$ be the inclusion morphisms. Consider the
vector bundles $\eta^{\prime}=\left(E, P^{\prime}, E^{\prime}\right)$ and $\eta^{\prime \prime}=\left(E, P^{\prime \prime}, E^{\prime \prime}\right)$ and their vertical bundles $\mathcal{V}^{\prime} \xi=\operatorname{ker} \tau P^{\prime \prime}$ and $\mathcal{V}^{\prime \prime} \xi=\operatorname{ker} \tau P^{\prime}$. Since $\pi=\pi^{\prime} \circ P^{\prime}=\pi^{\prime \prime} \circ P^{\prime \prime}$, it easily follows that $\mathcal{V}^{\prime} \xi$ and $\mathcal{V}^{\prime \prime} \xi$ are vector subbundles of $V \xi$.

Throughout the paper we consider vectorial coordinates on E which are adapted(i.e., local coordinates on E adapted to the vector bundle structure) which induce also on E^{\prime} and $E^{\prime \prime}$ adapted vectorial coordinates. More precisely, around every $y \in E, \pi(y)=x$, $P^{\prime}(y)=y^{\prime}, P^{\prime \prime}(y)=y^{\prime \prime}$ we have as adapted coordinates: $x:\left(x^{i}\right), y^{\prime}:\left(x^{i}, y^{\alpha}\right), y^{\prime \prime}:$ $\left(x^{i}, y^{u}\right), y:\left(x^{i}, y^{\alpha}, y^{u}\right)$, where $i=\overline{1, m}, \alpha=\overline{1, k}_{1}, u=\overline{1, k}_{2}$ and $k=k_{1}+k_{2}$. The change rules are: $x^{i^{\prime}}=x^{i^{\prime}}\left(x^{i}\right), y^{\alpha^{\prime}}=h_{\alpha}^{\alpha^{\prime}}\left(x^{i}\right) y^{\alpha}, y^{u^{\prime}}=h_{u}^{u^{\prime}}\left(x^{i}\right) y^{u}$.

Proposition 1 [3] a) There are canonical isomorphisms

$$
\mathcal{V}^{\prime} E \simeq \pi^{*} E^{\prime} \text { and } \mathcal{V}^{\prime \prime} E \simeq \pi^{*} E^{\prime \prime}
$$

b) In every point $u \in E$ we have $(V E)_{u}=\left(\mathcal{V}^{\prime} E\right)_{u} \oplus\left(\mathcal{V}^{\prime \prime} E\right)_{u}$.
c) In every $u^{\prime} \in E^{\prime}$ and $u^{\prime \prime} \in E^{\prime \prime}$ we have

$$
\left(\tau I^{\prime}\right)_{u^{\prime}}\left(V E^{\prime}\right)_{u^{\prime}}=\left(\mathcal{V}^{\prime} E\right)_{u^{\prime}}, \quad\left(\tau I^{\prime \prime}\right)_{u^{\prime \prime}}\left(V E^{\prime \prime}\right)_{u^{\prime \prime}}=\left(\mathcal{V}^{\prime \prime} E\right)_{u^{\prime \prime}}
$$

According to b) from Proposition 1, it follows that $\mathcal{V}^{\prime} E$ and $\mathcal{V}^{\prime \prime} E$ are supplementary vector subbundles of $V \xi$, and the projectors of these subbundles on $V \xi$ are denoted as Q^{\prime} and $Q^{\prime \prime}$.

Let $C: \tau E \longrightarrow V \xi$ be a non-linear connection on E, i.e. (cf. [2]), a vector bundle morphism such that $C \circ i=\operatorname{id}_{V E}$ where $i: V \xi \longrightarrow \tau E$ is the inclusion morphism and consider the following sequence of vector bundle morphisms:

$$
\begin{equation*}
T \xi^{\prime} \xrightarrow{\tau I^{\prime}} T \xi \xrightarrow{C} V \xi \xrightarrow{Q^{\prime}} \mathcal{V}^{\prime} \xi \xrightarrow{P_{1}^{\prime}} V \xi^{\prime} \tag{1.1}
\end{equation*}
$$

where $P_{1}^{\prime}=\tau P_{\mid \mathcal{V}^{\prime} \xi}^{\prime}: \mathcal{V}^{\prime} \xi \longrightarrow V \xi^{\prime}$ is a left inverse of $\tau I_{\mid V \xi^{\prime}}^{\prime}$.
Proposition $2[3] C^{\prime}=P_{1}^{\prime} \circ Q^{\prime} \circ C \circ \tau I^{\prime}: T E^{\prime} \longrightarrow V E^{\prime}$ is a non-linear connection on the vector bundle E^{\prime}.

It is easy to see that, in an adapted vectorial system of coordinates, the local components of C are $\left(N_{i}^{\alpha}\left(x^{j}, y^{\beta}, y^{v}\right), N_{i}^{u}\left(x^{j}, y^{\beta}, y^{v}\right)\right)$. In [3], it is proved that the local components of the induced non-linear connection C^{\prime} are: $\widetilde{N}_{j}^{\alpha}\left(x^{i}, y^{\beta}\right)=N_{j}^{\alpha}\left(x^{i}, y^{\beta}, 0\right)$. Notice that a non-linear connection $C^{\prime \prime}$ can be induced in the same way on $\xi^{\prime \prime}$, and the local components of $C^{\prime \prime}$ are: $\widetilde{\widetilde{N}}_{j}^{u}\left(x^{i}, y^{v}\right)=N_{j}^{u}\left(x^{i}, 0, y^{v}\right)$.

Giving the non-linear connection C and the supplementary vector subbundles ξ^{\prime} and $\xi^{\prime \prime}$ on ξ, it follows that for every $u \in E$ we have:

$$
\begin{equation*}
(T E)_{u}=(H E)_{u} \oplus(V E)_{u}=(H E)_{u} \oplus\left(\mathcal{V}^{\prime} E\right)_{u} \oplus\left(\mathcal{V}^{\prime \prime} E\right)_{u} \tag{1.2}
\end{equation*}
$$

Denoting as:

$$
\left(\mathcal{H}^{\prime} E\right)_{u}=(H E)_{u} \oplus\left(\mathcal{V}^{\prime \prime} E\right)_{u},\left(\mathcal{H}^{\prime \prime} E\right)_{u}=(H E)_{u} \oplus\left(\mathcal{V}^{\prime} E\right)_{u}
$$

we have

$$
(T E)_{u}=\left(\mathcal{H}^{\prime} E\right)_{u} \oplus\left(\mathcal{V}^{\prime} E\right)_{u},(T E)_{u}=\left(\mathcal{H}^{\prime \prime} E\right)_{u} \oplus\left(\mathcal{V}^{\prime \prime} E\right)_{u}
$$

There are defined the vector bundles $\mathcal{H}^{\prime} \xi$ and $\mathcal{H}^{\prime \prime} \xi$ of τE which have as supplementary vector subbundles $\mathcal{V}^{\prime} \xi$ and $\mathcal{V}^{\prime \prime} \xi$ respectively. Denote the supplementary projectors as \mathcal{H}^{\prime} and \mathcal{V}^{\prime}, respectively $\mathcal{H}^{\prime \prime}$ and $\mathcal{V}^{\prime \prime}$. It is easy to see that $\mathcal{V}^{\prime}=Q^{\prime} \circ v, \mathcal{V}^{\prime \prime}=Q^{\prime \prime} \circ v$ where v is the vertical projector associated to the non-linear connection C. In an adapted vectorial system of coordinates, these projectors have the forms:

$$
\begin{gathered}
\mathcal{V}^{\prime}(X)=\left(X^{\alpha}+X^{i} N_{i}^{\alpha}\right) \frac{\partial}{\partial y^{\alpha}}\left(=Q^{\prime} \circ v(X)\right) \\
\mathcal{H}^{\prime}(X)=X^{i}\left(\frac{\partial}{\partial x^{i}}-N_{i}^{\alpha} \frac{\partial}{\partial y^{\alpha}}\right)+X^{u} \frac{\partial}{\partial y^{u}}\left(=X-\mathcal{V}^{\prime}(X)\right) \\
\mathcal{V}^{\prime \prime}(X)=\left(X^{u}+X^{i} N_{i}^{u}\right) \frac{\partial}{\partial y^{u}}\left(=Q^{\prime \prime} \circ v(X)\right) \\
\mathcal{H}^{\prime \prime}(X)=X^{i}\left(\frac{\partial}{\partial x^{i}}-N_{i}^{u} \frac{\partial}{\partial y^{u}}\right)+X^{\alpha} \frac{\partial}{\partial y^{\alpha}}\left(=X-\mathcal{V}^{\prime \prime}(X)\right)
\end{gathered}
$$

where $X=X^{i} \frac{\partial}{\partial x^{i}}+X^{\alpha} \frac{\partial}{\partial y^{\alpha}}+X^{u} \frac{\partial}{\partial y^{u}}$.
Proposition 3 [3]Every non-linear connection C on the vector bundle ξ induces nonlinear connections on the vector bundles η^{\prime} and $\eta^{\prime \prime}$ such that the vertical bundle of one of these vector bundles is a subbundle of the horizontal bundle of the connection on the other vector bundle.

Conversely, every two non-linear connections which have this property, induce a non-linear connection C on ξ.

We shall define now the vertical and horizontal lifts associated to sections on ξ^{\prime}, $\xi^{\prime \prime}, \tau E^{\prime}$ and $\tau E^{\prime \prime}$.

Let $s^{\prime} \in S\left(\xi^{\prime}\right)$. Since the π^{\prime}-morphism $P^{\prime}: E \longrightarrow E^{\prime}$ of vector bundles $E \xrightarrow{P^{\prime \prime}} E^{\prime \prime}$ and $E^{\prime} \xrightarrow{\pi^{\prime}} M$ is an epimorphism and an isomorphism on fibers, it follows, using this isomorphism, that there is an unique section \tilde{s}^{\prime} on the vector bundle $E \xrightarrow{P^{\prime \prime}} E^{\prime \prime}$ such that $P^{\prime}\left(\tilde{s}^{\prime}\right)=s^{\prime}$.

We can consider the vertical lift of \tilde{s}^{\prime} in the vector bundle $E \xrightarrow{P^{\prime \prime}} E^{\prime \prime}$ denoted as $\left(s^{\prime}\right)^{\mathcal{V}^{\prime}} \in S\left(\mathcal{V}^{\prime} \xi\right)$ and called the $\xi^{\prime \prime}$-vertical lift of the section s^{\prime}.

In the same way we can define the ξ^{\prime}-vertical lift $\left(s^{\prime \prime}\right)^{\mathcal{V}^{\prime \prime}} \in S\left(\mathcal{V}^{\prime \prime} \xi\right)$ of a section $s^{\prime \prime} \in S\left(\xi^{\prime \prime}\right)$.

In an adapted vectorial system of coordinates, the sections and the vertical lifts have the same components in the adapted bases.

It is easy to see that for $s \in S(\xi)$, denoting as $s^{\prime}=P^{\prime}(s)$ and $s^{\prime \prime}=P^{\prime \prime}(s) \quad(s=$ $s^{\prime}+s^{\prime \prime}$) and considering the vertical lift s^{V} of s (cf. [2]), we have: $s^{V}=\left(s^{\prime}\right)^{\mathcal{V}^{\prime}}+\left(s^{\prime \prime}\right)^{\mathcal{V}^{\prime \prime}}$.

In the particular case when $\xi=\xi^{\prime}$ and $\xi^{\prime \prime}$ is the null vector bundle, then the ξ^{\prime}-vertical lift of a section $s \in S(\xi)$ is the same as the vertical lift of s.

We define now horizontal lifts of vector fields on E^{\prime} and $E^{\prime \prime}$ with respect to the nonlinear connections defined in the first part of Proposition 3. For every $X^{\prime \prime} \in \mathcal{X}\left(E^{\prime \prime}\right)$, $X^{\prime} \in \mathcal{X}\left(E^{\prime}\right)$, we denote $\left(X^{\prime \prime}\right)^{\mathcal{H}^{\prime}} \in S\left(\mathcal{H}^{\prime} \xi\right),\left(X^{\prime}\right)^{\mathcal{H}^{\prime \prime}} \in S\left(\mathcal{H}^{\prime \prime} \xi\right)$, and we call them the ξ^{\prime}-horizontal lift and $\xi^{\prime \prime}$-horizontal lift of $X^{\prime \prime}$ and X^{\prime}, respectively. In an adapted system of coordinates we have:

$$
\begin{gathered}
\left(X^{\prime \prime}\right)^{\mathcal{H}^{\prime}}=X^{i}\left(x^{j}, y^{v}\right)\left(\frac{\partial}{\partial x^{i}}-N_{i}^{\alpha}\left(x^{j}, y^{\beta}, y^{v}\right) \frac{\partial}{\partial y^{\alpha}}\right)+ \\
+X^{u}\left(x^{j}, y^{v}\right) \frac{\partial}{\partial y^{u}} \in S\left(\mathcal{H}^{\prime} E\right)
\end{gathered}
$$

where

$$
X^{\prime \prime}=X^{i}\left(x^{j}, y^{v}\right) \frac{\partial}{\partial x^{i}}+X^{u}\left(x^{j}, y^{v}\right) \frac{\partial}{\partial y^{u}} \in \mathcal{X}\left(E^{\prime \prime}\right)
$$

and

$$
\begin{gathered}
\left(X^{\prime}\right)^{\mathcal{H}^{\prime \prime}}=X^{i}\left(x^{j}, y^{\beta}\right) \cdot\left(\frac{\partial}{\partial x^{i}}-N_{i}^{u}\left(x^{j}, y^{\beta}, y^{v}\right) \frac{\partial}{\partial y^{u}}\right)+ \\
+X^{\alpha}\left(x^{j}, y^{\beta}\right) \frac{\partial}{\partial y^{\alpha}} \in S\left(\mathcal{H}^{\prime \prime} E\right)
\end{gathered}
$$

where

$$
X^{\prime}=X^{i}\left(x^{j}, y^{\beta}\right) \frac{\partial}{\partial x^{i}}+X^{\alpha}\left(x^{j}, y^{\beta}\right) \frac{\partial}{\partial y^{\alpha}} \in \mathcal{X}\left(E^{\prime}\right)
$$

In the particulary case when $\xi=\xi^{\prime}$ and $\xi^{\prime \prime}$ is the null vector bundle, then the $\xi^{\prime \prime}$-horizontal lift of $X^{\prime} \in \mathcal{X}(M)$ is the same as the horizontal lift of X^{\prime}, and the ξ^{\prime}-horizontal lift of $X^{\prime \prime} \in \mathcal{X}(E)$ is $X^{\prime \prime}$.

Generally, for a vector bundle $\xi=(E, \pi, M)$ and $M^{\prime} \subset M$ a submanifold of M, we denote as $\xi_{\mid M^{\prime}}=i^{*} \xi$, and for $s \in S(\xi)$ we denote as $s_{\mid M^{\prime}}$ the induced section on $\xi_{\mid M^{\prime}}$. With these notations we have:

Proposition 4 . a) If $Y^{\prime \prime} \in S\left(V \xi^{\prime \prime}\right)$ then

$$
\left(Y^{\prime \prime}\right)_{\mid E^{\prime \prime}}^{\mathcal{H}^{\prime}}=\tau I^{\prime \prime}\left(Y^{\prime \prime}\right)
$$

Particularly if $Y \in S\left(\xi^{\prime \prime}\right)$ then

$$
\left(Y^{V^{\prime \prime}}\right)_{\mid E^{\prime \prime}}^{\mathcal{H}^{\prime}}=\tau I^{\prime \prime}\left(Y^{V^{\prime \prime}}\right)
$$

b) If $X \in \mathcal{X}(M)$, then

$$
\left(\left(X^{h^{\prime \prime}}\right)^{\mathcal{H}^{\prime}}\right)_{\mid E^{\prime \prime}}=X_{\mid E^{\prime \prime}}^{h}
$$

c) If $X^{\prime \prime} \in \mathcal{X}\left(E^{\prime \prime}\right)$, then for every $u^{\prime \prime} \in E^{\prime \prime}$ we have

$$
\mathcal{V}_{u^{\prime \prime}}^{\prime \prime}\left(\left(X^{\prime \prime}\right)^{\mathcal{H}^{\prime}}\right)_{u^{\prime \prime}}=\left(\tau I^{\prime \prime}\right)_{u^{\prime \prime}}\left(V^{\prime \prime} X^{\prime \prime}\right)_{u^{\prime \prime}}
$$

Proof. Using an adapted vectorial system of coordinates, the local expression of $Y^{\prime \prime}=X^{u}\left(x^{j}, y^{v}\right) \frac{\partial}{\partial y^{u}}$ we have $\left(Y^{\prime \prime}\right)^{\mathcal{H}^{\prime}}=X^{u}\left(x^{j}, y^{v}\right) \frac{\partial}{\partial y^{u}}$ and the first equality follows since $\tau I^{\prime \prime}$ sends $\frac{\partial}{\partial y^{u}}$ in $\frac{\partial}{\partial y^{u}}$. If $X=X^{i}\left(x^{j}\right) \frac{\partial}{\partial x^{i}}$ both sides of b) are equal to

$$
X^{h^{\prime \prime}}=X^{i}\left(x^{j}\right)\left(\frac{\partial}{\partial x^{i}}-N_{i}^{\alpha}\left(x^{j}, y^{\alpha}, 0\right) \frac{\partial}{\partial y^{\alpha}}-N_{i}^{u}\left(x^{j}, y^{\alpha}, 0\right) \frac{\partial}{\partial y^{u}}\right)
$$

because on $E^{\prime \prime}$ we have $y^{\alpha}=0$. For the last assertion, taking $X^{\prime \prime}=X^{i}\left(x^{j}, y^{v}\right) \frac{\partial}{\partial x^{i}}+$ $X^{u}\left(x^{j}, y^{v}\right) \frac{\partial}{\partial y^{u}} \in \mathcal{X}\left(E^{\prime \prime}\right)$ and using the local form of $V^{\prime \prime}$, we have:

$$
\begin{gathered}
\mathcal{V}_{u^{\prime \prime}}^{\prime \prime}\left(\left(X^{\prime \prime}\right)^{\mathcal{H}^{\prime}}\right)_{u^{\prime \prime}}=\left(X^{u}\left(x^{j}, y^{v}\right)+X^{i}\left(x^{j}, y^{v}\right) N_{i}^{u}\left(x^{j}, 0, y^{v}\right)\right) \frac{\partial}{\partial y^{u}}= \\
=\left(\tau I^{\prime \prime}\right)_{u^{\prime \prime}}\left(V^{\prime \prime} X^{\prime \prime}\right)_{u^{\prime \prime}}
\end{gathered}
$$

(q.e.d.)

Proposition 5 . For every $X, Y \in \mathcal{X}(M)$ we have:

$$
\begin{align*}
\Omega\left(X^{h}, Y^{h}\right)_{\mid E^{\prime \prime}} & =\tau I^{\prime \prime}\left(\Omega^{\prime \prime}\left(X^{h^{\prime \prime}}, Y^{h^{\prime \prime}}\right)\right)+\left(\left[X^{h^{\prime \prime}}, Y^{h^{\prime \prime}}\right]^{\mathcal{H}^{\prime}}-\left[X^{h}, Y^{h}\right]\right)_{\mid E^{\prime \prime}} \tag{1}\\
\Omega\left(X^{h}, Y^{h}\right)_{\mid E^{\prime}} & =\tau I^{\prime}\left(\Omega^{\prime}\left(X^{h^{\prime}}, Y^{h^{\prime}}\right)\right)+\left(\left[X^{h^{\prime}}, Y^{h^{\prime}}\right]^{\mathcal{H}^{\prime \prime}}-\left[X^{h}, Y^{h}\right]\right)_{\mid E^{\prime}} \tag{2}
\end{align*}
$$

where Ω, Ω^{\prime} and $\Omega^{\prime \prime}$ are the curvatures of the connections C, C^{\prime} and $C^{\prime \prime}$ respectively.
Proof. Using

$$
\Omega\left(X^{h}, Y^{h}\right)=[X, Y]^{h}-\left[X^{h}, Y^{h}\right]
$$

$(\forall) X, Y \in \mathcal{X}(M)$ (see [2]) for $C^{\prime \prime}$ we have:

$$
\Omega^{\prime \prime}\left(X^{h^{\prime \prime}}, Y^{h^{\prime \prime}}\right)^{\mathcal{H}}=\left([X, Y]^{h^{\prime \prime}}\right)^{\mathcal{H}^{\prime}}-\left[X^{h^{\prime \prime}}, Y^{h^{\prime \prime}}\right]^{\mathcal{H}^{\prime}}
$$

Using Proposition 4, it follows:

$$
\begin{aligned}
& \tau I^{\prime \prime}\left(\Omega^{\prime \prime}\left(X^{h^{\prime \prime}}, Y^{h^{\prime \prime}}\right)=[X, Y]_{\mid E^{\prime \prime}}^{h}-\left(\left[X^{h^{\prime \prime}}, Y^{h^{\prime \prime}}\right]^{\mathcal{H}^{\prime}}\right)_{\mid E^{\prime \prime}}=\right. \\
& \quad=\Omega\left(X^{h}, Y^{h}\right)_{\mid E^{\prime \prime}}+\left(\left[X^{h}, Y^{h}\right]-\left[X^{h^{\prime \prime}}, Y^{h^{\prime \prime}}\right]^{\mathcal{H}^{\prime}}\right)_{\mid E^{\prime \prime}}
\end{aligned}
$$

(this holds on the fibers of $V E_{\mid E^{\prime \prime}}$). (q.e.d.)
If we apply $\mathcal{V}_{\mid E^{\prime \prime}}^{\prime \prime}$ in (1) and using Proposition 1 b) and c), it follows:

$$
\left(\mathcal{V}^{\prime \prime} \Omega\left(X^{h}, Y^{h}\right)\right)_{\mid E^{\prime \prime}}=\tau I^{\prime \prime}\left(\Omega^{\prime \prime}\left(X^{h^{\prime \prime}}, Y^{h^{\prime \prime}}\right)\right)+\mathcal{V}^{\prime \prime}\left(\left[X^{h^{\prime \prime}}, Y^{h^{\prime \prime}}\right]^{\mathcal{H}^{\prime}}-\left[X^{h}, Y^{h}\right]\right)_{\mid E^{\prime \prime}}
$$

which we call the vectorial equation of Gauss on $E^{\prime \prime}$. If we apply $\mathcal{V}_{\mid E^{\prime \prime}}^{\prime}$, then we obtain the relation:

$$
\left(\mathcal{V}^{\prime} \Omega\left(X^{h}, Y^{h}\right)\right)_{\mid E^{\prime \prime}}=-\mathcal{V}^{\prime}\left(\left[X^{h}, Y^{h}\right]\right)_{\mid E^{\prime \prime}}
$$

which we call the vectorial equation of Codazzi on $E^{\prime \prime}$. In an analogous way, we define the vectorial equations of Gauss and Codazzi on E^{\prime} as:

$$
\begin{gathered}
\left(\mathcal{V}^{\prime} \Omega\left(X^{h}, Y^{h}\right)\right)_{\mid E^{\prime}}=\tau I^{\prime}\left(\Omega^{\prime}\left(X^{h^{\prime}}, Y^{h^{\prime}}\right)\right)+\mathcal{V}^{\prime}\left(\left[X^{h^{\prime}}, Y^{h^{\prime}}\right]^{\mathcal{H}^{\prime \prime}}-\left[X^{h}, Y^{h}\right]\right)_{\mid E^{\prime}} \\
\left(\mathcal{V}^{\prime \prime} \Omega\left(X^{h}, Y^{h}\right)\right)_{\mid E^{\prime}}=-\mathcal{V}^{\prime \prime}\left(\left[X^{h}, Y^{h}\right]\right)_{\mid E^{\prime}}
\end{gathered}
$$

In adapted vectorial coordinates we give them a more simple form and we show that these equations are a natural extension of those of [1], denoting as in [2]:

$$
\begin{gathered}
\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-N_{i}^{\alpha} \frac{\partial}{\partial y^{\alpha}}-N_{i}^{u} \frac{\partial}{\partial y^{u}} \\
\frac{\delta^{\prime}}{\delta^{\prime} x^{i}}=\frac{\partial}{\partial x^{i}}-\widetilde{N}_{i}^{\alpha} \frac{\partial}{\partial y^{\alpha}}, \widetilde{N}_{i}^{\alpha}\left(x^{j}, y^{\beta}\right)=N_{i}^{\alpha}\left(x^{j}, y^{\beta}, 0\right) \\
\frac{\delta^{\prime \prime}}{\delta^{\prime \prime} x^{i}}=\frac{\partial}{\partial x^{i}}-\widetilde{\widetilde{N}}_{i}^{u} \frac{\partial}{\partial y^{u}}, \widetilde{\widetilde{N}}_{i}^{u}\left(x^{j}, y^{v}\right)=N_{i}^{u}\left(x^{j}, 0, y^{v}\right) \\
\Omega\left(\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta x^{j}}\right)=\Omega_{i j}^{\alpha} \frac{\partial}{\partial y^{\alpha}}+\Omega_{i j}^{u} \frac{\partial}{\partial y^{u}} ; \widetilde{\Omega}\left(\frac{\delta^{\prime}}{\delta^{\prime} x^{i}}, \frac{\delta^{\prime}}{\delta^{\prime} x^{j}}\right)=\widetilde{\Omega}_{i j}^{\alpha} \frac{\partial}{\partial y^{\alpha}} \\
\widetilde{\widetilde{\Omega}}\left(\frac{\delta^{\prime \prime}}{\delta^{\prime \prime} x^{i}}, \frac{\delta^{\prime \prime}}{\delta^{\prime \prime} x^{j}}\right)=\widetilde{\widetilde{\Omega}}_{i j}^{u} \frac{\partial}{\partial y^{u}} .
\end{gathered}
$$

By a straightforward computation we obtain:

$$
\begin{gathered}
\Omega_{i j}^{u}\left(x^{k}, 0, y^{v}\right)=\widetilde{\widetilde{\Omega}}_{i j}^{u}\left(x^{k}, y^{v}\right)+N_{j}^{\alpha}\left(x^{k}, 0, y^{v}\right) \cdot N_{i, \alpha}^{u}\left(x^{k}, 0, y^{v}\right)- \\
-N_{i}^{\alpha}\left(x^{k}, 0, y^{v}\right) \cdot N_{j, \alpha}^{u}\left(x^{k}, 0, y^{v}\right) \quad(\text { Gauss }) \\
\Omega_{i j}^{\alpha}\left(x^{k}, 0, y^{v}\right)=
\end{gathered}
$$

and the analogous ones for E^{\prime}.
If C is a linear connection, then C^{\prime} and $C^{\prime \prime}$ are also linear connections, and the above equations of Gauss and Codazzi agree with those of [1].

References

[1] V. Cruceanu - Sur la théorie des sous-fibrés vectoriels, C.R. Acad. Sc. Paris, t.302, série I, no.20, 1986, pg. 705-708.
[2] R. Miron, M. Anastasiei - Vector bundles. Lagrange spaces. Applications to the theory of relativity, Ed. Acad., Bucureşti 1987.
[3] Marcela Popescu - On non-linear induced connections (to appear).
Author's address:
Marcela Popescu
Department of Mathematics, University of Craiova, 13, Al. I. Cuza street, Craiova, 1100, Romania,

