THE HIGHER-ORDER LAGRANGE SPACES:
THEORY OF SUBSPACES

Radu Miron

Abstract

The notion of Lagrange space of order k, k€ N*, was recently introduced
by author together with Gh. Atanasiu in some papers [5]. It was studied as a
natural extension of that of Lagrange space expounded in the books [2,3].

In the present lecture at the prof. Gr. Tsagas wokshop, from the ” Aristotel
University of Thessaloniki”, I should like to give a shost survey of this interesting
geometrical theory, as well as introduction in the study of subspace of these
spaces, important in applications.
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1 The Lagrange spaces L*)"

A Lagrange space of order k is a pair L(®)* = (M, L), where:
a. M is a C*-real, n-dimensional manifold;

b. L: Osc*M — R is a differentiable Lagrangian of order k;
c¢. The d-tensor field

1 0?L

N (1 By = -~ __
gw(x,y s YN) Qay(k)iay(k)j M

satisfies the following conditions

rank (g)=n (1.1)

and the quadratic form .
9i;€'¢’ (2)
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has constant signature on Osc*M.

Of course, the indices i,j,h,...run one the set {1,...,n} and (z? y(Mi ... y)?)
are the canonical coordinates of a generic point u = (z, yM y(’“)) from the total
space of the osculator bundleof order k, (OscF M, x, M).

Over the paracompact manifold M there exist the Lagrange spaces of order k.

Let us consider a smooth curve ¢ : [0,1] — M and the integral of action I(c) of
the Lagrangean L(x, y, y(k)) of a space L"), Then the varational problem for
the functional I(c) leads to the Euler-Lagrange equation

k
Bi(L) = g — & (guttr) + -+ (=1 gy dhw (5o ) = 0 3)
y(Di = de’ y®)i = 1 drat

dt 7 °

Of course, E;(L) is a d-covector field.
Let E* be the energy of order k of L(*®)™ []. Thus we have the formula

dEM(L) dz
pTa *Ei(L)E (4)

Therefore we can afirme:the energy of order k is conserved along of the soloution
curves of the Euler-Lagrange equation. This results belongs to some scientists as: M.
de Leon, D. Krupka et al.[1].

A theory of Neother symetries can be find in the paper [4].

The following two important theorems we given by Miron-Atanasiu [1,5]:

In a Lagrange space L™ = (M, L) there exists a k-spray S on Osc* M, depending
on the fundamental function L, only. It is given by

S = y<1>i% bt Ry
X

oL

W—(kﬂ)cﬁ

where G* are the coefficients:

.1, L oL
(k + 1)G = 59 ]{F(ay(k)l) - 8y(k_1)i}

And the second theorem:
In a Lagrange space L) = (M, L) the canonical nonlinear connection N, has
the dual coefficients

7 1 7 ) S
Mi= g{S M; + Mg M; },(a = 2..k) (6)

(a) (a=1) (1) (a=1)

i aG"
J k)i
w o
Consequently the canonical nonlinear connection N= N, determines the [J-vertical
0
distribution N,---, N such that the following direct sum of linear spaces holds:
1) (k—1)

T,(Osc*M) =N (W)® N (u)®---® N (W& V (u), Yu € Osc* M (7)
(0) (1) (k—1) (k)
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The local adapted basis to this direct decomposition is

4] o ]

and its dual is _ _ _
{5$l7 59(1)27 Ty 5y(k)1} (18)/
where ) _ ] ) S
51’2 = dlﬂ’ 6y(1)1 = dy(1)1+ M; dxj, BRI
(k)i (k)i ey P 1 9)
Syt = dy )l—&—MJ’- dy(F=1)J + oo M dad
€] (k)
It is remarkable that the autoparallel curves of the canonical connection N are
0

given by
(1) (k)i
5ydt :---:‘Sydt = 0, where
1)i _ da’ k)i _ 1 d*a’
Y )277927...&( )zfmdtﬂ;;

About the notion of N-linear connection we have an important result:
In the Lagrange space L(k)”:(M,L) there exists an unique canonical metrical N-
connection, whose coefficients are given by the generalised Christoffel symbols

1 3gis 0gs; 0gij
Lm_ing(L_F J 7)’

iy ((Sst 63%' oxs 5 10
m__ 1 _ms Jis 9sj _ _99ij — .
Cij =39 (6y(;>j + Sy@i  dyla) )a (a =1, ,k) ( )

(@)

Of course the canonical metrical N-linear connection with the coefficients CT'(N) =

(L;h, C}h, cee ;h), has the following properties:
1) (k)
a. It is metrical:
(k)
Gijin = 0,9ijln="--=gij|n=0
b. L%, = L}, Cy,=C};, (a=1,---,k)
(@)  (a)
c. Its covariant d-tensor of curvature Rijnm, Pijhm,Sijhm are skewsymmetric in
(a)  (ab)

the first two indices i and j.

Let w’ be the 1-forms connection of CT(N):

wi = Lida"+ ), sy 4 4 CLy sy P (11)
(1) (k)
We can prove:

Theorem 1 The structure equations of the canonical metrical N-connection CT'(N)
of the Lagrange space of order k, L'®)™ are given by
. . ©)
d(dz?) — dae™ ANwh, = — "
. , @) 12
d(y @) = Syl Awh, = — Q' (a=1,--- k) 12

i ,,m T — _(O)F
dwj; — wi Nwp, ;
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(0) (a) _
where QF, Q0 are the 2-forms of torsion andSd; is 2-form of curvature:

k k
R . ,
Ol =R di? Adxi+ Y P da? Ay ST g 1 syl@r agy®a (13
T2 bz_:l(b» y Z(ab)- / / (13
= J rq a,b=1 J rq

If we put
Qij = gip; (14)
we can see that ;; + Q;; = 0.
The Bianchi identities of CT'(N) can be obtained from (1.12) applying the operator
of exterior differentiation.

2 The Riemannian (k-1)n contact model of the space
k)n

Let N be the canonical nonlinear connection of the Lagrange space of order k ,L*)™ Tt
allows to determine the adapted cobasis (1.8)’ and to find the N-lift of the fundamental
gi;-This is

G = gijdr' @ da? + gij(;y(l)i ® sy .. 4 gij(;y(k)i ® dyk)J (1)

It follows, that the distributionsNy, Ny, - -+, Nx_1, Vi are ortogonal two by two.We
can prove:

Theorem 2 With respect to the canonical metrical N-connection we have
DxG =0 VX e x(Osc*M) (2)
Of course G is a pseudo-Riemannian structure on the manifold Osc* M.
Let us consider the almost (k-1)n-contact structure determined by N:
F : x(0Osc* M) — x(OscF M) defined by
0 0 1

F(@) = —W,F(W) =0, (a=1,....,k—1),
0 ) )
If we take a local basis & in N,..., & in N and the coresponding cobasis

(1) (1) (k—1) (k—1)
(1) (k—1) (a) )
Ny n° we obtain : F(&) =0,n" (§;) = 6505 (a,b=1,...k-1)
(a) (b)
n k—l(a)
FX)==-X+> >n (X) &, VX € X(Osc’“M)
i=la=1 (a)

F3+F=0

We have the following theorem:
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(1) (k-1
Theorem 3 1. The set {F,&,.... & ,n' ..., n* ,G) is a pseudo-
1 k-1

Riemannian almost (k-1)n contact structure on Osc® M, (with y™) # 0), determined
by the fundamental function L of the Lagrange space L(k)”:(M,L),
2. The canonical metrical N-connection D of the space L™ is compatible with
this structure, i.e.
DF =0, DG=0

3. The J-vertical distributions N,..., N are parallel with respect to D.
1 (k=1)

The manifold Osc* M (with y") # 0),endowed with the previous structure defin the
pseudo-Riemannian almost (k-1)n contact model of the space L*)™.

Consequently, the geometry of the Lagrange space of order k, L*)" can be studied
by means of the above mentioned model.

3 Subspace in a Lagrange space of order k

We will study the general principle of the geometry of subspace in a Lagrange space
of order Kk, L("“)”:(M,L)7 determining the main induced geometrical object fields, as
connections etc. This theory is a natural extension of that of subspaces in a usualy
Lagrange space when k=1.

Let M be a real m-dimensional manifold, (1<m<n) immmersed in the manifold
M, through the immersion i : M — M. Locally i can be given in the form

i
1 Ox

vt =2t (ut, .., u™), rank (8u0‘

)=m (1)

The indices «, 3,7, ... run over the set 1,...,m.

If i is an embedding, then we identifies M to Z(M ) and say that M is a submanifold
of the manifold M.

The embeding i : M — M determine an immersion

Osc¥i: Osc* M — OscP M

given by ‘
2t =zl (ul, .., u™), rank (22)=m

y (Vi = 22y (e

(2)

g (1)

]{Jy(k)l = 8T'U(1)a —+ ...+ 8y(’€*1)i (k)o‘

HuF—Da U

Now, let us consider a Lagrange space of order k, L(®)"» = (M, L) having gij in (1.1)
as fundamental tensor field. The restriction L of the Lagrangian L to the manifold
OscF M is as follows

L(u,vl7 ...,v(k)) = L(ac(u),y(l)(u,v(l)), ey y(k) (u,v(l), ..,U(k)) (3)
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Theorem 4 The pair L")™ = (M, L) is a Lagrange spaces of order k.

The fundamental tensor field of this spsace is

. 1 9L
9as = 3 GyagyB @
The d-vector fields )
B! = %(a =1,..,m) (5)
«= goal@=1.,

are independent. Therfore we can determine a frame

R = {w; B!, BL}w € Osc* M

(a,B3,9,... =1,....m;@, 3,7,... = 1,...,n — m), where B® —  are given by

gijBéB{; =0, gz'jB%B% = 555 (6)

We denote by R* = {w; B, B®} the dual of the frame R. So we have
Gop B = gijB), 0asB! = gi;BL, (7)

Consequently g.s and g;; can be represented in R in the form:
Gop = BLBYgij, 9ij = §opB{ B} +6.5B7B] (3.7)

Definition 3.1 A nonlinear connection N in L™ is called induced by the canon-
ical nonlinear connection if we have:

svMe = BegyWi | guke = Bogy (k)i (8)

These conditions uniquely determine an induced nonlinear connection on Osc* M.
The adapted cobasis {dz?, Sy 5y(k)l} is uniquely represented in the frame R
in the form:

dx® = B du®
syt = BLovW* + BL K du®
(1) (9)
SyR)i = Bgav%)a + B%{Kg Suk=1B8 L. 4 Kg duP}
1 (k)
Now we shal construct the components of an operator V of relative covariant
differentiation in the algebra of mixed d-tensor fields on Osc¥ M.

We call a cupling the canonical metrical N-connection CT(NV) of L™ to the
induced nonlinear connection N, an operator D with the property

DX = DX modulo(3.9) (10)
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consequently, we get o _ o
DX'=dX"+ XJL:}; (3.10)

where
(k)

@y = Li,du+ > Ch, 6vl™* (3.10)"
(a=1) (a)
After this, we define the induced tangent connection on Osc® M by the N-connection
CT(N), is determined by the operator DT, given as follows:
DTX® = B*DX', for X' = Bl X* (11)
Then, we have
DTX* =dX* + X uw§ (3.11)

where
(k)

w§ = L, du"+ Y Cg, 507 (3.11)"
a=1 (a)
Finally, the induced normal connection by CT'(N) is given by the operator D+
defined by 7 o . o
DYX% =B*DX' forX'= BLX® (12)
One deduces: B B _
DX% =dXx® + Xﬁw% (3.12)
where
E
& — LY Y @ s(a)y "
WS = L8 du'+ Z:lc(ﬁ; su(®7 (3.12)
All coefficients, from &;, wg and w% are well determined.

So, a relative covariant differetiation V in the algebra of mixed d-tensor fields is
defined by its components D, DT and D+, as follows:

Vf=df,VX'=DX' VX*=D'X* VX®*=D'X% (13)
For instance, B!, is a mixed d-tensor. We get
VB, = dB., + Bi&: — Bjw} (14)
and for mixed d-tensor BL
VBL = dB% + BL&, — Biwl (3.14)
Therfore we can determine the Gauss-Weingarten formulae. They are given by

VB, = Birl, VBi=-Bjrl (15)

where Tl'g = gﬁvéaﬁﬂg, and WE is well expressed by means of 0%, w§ and wg.
The conditions of integrability of the equations (3.15) leads to the Gauss-Codazzi
equations of V
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Theorem 5 The  Gauss-Codazzi  equations  of  the  Lagrange  subspaces
LM™ in the Lagrange space of order k, L™™ are as follows:

B, BjSij — Qup = gy A1IT

i BIQO.. — QO — =TI = 2l
B%BEQZZ QEB = Hzﬁ A H? - (16)
— B, B = 05 (dIT}, + T A wg — TIZ A w))

where Ha? = gMH% and d is the operator of exterior differential.

Remark It is important the particular case m=n-1 of the hiper subspaces Lkn—1
in the Lagrange space of order k, L*)7,
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