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Abstract

The notion of Lagrange space of order k, k∈ N∗, was recently introduced
by author together with Gh. Atanasiu in some papers [5]. It was studied as a
natural extension of that of Lagrange space expounded in the books [2,3].

In the present lecture at the prof. Gr. Tsagas wokshop, from the ”Aristotel
University of Thessaloniki”, I should like to give a shost survey of this interesting
geometrical theory, as well as introduction in the study of subspace of these
spaces, important in applications.
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1 The Lagrange spaces L(k)n

A Lagrange space of order k is a pair L(k)n = (M,L), where:
a. M is a C∞-real, n-dimensional manifold;
b. L : OsckM −→ R is a differentiable Lagrangian of order k;
c. The d-tensor field

gij(x, y(1), ..., y(k)) =
1
2

∂2L

∂y(k)i∂y(k)j
(1)

satisfies the following conditions

rank (gij) = n (1.1)′

and the quadratic form
gijξ

iξj (2)
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has constant signature on OsckM .
Of course, the indices i,j,h,...run one the set {1, . . . , n} and (xi, y(1)i, . . . , y(k)i)

are the canonical coordinates of a generic point u = (x, y(1) ,. . . , y(k)) from the total
space of the osculator bundleof order k, (OsckM,π,M).

Over the paracompact manifold M there exist the Lagrange spaces of order k.
Let us consider a smooth curve c : [0, 1] −→ M and the integral of action I(c) of

the Lagrangean L(x, y(1), ..., y(k)) of a space L(k)n. Then the varational problem for
the functional I(c) leads to the Euler-Lagrange equation{

Ei(L) := ∂L
∂xi − d

dt (
∂L

∂y(1)i ) + ... + (−1)k 1
k!

dk

dtk ( ∂L
∂y(k)i ) = 0

y(1)i = dxi

dt , ..., y(k)i = 1
k!

dkxi

dtk

(3)

Of course, Ei(L) is a d-covector field.
Let Ek

c be the energy of order k of L(k)n,[]. Thus we have the formula

dEk
c (L)
dt

= −Ei(L)
dxi

dt
(4)

Therefore we can afirme:the energy of order k is conserved along of the soloution
curves of the Euler-Lagrange equation. This results belongs to some scientists as: M.
de Leon, D. Krupka et al.[1].

A theory of Neother symetries can be find in the paper [4].
The following two important theorems we given by Miron-Atanasiu [1,5]:
In a Lagrange space L(k)n = (M,L) there exists a k-spray S on OsckM , depending

on the fundamental function L, only. It is given by

S = y(1)i ∂L

∂xi
+ · · · + ky(k)i ∂L

∂y(k−1)i
− (k + 1)Gi ∂L

∂y(k)i
(5)

where Gi are the coefficients:

(k + 1)Gi =
1
2
gij{Γ(

∂L

∂y(k)i
) − ∂L

∂y(k−1)i
}

And the second theorem:
In a Lagrange space L(k)n = (M,L) the canonical nonlinear connection N , has

the dual coefficients

M i
j

(1)

=
∂Gi

∂y(k)i
,M i

j
(a)

=
1
a
{S M i

j
(a−1)

+ M i
s

(1)

Ms
j

(a−1)

}, (a = 2...k) (6)

Consequently the canonical nonlinear connection N
0

= N , determines the J -vertical

distribution N
(1)

, · · · , N
(k−1)

such that the following direct sum of linear spaces holds:

Tu(OsckM) =N
(0)

(u)⊕ N
(1)

(u) ⊕ · · ·⊕ N
(k−1)

(u)⊕ V
(k)

(u), ∀u ∈ OsckM (7)
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The local adapted basis to this direct decomposition is

{ δ

δxi
,

δ

δy(1)i
, · · · , δ

δy(k)i
} (8)

and its dual is
{δxi, δy(1)i, · · · , δy(k)i} (1.8)′

where 
δxi = dxi, δy(1)i = dy(1)i+ M i

j
(1)

dxj , · · · ,

δy(k)i = dy(k)i+ M i
j

(1)

dy(k−1)j + · · ·+ M i
j

(k)

dxj (9)

It is remarkable that the autoparallel curves of the canonical connection N
0

are

given by
δy(1)i

dt = · · · = δy(k)i

dt = 0, where
y(1)i = dxi

dt , · · · , y(k)i = 1
k!

dkxi

dtk

About the notion of N-linear connection we have an important result:
In the Lagrange space L(k)n=(M,L) there exists an unique canonical metrical N-

connection, whose coefficients are given by the generalised Christoffel symbols Lm
ij = 1

2gms( δgis

δxj + δgsj

δxi − δgij

δxs ),
Cm

ij
(a)

= 1
2gms( δgis

δy(a)j
+ δgsj

δy(a)i
− δgij

δy(a)s ), (a = 1, · · · , k) (10)

Of course the canonical metrical N-linear connection with the coefficients CΓ(N) =
(Li

jh, Ci
jh

(1)

, · · · , Ci
jh

(k)

), has the following properties:

a. It is metrical:

gij|h = 0, gij

(1)

| h = · · · = gij

(k)

| h = 0
b. Li

jh = Li
hj , C

i
jh

(a)

=Ci
hj

(a)

, (a = 1, · · · , k)

c. Its covariant d-tensor of curvature Rijhm, Pijhm
(a)

, Sijhm
(ab)

are skewsymmetric in

the first two indices i and j.
Let ωi

j be the 1-forms connection of CΓ(N):

ωi
j = Li

jhdxh+ Ci
jh

(1)

δy(1)h + · · ·+ Ci
jh

(k)

δy(k)h (11)

We can prove:

Theorem 1 The structure equations of the canonical metrical N-connection CΓ(N)
of the Lagrange space of order k, L(k)n, are given by

d(dxi) − dxm ∧ ωi
m = −

(0)

Ωi

d(δy(a)i) − δy(a)m ∧ ωi
m = −

(a)

Ωi (a = 1, · · · , k)
dωi

j − ωm
j ∧ ωi

m = −Ωi
j

(12)
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where
(0)

Ωi,
(a)

Ωi are the 2-forms of torsion andΩi
j is 2-form of curvature:

Ωi
j =

1
2
R i

j pqdxp ∧ dxq+
k∑

b=1

P
(b)

i

j pq

dxp ∧ δy(b)a+
k∑

a,b=1

S
(ab)

i

j pq

δy(a)p ∧ δy(b)q. (13)

If we put
Ωij = gipΩ

p
j (14)

we can see that Ωij + Ωji = 0.
The Bianchi identities of CΓ(N) can be obtained from (1.12) applying the operator

of exterior differentiation.

2 The Riemannian (k-1)n contact model of the space
L(k)n

Let N be the canonical nonlinear connection of the Lagrange space of order k ,L(k)n.It
allows to determine the adapted cobasis (1.8)’ and to find the N-lift of the fundamental
gij .This is

G = gijdxi ⊗ dxj + gijδy
(1)i ⊗ δy(1)j + · · · + gijδy

(k)i ⊗ δy(k)j (1)

It follows, that the distributionsN0, N1, · · · , Nk−1, Vk are ortogonal two by two.We
can prove:

Theorem 2 With respect to the canonical metrical N-connection we have

DXG = 0 ∀X ∈ χ(OsckM) (2)

Of course G is a pseudo-Riemannian structure on the manifold OsckM .

Let us consider the almost (k-1)n-contact structure determined by N:
F : χ(OsckM) −→ χ(OsckM) defined by

F (
δ

δxi
) = − ∂

∂y(k)i
, F (

δ

δy(a)i
) = 0, (a = 1, ..., k − 1),

F (
∂

∂y(k)i
) =

δ

δxi
, (i = 1, ..., n). (3)

If we take a local basis ξi
(1)

in N
(1)

, ..., ξi
(k−1)

in N
(k−1)

and the coresponding cobasis

(1)

ηi , ...,
(k−1)

ηi , we obtain : F ( ξi
(a)

) = 0,
(a)

ηi (ξj
(b)

) = δa
b δi

j (a,b=1,...,k-1)

F (X) = −X+
n∑

i=1

k−1∑
a=1

(a)

ηi (X) ξi
(a)

, ∀X ∈ χ(OsckM)

F 3 + F = 0
(4)

We have the following theorem:
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Theorem 3 1. The set {F, ξi
(1)

, ..., ξi
(k−1)

,
(1)

ηi , ...,
(k−1)

ηi , G) is a pseudo-

Riemannian almost (k-1)n contact structure on OsckM , (with y(1) 6= 0), determined
by the fundamental function L of the Lagrange space L(k)n=(M,L).

2. The canonical metrical N-connection D of the space L(k)n is compatible with
this structure, i.e.

DF = 0, DG = 0

3. The J -vertical distributions N
(1)

, ..., N
(k−1)

are parallel with respect to D.

The manifold OsckM (with y(1) 6= 0),endowed with the previous structure defin the
pseudo-Riemannian almost (k-1)n contact model of the space L(k)n.

Consequently, the geometry of the Lagrange space of order k, L(k)n can be studied
by means of the above mentioned model.

3 Subspace in a Lagrange space of order k

We will study the general principle of the geometry of subspace in a Lagrange space
of order k, L(k)n=(M,L), determining the main induced geometrical object fields, as
connections etc. This theory is a natural extension of that of subspaces in a usualy
Lagrange space when k=1.

Let M̃ be a real m-dimensional manifold, (1<m<n) immmersed in the manifold
M, through the immersion i : M̃ −→ M . Locally i can be given in the form

xi = xi(u1, ..., um), rank (
∂xi

∂uα
) = m (1)

The indices α, β, γ, ... run over the set 1,...,m.
If i is an embedding, then we identifies M̃ to i(M̃) and say that M̃ is a submanifold

of the manifold M.
The embeding i : M̃ −→ M determine an immersion

Oscki : OsckM̃ −→ OsckM

given by 
xi = xi(u1, ..., um), rank ( ∂xi

∂uα ) = m

y(1)i = ∂xi

∂uα v(1)α

· · ·
ky(k)i = ∂y(k−1)i

∂uα v(1)α + ... + ∂y(k−1)i

∂u(k−1)α v(k)α

(2)

Now, let us consider a Lagrange space of order k, L(k)n = (M,L) having gij in (1.1)
as fundamental tensor field. The restriction L̃ of the Lagrangian L to the manifold
OsckM̃ is as follows

L̃(u, v1, ..., v(k)) = L(x(u), y(1)(u, v(1)), ..., y(k)(u, v(1), .., v(k)) (3)
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Theorem 4 The pair L̃(k)m = (M̃, L̃) is a Lagrange spaces of order k.

The fundamental tensor field of this spsace is

g̃αβ =
1
2

∂2L̃

∂v(k)α∂v(k)β
(4)

The d-vector fields

Bi
α =

∂xi

∂uα
(α = 1, ...,m) (5)

are independent. Therfore we can determine a frame

R = {w; Bi
α, Bi

α}w ∈ OsckM̃

(α, β, γ, ... = 1, ...,m;α, β, γ, ... = 1, ..., n − m), where Bi − α are given by

gijB
i
αBj

α = 0, gijB
i
αBi

β
= δαβ (6)

We denote by R∗ = {w; Bα
i , Bα

i } the dual of the frame R. So we have

g̃αβBα
i = gijB

j
β , δαβBβ

i = gijB
i
α (7)

Consequently g̃αβ and gij can be represented in R in the form:

g̃αβ = Bi
αBj

βgij , gij = g̃αβBα
i Bβ

j + δαβBα
i Bβ

j (3.7)′

Definition 3.1 A nonlinear connection Ñ in L̃(k)m is called induced by the canon-
ical nonlinear connection if we have:

δv(1)α = Bα
i δy(1)i, ..., δv(k)α = Bα

i δy(k)i (8)

These conditions uniquely determine an induced nonlinear connection on OsckM̃ .
The adapted cobasis {dxi, δy(1)i, ..., δy(k)i} is uniquely represented in the frame R

in the form: 

dxi = Bi
αduα

δy(1)i = Bi
αδv(1)α + Bi

α Kα
β

(1)

duβ

· · ·
δy(k)i = Bi

αδv(k)α + Bi
α{Kα

β
(1)

δv(k−1)β + · · ·+ Kα
β

(k)

duβ}

(9)

Now we shal construct the components of an operator ∇ of relative covariant
differentiation in the algebra of mixed d-tensor fields on OsckM̃ .

We call a cupling the canonical metrical N-connection CΓ(N) of L(k)n to the
induced nonlinear connection Ñ , an operator D̃ with the property

D̃Xi = DXi modulo(3.9) (10)
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consequently, we get
D̃Xi = dXi + Xjω̃i

j (3.10)′

where

ω̃i
j = L̃i

jαduα+
(k)∑

(α=1)

C̃i
jα

(a)

δv(a)α (3.10)′′

After this, we define the induced tangent connection on OsckM̃ by the N-connection
CΓ(N), is determined by the operator DT , given as follows:

DT Xα = Bα
i D̃Xi, for Xi = Bi

αXα (11)

Then, we have
DT Xα = dXα + Xβωα

β (3.11)′

where

ωα
β = Lα

βγduγ+
(k)∑
a=1

Cα
βγ

(a)

δv(a)γ (3.11)′′

Finally, the induced normal connection by CΓ(N) is given by the operator D⊥

defined by
D⊥Xα = Bα

i D̃Xi, forXi = Bi
αXα (12)

One deduces:
D⊥Xα = dXα + Xβωα

β
(3.12)′

where

ωα
β

= Lα
βγ

duγ+
k∑

a=1

Cα
βγ

(a)

δv(a)γ (3.12)′′

All coefficients, from ω̃i
j , ω

α
β and ωα

β
are well determined.

So, a relative covariant differetiation ∇ in the algebra of mixed d-tensor fields is
defined by its components D̃,DT and D⊥, as follows:

∇f = df,∇Xi = D̃Xi,∇Xα = D>Xα,∇Xα = D>Xα (13)

For instance, Bi
α is a mixed d-tensor. We get

∇Bi
α = dBi

α + Bj
αω̃i

j − Bi
βωβ

α (14)

and for mixed d-tensor Bi
α

∇Bi
α = dBi

α + Bj
αω̃i

j − Bi
β
ωβ

α (3.14)′

Therfore we can determine the Gauss-Weingarten formulae. They are given by

∇Bi
α = Bi

β
πβ

α, ∇Bi
α = −Bi

βπβ
α (15)

where πβ
α = gβγδαβπβ

γ , and πβ
α is well expressed by means of ω̃i

j , ω
α
β and ωα

β
.

The conditions of integrability of the equations (3.15) leads to the Gauss-Codazzi
equations of ∇
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Theorem 5 The Gauss-Codazzi equations of the Lagrange subspaces
L̃(k)m in the Lagrange space of order k, L(k)n are as follows:

Bi
αBj

βΩ̃ij − Ωαβ = Πβγ ∧ Πγ
α

Bi
αBj

β
Ω̃ij − Ωαβ = Πγβ ∧ Πγ

α

−Bi
αBj

β
Ω̃ij = δβγ(dΠγ

α + Πγ
ϕ ∧ ωϕ

α − Πϕ
α ∧ ωγ

ϕ)
(16)

where Παβ = gαγΠγ

β
and d is the operator of exterior differential.

Remark It is important the particular case m=n-1 of the hiper subspaces L̃(k)n−1

in the Lagrange space of order k, L(k)n.
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