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Abstract

The paper introduces the notions of gauge transformations and gauge deriva-
tives, and gives the detailed form of the generalized Einstein Yang-Mills equa-
tions for the osculator bundle Osc(2)(M) of a differentiable manifold M ([7],[8]).
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1 Generalized gauge transformations of second or-
der

For a certain state of a mechanical system, many physical theories are concerned with
determining the evolution of the given state. This evolution is usually gouverned by
Euler-Lagrange equations and has to be invariant with respect to coordinate changes.
In gauge theories, is also required the invariance under the so-called gauge transfor-
mations. In classical gauge theory the physical system is represented by sections in
an associate bundle, and has to be invariant with respect to these gauge changes.

Let M be a differentiable manifold, dimM = n, (U, φ) a local map at x ∈ U
and x = (xi) the local coordinates. If (U ′, φ′) is another local map at x, then the
expression of φ′φ−1 :n→n is

x′i = x′i(x) (1)

Let E2=Osc(2)M be the osculator bundle of order 2 ([7],[8]), which admits a
(locally trivial) fiber bundle structure, locally isomorphical with the 2-jet bundle of
M. The total space is characterized in a local map ((π2−1

)(U), h2) at E2,z by the
coordinates z = (xi, yi, yi

∗), π2(z) = x, with the change-rules
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
x′i = x′i(x),
y′i = ∂x′i

∂xj yj

2y′i
∗ = ∂y′i

∗
∂xj yj + 2∂y′i

∂yj yj
∗

(2)

In this case, π2 : E2 → M is considered here as bundle of base M , but one can
consider also the structure π2

1 : E2 → E1, where E1 is the tangent bundle TM ,
π1 : E1 → M with π2 = π2

1 ◦ π1.
In classical gauge theories, the gauge transformations are automorphisms of the

associated bundle of a principal bundle of Lie group G, which induce the identity on
the base manifold. The osculating bundle Osc(2)(M) (denoted hereafter E2) is an as-
sociated bundle of the principal bundle of frames of second order P2 ([8]). G.S.Asanov
([1]) considers a set of generalized gauge transformations; this concept will be devel-
oped in the present approach for E2.

Definition 1.1. A gauge transformation on E2 is a sequence (f0, f1, f2) of diffeo-
morphisms, f0 : M → M,f1 : E1 → E1 and f2 : E2 → E2, such that{

π1 ◦ f0 = f1 ◦ π1

π2
1 ◦ f1 = f2 ◦ π2

1
(3)

In a local map at x ∈ M, (π1−1
(U), h1) of coordinates (xi, yi) on E1, since π1◦f0 =

f1 ◦ π1, the application h1 ◦ f1 ◦ h−1
1 : Rn × Rn → Rn × Rn has the expression

z1 = (xi, yi) → (Xi(x), Y i(x, yi)) = z̃1.

Then, relative to the map (π2−1

1 (U), h2
1), the application h2

1 ◦ f2 ◦ h2−1

1 will have
the expression z2 = (xi, yi

∗) → (z̃i
1, Y

i
∗ (x, y, y∗)) = z̃2.

Thus, a gauge transformation will have the local shape x̃i = Xi(x),
ỹi = Y i(x, y),
ỹi
∗ = Y i

∗ (x, y, y∗),
(4)

For being a triplet of diffeomorphisms, (4) must have nonvanishing Jacobian, i.e.,

det(z̃) = det(
∂Xi

∂xj
) · det(

∂Y i

∂yj
) · det(

∂Y i
∗

∂yj
∗

) 6= 0. (5)

Since the triple (f0, f1, f2) is globally defined, it satisfies the compatibility condi-
tions with the coordinate changes on E2

x̃′i(Xj)(x) = X ′i(x′j(x))
ỹ′i(x, y′) = Y ′i(x′, y′)
ỹ′i

∗(x, y′, y′
∗) = Y ′

∗(x′, y′, y′
∗)

(6)

Typical examples of gauge transformations are, e.g.,
1) x̃i = xi, ỹi = Y i(x, y), ỹi

∗ = Y i
∗ (x, y, y∗),
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2) x̃i = Xi(x), ỹi = Y i
j (x)yj , ỹi

∗ = Y i
∗j(x)yj

∗,

3) x̃i = Xi(x), ỹi = Ai
j1

(x)yj1 , ỹi
∗ = Ai

j1j2
(x)yj1yj2 + Ai

j1
(x)yj1

∗ ,

where Ai
j1j2

are symmetrical, and all obey the conditions (5).
Considering the composition of diffeomorphisms, we infer

Proposition 1.1. The set of gauge transformations on E2 = Osc(2)(M) repre-
sents a subgroup in DiffM × DiffE1 × DiffE2.

Let consider the tangent spaces in z to E2, Tz(E2), having the rules of change for
the local bases ([7])

∂
∂xi = ∂y′m

∗
∂xi

∂
∂y′m

∗
+ ∂y′m

∂xi
∂

∂y′m + ∂x′m

∂xi
∂

∂x′m

∂
∂yi = ∂y′m

∗
∂yi

∂
∂y′m

∗
+ ∂y′m

∂yi
∂

∂y′m

∂
∂yi

∗
= ∂y′m

∗
∂yi

∗

∂
∂y′m

∗

(7)

and the local changes imposed by (4)
∂

∂xi = ∂Y m
∗

∂xi
∂

∂ỹm
∗

+ ∂Y m

∂xi
∂

∂ỹm + Xm
i

∂
∂x̃m

∂
∂yi = ∂Y m

∗
∂yi

∂
∂ỹm

∗
+ Y m

i
∂

∂ỹm

∂
∂yi

∗
= Y m

∗i
∂

∂ỹm
∗

(8)

where

Xm
i =

∂Xm

∂xi
, Y m

i =
∂Y m

∂yi
, Y m

∗i =
∂Y m

∗
∂yi

∗

A special class of geometric objects which occur on E2 is the one of d-tensors,
which can be formally defined like systems of functions W i1...ir

j1...js
on E2, obeying the

rules of change ([6])

W i1...ir
j1...js

(x′, y′, y′
∗) =

∂x′i1

∂xh1
. . .

∂x′ir

∂xhr
· ∂xl1

∂x′j1
. . .

∂xls

∂x′js
· Wh1...hr

l1...ls
(x, y, y∗). (9)

The set of d-tensors determines a sub-algebra of the tensor algebra on E2. We
denote Y

(1)i
j = Y i

j , Y
(2)i
j = Y i

∗j and by X
i

j , Y
(α)i

j the elements of the matrices inverse

to Xi
j and Y

(α)i
j , α = 1, 2 respectively.

Definition 1.2. A h-d-gauge tensor is a d-tensor W i1...ir
j1...js

on E2 which satisfies
also

W i1...ir
j1...js

(x̃, ỹ, ỹ∗) = Xi1
h1

. . . Xir

hr
· X l1

j1 . . . X
ls
js
· Wh1...hr

l1...ls
(x, y, y∗). (10)

We call vα-d-gauge tensor, α = 1, 2, a d-tensor W i1...ir
j1...js

on E2 which satisfies the
additional property
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W i1...ir
j1...js

(x̃, ỹ, ỹ∗) = Y
(α)i1
h1

. . . Y
(α)ir

hr
· Y (α)l1

j1 . . . Y
(α)ls
js

· Wh1...hr

l1...ls
(x, y, y∗). (11)

For example, ∂
∂yi

∗
is a vα-d-gauge tensor. Combining these definitions, we can consider

h-vα-d-gauge tensors or v1-v2-d-gauge tensors. The set of all types of such tensors
will be called the set of d-gauge tensors.

2 Gauge covariant derivatives

A non-linear connection N on E2 = Osc(2)(M) is determined by giving a splitting
in an exact sequence of bundles or, equivalently, by providing a sub-bundle N(E2)
which is supplementary to the vertical bundle V (E2) = Ker(π2)T , where (π2)T :
T (E2) → T (M) is the tangent mapping ([7]). If N is a non-linear connection, then
T (E2) = N(E2) ⊕ V (E2). The expression of the horizontal lift δ

δxi = lh
(

∂
∂xi

)
of ∂

∂xi

is

δ

δxi
=

∂

∂xi
− N j

i

∂

∂yj
− N j

∗i

∂

∂yj
∗

(12)

and we have δ
δxi = ∂x′m

∂xi
δ

δx′m ; N j
i and N j

∗i are called the coefficients of the non-linear
connection N .

Let denote by J the natural almost tangent structure on E2, J3 = 0. In z ∈ E2

we obtain the following distributions corresponding to the non-linear connection N :
N(E2) = N0, N1 = J(N0), N2 = J2(N0) having respectively the following local bases

δ

δxi
,

δ

δyi
= J

(
δ

δxi

)
=

∂

∂yi
− N j

i

∂

∂yj
∗

(13)

and δ

δyj
∗

= J
(

δ
δyi

)
= ∂

∂yi
∗

.

These are d-vector fields and
{

δ
δxi ,

δ
δyi ,

δ
δyi

∗

}
is called adapted basis in Tz(E2).

The coefficients of the non-linear connection N(E2) change obeying the rules{
N ′i

m
∂x′m

∂xj = ∂x′i

∂xm Nm
j − ∂y′i

∂xj

N ′i
∗m

∂x′m

∂xj = ∂x′i

∂xm Nm
∗j + ∂y′i

∂xm Nm
j − ∂y′i

∗
∂xj

(14)

The associated dual adapted basis is {dxi, δyi, δyi
∗}, where

δyi = dyi + N i
jx

j ; δyi
∗ = dyi

∗ + N i
jdyj + (N i

∗j + N i
m · Nm

j )dxj .

The adapted fields
{

δ
δxi ,

δ
δyi ,

δ
δyi

∗

}
are d-tensors but not gauge fields, generally.

The adapted basis consists of d-gauge tensors iff
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
Ñ i

mXm
j = Y i

mNm
j − ∂Y i

∂xj

Ñ i
mY m

j = Y i
∗mNm

j − ∂Y i
∗

∂xj

Ñ i
∗mY m

j = Y i
∗mNm

∗j + ∂Y i
∗

∂ym Nm
j − ∂Y i

∗
∂xj

(15)

Let denote by V1 = Vz(E2) and V2 = Ker(π2
1,z)

T , the so-called vertical distri-

butions locally spanned by
{

∂
∂yi ,

∂
∂yi

∗

}
and respectively

{
∂

∂yi
∗

}
; let v1, v2 be the two

corresponding projectors. For a non-linear connection N , we denote by h the projector
onto Nz(E2) = N0. We obtain the following derivation operators ([7])

D
(α)h
X Y = DXhY vα and D

(α)vβ

X Y = DXvβ Y vα , β = 1, 2, α = 0, 2
with v0 = h, defined locally by D δ

δxj

δ
δy(α)i = L

(α)m
ij

δ
δy(α)m

D δ

δy(β)j

δ
δy(α)i = C

(α)m
(β)ij

δ
δy(α)m , α = 0, 2, β = 1, 2,

(16)

where y(0)i = xi, y(1)i = yi and y(2)i = yi
∗; their coefficients change by the following

rules {
L

(α)′i
pq

∂x′p

∂xh
∂x′q

∂xm = L
(α)p
hm

∂x′i

∂xp − ∂2x′i

∂xh∂xm

C
(α)′i
(β)pq

∂x′p

∂xh
∂x′q

∂xm = ∂x′i

∂xj C
(α)i
(β)hm.

(17)

We remark that, in particular, the coefficients L(α) can be equal and that C
(α)
(β)

are d-tensors which can coincide for α = 0, 2. In this case, D will be called M -linear
connection.

Also, D(α)h and D(α)vβ determine the following covariant derivation operators on
d-tensors

W
(α)i1...ir

j1...js|m =
δW

i1...ir
j1...js

δxm + L
(α)i1
hm Whi2...ir

j1...js
+ . . . + L

(α)i1
hm W

i1...ir−1h
j1...js

−
−L

(α)h
j1m W i1...ir

hj2...js
− . . . − L

(α)h
j1m W i1...ir

j1...js−1h

W
(α)i1...ir

j1...js
|(β)
m =

δW
i1...ir
j1...js

δy(β)m + C
(α)i1
(β)hmWhi2...ir

j1...js
+ . . . + C

(α)i1
(β)hmW

i1...ir−1h
j1...js

−
−C

(α)h
(β)j1mW i1...ir

hj2...js
− . . . − C

(α)h
(β)j1mW i1...ir

j1...js−1h

The h-vβ gauge tensorial character is preserved if aditionally we have L̃
(α)r
pq = Y

(α)i

p · Xj

q · Y
(α)r
m · L(α)m

ij − X
j

q · Y
(α)i

p · δY
(α)r

i

δxj

C̃
(α)r
(β)pq = Y

(α)i

p · Y (β)j

q · Y (α)r
m · C(α)m

(β)ij − Y
(β)j

q · Y (α)i

p · δY
(α)r

i

δy(β)j ,
(18)

where α = 0, 2, β = 1, 2, Y
(0)i
j = Xi

j , Y
(1)i
j = Y i

j , Y
(2)i
j = Y i

∗j and the overlined
coefficients belong to the corresponding inverse matrices. We remark that for β >

α,C
(α)r
(β)pq become d-gauge tensors.
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Definition 2.1. A d-linear connection is said to be d-linear gauge connection iff
its coefficients satisfy (17) and (18). If its coefficients do not depend on α ∈ 0, 2, then
it is called M -gauge connection.

In the following we shall also denote by d
(α)h
m W

(α)i1...ir

j1...js
and d

(α)vβ
m W

(α)i1...ir

j1...js
the

h- and vβ-gauge derivatives of a d-gauge tensor, respectively.

3 Metric d-gauge connections of second order

Let be g
(α)
ij (x, y, y∗), α = 0, 2 a system of d-tensors, symmetric and positively defined,

with rank (g(α)
ij ) = n, where g

(0)
ij is h-d-gauge tensor and g

(β)
ij are vβ-d-gauge tensors,

β = 1, 2; these d-tensors will be called h- and vβ-gauge metrics respectively.
Let N be a d-gauge linear connection. Then

G = g
(0)
ij dxi ⊗ dxj + g

(1)
ij δy(1)i ⊗ δy(1)j + +g

(2)
ij δy(2)i ⊗ δy(2)j

is globally defined on E2 and is said to define a gauge metric structure on E2.

Definition 3.1. A d-gauge linear connection D on E2 is a h- (resp. vβ-) metric
connection iff

g
(α) (α)
ij|m = 0 and d(α)h

m g
(α)
ij = 0 (19)

(resp. g
(α)(α) (β)
ij|m = 0 and d

(α)vα
m g

(α)
ij = 0),∀α = 0, 2.

If D is both h- and vβ-metric then we say that D is a d-gauge metric connection.

Theorem 3.1. The following d-linear connection ([7]) L
(α)m
ij = 1

2g(α)ms{ δg
(α)
sj

δxi + δg
(α)
is

δxj − δg
(α)
ij

δxs }

C
(α)m
(β)ij = 1

2g(α)ms{ δg
(α)
sj

δy(β)i + δg
(α)
is

δy(β)j − δg
(α)
ij

δy(β)s }, α = 0, k, β = 1, 2
(20)

is a symmetric d-linear gauge connection.

4 Einstein-Yang Mills equations of second order

Let L0(x, y, y∗) be a Lagrangian defined on a compact set Ω ⊂3n, a non-linear gauge
connection N = {N i

j , N
i
∗j}, and a metric gauge structure G on E2 defined by the

metric d-gauge fields g
(α)
ij (x, y, y∗), α = 0, 2 .

Let Φ be a gauge field, that in applications belongs usually to the bundle of linear
connections. In the present context, L0 depends on z = (x, y, y∗) through Φ and its
derivatives δΦ

δxi ,
δΦ
δyi ,

δΦ
δyi

∗
, i.e.
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L0(x, y, y∗) = L0(Φ,
δΦ
δxi

,
δΦ
δyi

,
δΦ
δyi

∗
). (21)

For Φ varying in Ω, the action
∫
Ω

L0(x, y(1), y(2))dω , where dω = dx1∧ . . .∧dy(2)n

depends on the local coordinates. In order to remove this inconvenience, we consider
the Lagrangian density:

L(x, y, y∗) = L0(x, y, y∗) ·
√

g(0)g(1)g(2), (22)

where g(α) = det(g(α)
ij ), α = 0, 2. Also, we remark that

L(x, y, y∗) = L(x, y′, y′
∗) · J , where J = det(∂x′i

∂xj ). (23)

So that, the action I(Φ) =
∫
Ω
L(x, y, y∗)dω is independent of the coordinates on

E2 = Osc(2)(M). Applying the variational principle, the extremization of action I(Φ)
leads to the following Euler-Lagrange attached to Φ

∂L
∂Φ

− ∂

∂xi

∂L
∂( ∂Φ

∂xi )
− ∂

∂yi

∂L
∂( ∂Φ

∂yi )
− . . . − ∂

∂yi
∗

∂L
∂( ∂Φ

∂yi
∗
)

= 0. (24)

Taking into consideration the gauge transformations, it is more convenient to
express (24) in the adapted basis ( δ

δxi ,
δ

δyi ,
δ

δyi
∗
). The resulting relations look more

complicated, but they evidentiate easier that (24) is invariant with respect to the
change of coordinates (2) on E2.

In (21), L depends on ∂Φ
∂xi ,

∂Φ
∂yi ,

∂Φ
∂yi

∗
, by means of

δΦ
δxi = ∂Φ

∂xi − N j
i

∂Φ
∂yj − N j

∗i
∂Φ

∂yj
∗
, δΦ

δyi = ∂Φ
∂yi − N j

i
∂Φ

∂yj
∗

and δΦ

δyj
∗

= ∂Φ
∂yi

∗
.

One can easily check that



∂L

∂( ∂Φ
∂xi )

= ∂L

∂( δΦ
δxi )

∂L

∂
(

∂Φ
∂yi

) = ∂L

∂( δΦ
δxj )

(
−N i

j

)
+ ∂L

∂
(

δΦ
δyi

) |C1 ,

∂L

∂

(
∂Φ
∂yi

∗

) = ∂L

∂( δΦ
δxj )

(
−N i

∗j

)
+ ∂L

∂
(

δΦ
δyj

) |C1

(
−N i

j

)
+ ∂L

∂

(
δΦ
δyi

∗

) |C1,C2 .

where {
# |C1 = # | δΦ

δxj =C1=const.

# |C1,C2 = # | δΦ
δxj =C1=const., δΦ

δyj =C2=const.

Using these relations in (24), after reducing the terms, one obtains
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Theorem 4.1 The adapted form of the Einstein-Yang Mills equations on Osc(2)(M)
for a M -gauge connecton is

1√
g

δL
δΦ ≡ ∂L

∂Φ −
(

δiΦi + δ′iΦ(1)i + δ′′iΦ(2)i
)
+

+Φjδ′iN
′i
j + Φ(1)jδ′′iN

i
j + Φjδ′′iN

′′i
j + ΦjN ′s

i δ
′′

sN
′i
j−

− 1√
g

(
Φiδi

√
g + Φ(1)iδ′i

√
g + Φ(2)iδ′′i

√
g
)

+ 1√
g L

δ
√

g

δΦ = 0,

(25)

where

Φ ∈
{

gij , g
′
ij , g

′′
ij , L

i
jk, C ′i

jk, C ′′i
jk, N ′i

j , N
′′i

j

}
(26)

and we used the notations


Φi = ∂L

∂(δiΦ) , Φ
(1)i = ∂L

∂(δ′
iΦ) |C1 , Φ

(12)i = ∂L
∂(δ′′

iΦ) |C1,C2 ,

δi = δ
δxi , δ

′
i = δ

δyi , δ
′′

i = δ
δyi

∗

Li
jk = L

(α)i
jk , C ′i

jk = C
(α)i
(1)jk, C ′′i

jk = C
(α)i
(2)jk, α = 0, 2,

√
g =

√
g(1)g(2)g(3), N ′i

j = N i
j , N

′′i
j = N i

∗j .

Remark. The last left term in (25) is effective only for Φ ∈ {gij , g
′
ij , g

′′
ij}.

From (25) results the invariance of the Euler-Lagrange equations with respect
to the coordinate changes (2). Similar calculation proves that the Euler-Lagrange
equations are not gauge-invariant in general, but if L is a scalar field which is invariant
relative to both (2) and (4), then this becomes true. Therefore, an important problem
is to determine the Lagrangian densities which are gauge-invariant. The Utiyama
theorem is generalized in ([8]), where is shown that in the osculator bundle associated
to the bundle of frames Pn, a gauge-invariant Lagrangian L depends only on the
curvature form of a given connection from the bundle of connections (i.e., L = L0 ◦Ω,
where Ω is the curvature form and L0 is a fixed gauge-invariant Lagrangian density).

For a given gauge non-linear connection N = {N ′i
j , N

′′i
j} and a M -linear connec-

tion D = {Li
jk, C ′i

jk, C ′′i
jk}, are derived the following components of the corresponding

torsion d-gauge tensors

T i
jk = Li

jk − Li
kj , C

′i
jk, C ′′i

jk, R
(1)i
(0)jk = δkN ′i

j − δjN
′i
k,

R
(2)i
(0)jk = δkN ′′i

j − δjN
′′i

k + N ′i
s

(
δkN ′s

j − δjN
′s
k

)
,

R
(1)i
(1)jk = δ′kN ′i

j − δ′jN
′i
k, R

(2)i
(2)jk = δ′′kN ′i

j − δ′′jN
′i
k, R

(1)i
(2)jk = 0,

P
(1)i
(1)jk = δ′kN ′i

j − Li
kj , P

(2)i
(1)jk = δ′kN ′′i

j + N ′i
sδ

′
kN ′s

j − δ′jN
′i
k,

P
(1)i
(2)jk = δ′′kN ′i

j , P
(2)i
(2)jk = δ′′kN ′′i

j + N ′i
sδ

′′
kN ′s

j − Li
kj ,

P
(2)i
(1)(2)jk = δ′′kN ′′i

j − C ′i
kj ,

Si
(1)jk = C ′i

jk − C ′i
kj , S

i
(2)jk = C ′′i

jk − C ′′i
kj ,

and the curvature d-gauge tensors
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

Rm
rpq = δqL

m
rp − δpL

m
rq + Lj

rpL
m
jr − Lj

rqL
M
jp +

2∑
β=1

Cm
(β)rjR

(β)j
(0)pq,

Pm
(β)rpq = δLm

rp

δy(β)q − Cm
(β)rq|p +

2∑
γ=1

Cm
(γ)rjP

(γ)j
(β)pq, β = 1, 2

Pm
(1)(2)rpq =

δCm
(1)rp

δy(2)q − Cm
(2)rq |(1)p +Cm

(2)rjP
(2)j
(1)(2)pq,

Sm
(β)rpq =

δCm
(β)rp

δy(β)q − δCm
(β)rq

δy(β)p +

+Cj
(γ)rpC

m
(β)jq − Cj

(γ)rqC
m
(β)jp + R

(1)j
(β)pqC

m
(β)rj , β = 1, 2

where C(1) = C ′, C(2) = C ′′. If D is a d-gauge connection, then the torsions and
curvatures described above are d-gauge tensors.

Theorem 4.2. The Einstein-Yang Mills equations in G. S. Asanov’s form have
the expressions

1√
g

δL
δΦ ≡ ∂L

∂Φ −
(

Φi |i +Φ(1)i |(1)i +Φ(12)i |(2)i

)
+

+
(
Tm

jm + P
(1)m
(1)jm + P

(2)m
(2)jm

)
Φj+

+
(
P

(1)m
(2)jm − 2Cm

(1)mj + S
(1)m
(1)jm

)
Φ(1)j+

+
(
S

(2)m
(2)jm − 2Cm

(2)mj

)
Φ(12)j−

− 1√
g

(
D∗

j

√
g + D′∗

j
√

g + D′′∗
j
√

g
)
Φj + θ = 0,

(27)

where 
D∗

i

√
g = δi

√
g − 3Lm

mi

√
g

D′∗
i
√

g = δ′i
√

g − 3Cm
(1)mi

√
g

D′′∗
i
√

g = δ′′i
√

g − 3Cm
(2)mi

√
g

In (27) we denoted θ = L
2 Aij , where for Φ ∈ {g(0)

ij , g
(1)
ij , g

(2)
ij }, Aij equals respectively

g(0)ij , g(1)ij , g(2)ij (the d-gauge tensors which are reciprocal to g
(0)
ij , g

(1)
ij , g

(2)
ij ), and

for the rest of alternatives for θ, Aij is set null.

We remark that raising and lowering the indices by means of the tensors

{g(0)ij , g(1)ij , g(2)ij ; g(0)
ij , g

(1)
ij , g

(2)
ij }

preserves the gauge character of d-tensor fields. Therefore, the torsions and curvatures
of the M -gauge connection D produce scalar gauge fields as follows{

L(α),τ = τm
ij τ ij

m ,
L(α),% = %m

ijl%
ijl
m ,

where {τ i
jk} is any torsion d-tensor field of D, {%i

jkl} curvature of D, and{
τ ij
m = g(α)irg(α)jsg

(α)
mq τ q

rs,

%ijl
m = g(α)irg(α)jsg(α)ltg

(α)
mq %q

rst.
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Thus, a general gauge invariant Lagrangian which depends only on the curvatures and
torsions of a metric gauge connection is L = L

√
g, where L is a linear combination

with real coefficients of gauge scalar fields built as above.

In the following, we determine the Einstein-Yang Mills equations for several types
of such elementary Lagrangians.

a) For L = Tm
ij T ij

m , an M -gauge connection D and for Φ = Li
jk, the equations (25)

become

1√
g

δL
δΦ ≡ 2T i

jk = 0

and are equivalent to the condition that D is h-symmetrical ([6],[2]).

b) For L = R
(1)m
(0)ij R

(1)ij
(0)m, an M -gauge connection D and for Φ = Nk

i , we have

Φ(1)i = Φ(12)i ≡ 0, ∂L
∂Φ = 0,Φj = 2R

(1)ij
(0)k .

In this case, the Asanov equations are

1√
g

δL
δΦ ≡ −DiΦi +

(
Tm

jm + P
(1)m
(1)jm + P

(2)m
(2)jm

)
Φj+

− 1√
g Φj

(
D∗

j

√
g + D′∗

j
√

g + D′′∗
j
√

g
)

= 0.

The expressions (25) for these n2 equations in the unknowns {Nk
i } become

1√
g

δL
δΦ ≡ −δiΦi + Φj

(
δ′iN

′i
j + δ′′iN

′′i
j + N ′s

i δ
′′

sN
′′i

j −
δj

√
g√

g

)
= 0

⇔ δjR
(1)ij
(0)k = R

(1)ij
(0)k

(
∂sN

′s
j + ∂′′

sN
′′s

j −
δjg
2g

)
; i, k = 1, n

where ∂s = ∂
∂xs , ∂′′

s = ∂
∂ys

∗
.

c) For L = P
(1)m
(2)ij P

(1)ij
(2)m , an M -gauge connection D and for Φ = Nk

i , we get

Φi = Φ(1)i = 0, ∂L
∂Φ = 0, Φ(12)j = 2P

(1)m
(2)ij . In the case of identical metric components,

i.e., g
(0)
ij = g

(1)
ij = g

(2)
ij = gij , the Einstein-Yang Mills equations (25) have the form

1√
g

δL
δΦ ≡ −δ′′jΦ(12)j − δ′′

j
√

g√
g Φ(12)j = 0

⇔ 2∂′′
jP

(1)ij
(2)m = −P

(1)ij
(2)m · ∂′′

j(ln
√

g)

⇔ ∂′′
jΨt

sr + Ψt
sr · ∂′′

j

(
ln

√
g

2 + girgsjgmt

)
= 0,

where we denoted Ψt
sr = ∂′′

sN
′t
r.

The investigation of the solutions of the Einstein-Yang Mills equations on
Osc(2)(M) for certain relevant cases will be the subject of a forecoming paper.
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