GENERALIZED GAUGE ASANOV EQUATIONS ON $Osc^{(2)}(M)$ BUNDLE

V.Balan, Gh.Munteanu and P.C.Stavrinos

Abstract

The paper introduces the notions of gauge transformations and gauge derivatives, and gives the detailed form of the generalized Einstein Yang-Mills equations for the osculator bundle $Osc^{(2)}(M)$ of a differentiable manifold M([7],[8]).

AMS Subject Classification: 53C60, 53C80, 81T13, 53C07 **Key words:** gauge transformations, osculator bundle, Einstein-Yang Mills equations.

1 Generalized gauge transformations of second order

For a certain state of a mechanical system, many physical theories are concerned with determining the evolution of the given state. This evolution is usually gouverned by Euler-Lagrange equations and has to be invariant with respect to coordinate changes. In gauge theories, is also required the invariance under the so-called gauge transformations. In classical gauge theory the physical system is represented by sections in an associate bundle, and has to be invariant with respect to these gauge changes.

Let M be a differentiable manifold, dim $M = n, (U, \phi)$ a local map at $x \in U$ and $x = (x^i)$ the local coordinates. If (U', ϕ') is another local map at x, then the expression of $\phi' \phi^{-1} : {}^n \to {}^n$ is

$$x^{\prime i} = x^{\prime i}(x) \tag{1}$$

Let $E_2 = Osc^{(2)}M$ be the osculator bundle of order 2 ([7],[8]), which admits a (locally trivial) fiber bundle structure, locally isomorphical with the 2-jet bundle of M. The total space is characterized in a local map $((\pi^{2^{-1}})(U), h^2)$ at $E_{2,z}$ by the coordinates $z = (x^i, y^i, y^i_*), \pi^2(z) = x$, with the change-rules

Editor Gr.Tsagas Proceedings of the Workshop on Global Analysis, Differential Geometry and Lie Algebras, 1995, 21-31

[©]Balkan Society of Geometers, Geometry Balkan Press

$$\begin{cases}
 x'^{i} = x'^{i}(x), \\
 y'^{i} = \frac{\partial x'^{i}}{\partial x^{j}} y^{j} \\
 2y'^{i}_{*} = \frac{\partial y'^{i}}{\partial x^{j}} y^{j} + 2 \frac{\partial y'^{i}}{\partial y^{j}} y^{j}_{*}
\end{cases}$$
(2)

In this case, $\pi^2 : E_2 \to M$ is considered here as bundle of base M, but one can consider also the structure $\pi_1^2 : E_2 \to E_1$, where E_1 is the tangent bundle TM, $\pi^1 : E_1 \to M$ with $\pi^2 = \pi_1^2 \circ \pi^1$.

In classical gauge theories, the gauge transformations are automorphisms of the associated bundle of a principal bundle of Lie group G, which induce the identity on the base manifold. The osculating bundle $Osc^{(2)}(M)$ (denoted hereafter E_2) is an associated bundle of the principal bundle of frames of second order P_2 ([8]). G.S.Asanov ([1]) considers a set of generalized gauge transformations; this concept will be developed in the present approach for E_2 .

Definition 1.1. A gauge transformation on E_2 is a sequence (f_0, f_1, f_2) of diffeomorphisms, $f_0: M \to M, f_1: E_1 \to E_1$ and $f_2: E_2 \to E_2$, such that

$$\begin{cases} \pi^1 \circ f_0 = f_1 \circ \pi^1 \\ \pi_1^2 \circ f_1 = f_2 \circ \pi_1^2 \end{cases}$$
(3)

In a local map at $x \in M$, $(\pi^{1^{-1}}(U), h_1)$ of coordinates (x^i, y^i) on E_1 , since $\pi^1 \circ f_0 = f_1 \circ \pi^1$, the application $h_1 \circ f_1 \circ h_1^{-1} : R^n \times R^n \to R^n \times R^n$ has the expression

 $\begin{aligned} f_1 \circ \pi^2, & \text{the approximation } h_1 \circ f_1 \circ h_1 \\ z_1 &= (x^i, y^i) \to (X^i(x), Y^i(x, y^i)) = \tilde{z}_1. \\ & \text{Then, relative to the map } (\pi_1^{2^{-1}}(U), h_1^2), & \text{the application } h_1^2 \circ f_2 \circ h_1^{2^{-1}} & \text{will have} \\ & \text{the expression } z_2 &= (x^i, y^i_*) \to (\tilde{z}^i_1, Y^i_*(x, y, y_*)) = \tilde{z}_2. \end{aligned}$

Thus, a gauge transformation will have the local shape

$$\begin{cases} \tilde{x}^{i} = X^{i}(x), \\ \tilde{y}^{i} = Y^{i}(x, y), \\ \tilde{y}^{i}_{*} = Y^{i}_{*}(x, y, y_{*}), \end{cases}$$
(4)

For being a triplet of diffeomorphisms, (4) must have nonvanishing Jacobian, i.e.,

$$\det(\tilde{z}) = \det(\frac{\partial X^i}{\partial x^j}) \cdot \det(\frac{\partial Y^i}{\partial y^j}) \cdot \det(\frac{\partial Y^i_*}{\partial y^j_*}) \neq 0.$$
(5)

Since the triple (f_0, f_1, f_2) is globally defined, it satisfies the compatibility conditions with the coordinate changes on E_2

$$\begin{cases} \tilde{x'}^{i}(X^{j})(x) = X'^{i}(x'^{j}(x)) \\ \tilde{y'}^{i}(x,y') = Y'^{i}(x',y') \\ \tilde{y'}^{i}_{*}(x,y',y'_{*}) = Y'_{*}(x',y',y'_{*}) \end{cases}$$
(6)

Typical examples of gauge transformations are, e.g., 1) $\tilde{x}^i = x^i, \tilde{y}^i = Y^i(x, y), \tilde{y}^i_* = Y^i_*(x, y, y_*),$

2) $\tilde{x}^{i} = X^{i}(x), \tilde{y}^{i} = Y^{i}_{j}(x)y^{j}, \tilde{y}^{i}_{*} = Y^{i}_{*j}(x)y^{j}_{*},$ 3) $\tilde{x}^{i} = X^{i}(x), \tilde{y}^{i} = A^{i}_{j_{1}}(x)y^{j_{1}}, \tilde{y}^{i}_{*} = A^{i}_{j_{1}j_{2}}(x)y^{j_{1}}y^{j_{2}} + A^{i}_{j_{1}}(x)y^{j_{1}}_{*},$ where $A^{i}_{j_{1}j_{2}}$ are symmetrical, and all obey the conditions (5). Considering the composition of diffeomorphisms, we infer

Proposition 1.1. The set of gauge transformations on $E_2 = Osc^{(2)}(M)$ represents a subgroup in $DiffM \times DiffE_1 \times DiffE_2$.

Let consider the tangent spaces in z to E_2 , $T_z(E_2)$, having the rules of change for the local bases ([7])

$$\begin{cases}
\frac{\partial}{\partial x^{i}} = \frac{\partial y'_{*}^{m}}{\partial x^{i}} \frac{\partial}{\partial y'_{*}} + \frac{\partial y'^{m}}{\partial x^{i}} \frac{\partial}{\partial y'm} + \frac{\partial x'^{m}}{\partial x^{i}} \frac{\partial}{\partial x'm} \\
\frac{\partial}{\partial y^{i}} = \frac{\partial y'_{*}^{m}}{\partial y^{i}} \frac{\partial}{\partial y'_{*}} + \frac{\partial y'^{m}}{\partial y^{i}} \frac{\partial}{\partial y'm} \\
\frac{\partial}{\partial y^{i}_{*}} = \frac{\partial y'_{*}^{m}}{\partial y^{i}_{*}} \frac{\partial}{\partial y'_{*}}
\end{cases}$$
(7)

and the local changes imposed by (4)

$$\begin{cases} \frac{\partial}{\partial x^{i}} = \frac{\partial Y_{*}^{m}}{\partial x^{i}} \frac{\partial}{\partial \tilde{y}_{*}^{m}} + \frac{\partial Y^{m}}{\partial x^{i}} \frac{\partial}{\partial \tilde{y}_{*}^{m}} + X_{i}^{m} \frac{\partial}{\partial \tilde{x}^{m}} \\ \frac{\partial}{\partial y^{i}} = \frac{\partial Y_{*}^{m}}{\partial y^{i}} \frac{\partial}{\partial \tilde{y}_{*}^{m}} + Y_{i}^{m} \frac{\partial}{\partial \tilde{y}_{*}^{m}} \\ \frac{\partial}{\partial y_{*}^{i}} = Y_{*i}^{m} \frac{\partial}{\partial \tilde{y}_{*}^{m}} \end{cases}$$
(8)

where

$$X_i^m = \frac{\partial X^m}{\partial x^i}, Y_i^m = \frac{\partial Y^m}{\partial y^i}, Y_{*i}^m = \frac{\partial Y_*^m}{\partial y_*^i}$$

A special class of geometric objects which occur on E_2 is the one of *d*-tensors, which can be formally defined like systems of functions $W_{j_1...j_s}^{i_1...i_r}$ on E_2 , obeying the rules of change ([6])

$$W_{j_1\dots j_s}^{i_1\dots i_r}(x',y',y'_*) = \frac{\partial {x'}^{i_1}}{\partial x^{h_1}}\dots\frac{\partial {x'}^{i_r}}{\partial x^{h_r}} \cdot \frac{\partial x^{l_1}}{\partial {x'}^{j_1}}\dots\frac{\partial x^{l_s}}{\partial {x'}^{j_s}} \cdot W_{l_1\dots l_s}^{h_1\dots h_r}(x,y,y_*).$$
(9)

The set of *d*-tensors determines a sub-algebra of the tensor algebra on E_2 . We denote $Y_j^{(1)i} = Y_j^i, Y_j^{(2)i} = Y_{*j}^i$ and by $\overline{X}_j^i, \overline{Y}_j^{(\alpha)i}$ the elements of the matrices inverse to X_j^i and $Y_j^{(\alpha)i}, \alpha = \overline{1,2}$ respectively.

Definition 1.2. A *h*-*d*-gauge tensor is a *d*-tensor $W_{j_1...j_s}^{i_1...i_r}$ on E_2 which satisfies also

$$W_{j_1\dots j_s}^{i_1\dots i_r}(\tilde{x}, \tilde{y}, \tilde{y}_*) = X_{h_1}^{i_1}\dots X_{h_r}^{i_r} \cdot \overline{X}_{j_1}^{l_1}\dots \overline{X}_{j_s}^{l_s} \cdot W_{l_1\dots l_s}^{h_1\dots h_r}(x, y, y_*).$$
(10)

We call v_{α} -*d*-gauge tensor, $\alpha = \overline{1,2}$, a *d*-tensor $W^{i_1...i_r}_{j_1...j_s}$ on E_2 which satisfies the additional property

$$W_{j_1\dots j_s}^{i_1\dots i_r}(\tilde{x}, \tilde{y}, \tilde{y}_*) = Y_{h_1}^{(\alpha)i_1}\dots Y_{h_r}^{(\alpha)i_r} \cdot \overline{Y}_{j_1}^{(\alpha)l_1}\dots \overline{Y}_{j_s}^{(\alpha)l_s} \cdot W_{l_1\dots l_s}^{h_1\dots h_r}(x, y, y_*).$$
(11)

For example, $\frac{\partial}{\partial y_*^i}$ is a v_{α} -*d*-gauge tensor. Combining these definitions, we can consider h- v_{α} -*d*-gauge tensors or v_1 - v_2 -*d*-gauge tensors. The set of all types of such tensors will be called the set of *d*-gauge tensors.

2 Gauge covariant derivatives

A non-linear connection N on $E_2 = Osc^{(2)}(M)$ is determined by giving a splitting in an exact sequence of bundles or, equivalently, by providing a sub-bundle $N(E_2)$ which is supplementary to the vertical bundle $V(E_2) = Ker(\pi^2)^T$, where $(\pi^2)^T :$ $T(E_2) \to T(M)$ is the tangent mapping ([7]). If N is a non-linear connection, then $T(E_2) = N(E_2) \oplus V(E_2)$. The expression of the horizontal lift $\frac{\delta}{\delta x^i} = l_h \left(\frac{\partial}{\partial x^i}\right)$ of $\frac{\partial}{\partial x^i}$ is

$$\frac{\delta}{\delta x^i} = \frac{\partial}{\partial x^i} - N^j_i \frac{\partial}{\partial y^j} - N^j_{*i} \frac{\partial}{\partial y^j_*}$$
(12)

and we have $\frac{\delta}{\delta x^i} = \frac{\partial x'^m}{\partial x^i} \frac{\delta}{\delta x'^m}$; N_i^j and N_{*i}^j are called the coefficients of the non-linear connection N.

Let denote by J the natural almost tangent structure on E_2 , $J^3 = 0$. In $z \in E_2$ we obtain the following distributions corresponding to the non-linear connection N: $N(E_2) = N_0, N_1 = J(N_0), N_2 = J^2(N_0)$ having respectively the following local bases

$$\frac{\delta}{\delta x^i}, \frac{\delta}{\delta y^i} = J\left(\frac{\delta}{\delta x^i}\right) = \frac{\partial}{\partial y^i} - N_i^j \frac{\partial}{\partial y_*^j}$$
(13)

and $\frac{\delta}{\delta y_*^j} = J\left(\frac{\delta}{\delta y^i}\right) = \frac{\partial}{\partial y_*^i}$.

These are *d*-vector fields and $\left\{\frac{\delta}{\delta x^i}, \frac{\delta}{\delta y^i}, \frac{\delta}{\delta y^i_*}\right\}$ is called adapted basis in $T_z(E_2)$. The coefficients of the non-linear connection $N(E_2)$ change obeying the rules

$$\begin{cases} N'^{i}_{m} \frac{\partial x'^{m}}{\partial x^{j}} &= \frac{\partial x'^{i}}{\partial x^{m}} N^{m}_{j} - \frac{\partial y'^{i}}{\partial x^{j}} \\ N'^{i}_{*m} \frac{\partial x'^{m}}{\partial x^{j}} &= \frac{\partial x'^{i}}{\partial x^{m}} N^{m}_{*j} + \frac{\partial y'^{i}}{\partial x^{m}} N^{m}_{j} - \frac{\partial y'^{i}_{*}}{\partial x^{j}} \end{cases}$$
(14)

The associated dual adapted basis is $\{dx^i, \delta y^i, \delta y^i_*\}$, where $\delta y^i = dy^i + N^i_j x^j; \qquad \delta y^i_* = dy^i_* + N^i_j dy^j + (N^i_{*j} + N^i_m \cdot N^m_j) dx^j.$

The adapted fields $\left\{\frac{\delta}{\delta x^i}, \frac{\delta}{\delta y^i}, \frac{\delta}{\delta y^i_*}\right\}$ are *d*-tensors but not gauge fields, generally. The adapted basis consists of *d*-gauge tensors iff

$$\begin{cases} \tilde{N}_{m}^{i}X_{j}^{m} = Y_{m}^{i}N_{j}^{m} - \frac{\partial Y^{i}}{\partial x^{j}} \\ \tilde{N}_{m}^{i}Y_{j}^{m} = Y_{*m}^{i}N_{j}^{m} - \frac{\partial Y_{*}^{i}}{\partial x^{j}} \\ \tilde{N}_{*m}^{i}Y_{j}^{m} = Y_{*m}^{i}N_{*j}^{m} + \frac{\partial Y_{*}^{i}}{\partial y^{m}}N_{j}^{m} - \frac{\partial Y_{*}^{i}}{\partial x^{j}} \end{cases}$$
(15)

Let denote by $V_1 = V_z(E_2)$ and $V_2 = Ker(\pi_{1,z}^2)^T$, the so-called vertical distributions locally spanned by $\left\{\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^i_*}\right\}$ and respectively $\left\{\frac{\partial}{\partial y^i_*}\right\}$; let v_1, v_2 be the two corresponding projectors. For a non-linear connection N, we denote by h the projector onto $N_z(E_2) = N_0$. We obtain the following derivation operators ([7])

 $D_X^{(\alpha)h}Y = D_{X^h}Y^{v_\alpha}$ and $D_X^{(\alpha)v_\beta}Y = D_{X^{v_\beta}}Y^{v_\alpha}, \beta = \overline{1, 2}, \alpha = \overline{0, 2}$ with $v_0 = h$, defined locally by

$$\begin{cases} D_{\frac{\delta}{\delta x^{j}}} \frac{\delta}{\delta y^{(\alpha)i}} &= L_{ij}^{(\alpha)m} \frac{\delta}{\delta y^{(\alpha)m}} \\ D_{\frac{\delta}{\delta y^{(\beta)j}}} \frac{\delta}{\delta y^{(\alpha)i}} &= C_{(\beta)ij}^{(\alpha)m} \frac{\delta}{\delta y^{(\alpha)m}}, \alpha = \overline{0, 2}, \beta = \overline{1, 2}, \end{cases}$$
(16)

where $y^{(0)i} = x^i, y^{(1)i} = y^i$ and $y^{(2)i} = y^i_*$; their coefficients change by the following rules

$$\begin{cases}
L_{pq}^{(\alpha)'i} \frac{\partial x'^{p}}{\partial x^{h}} \frac{\partial x'^{q}}{\partial x^{m}} = L_{hm}^{(\alpha)p} \frac{\partial x'^{i}}{\partial x^{p}} - \frac{\partial^{2} x'^{i}}{\partial x^{h} \partial x^{m}} \\
C_{(\beta)pq}^{(\alpha)'i} \frac{\partial x'^{p}}{\partial x^{h}} \frac{\partial x'^{q}}{\partial x^{m}} = \frac{\partial x'^{i}}{\partial x^{j}} C_{(\beta)hm}^{(\alpha)i}.
\end{cases}$$
(17)

We remark that, in particular, the coefficients $L^{(\alpha)}$ can be equal and that $C^{(\alpha)}_{(\beta)}$ are *d*-tensors which can coincide for $\alpha = \overline{0,2}$. In this case, *D* will be called *M*-linear connection.

Also, $D^{(\alpha)h}$ and $D^{(\alpha)v_\beta}$ determine the following covariant derivation operators on d-tensors

$$\left\{ \begin{array}{rcl} W_{j_{1}\ldots j_{s}}^{(\alpha)i_{1}\ldots i_{r}} & = & \frac{\delta W_{j_{1}\ldots j_{s}}^{(1)\ldots i_{r}}}{\delta x^{m}} + L_{hm}^{(\alpha)i_{1}}W_{j_{1}\ldots j_{s}}^{hi_{2}\ldots i_{r}} + \ldots + L_{hm}^{(\alpha)i_{1}}W_{j_{1}\ldots j_{s}}^{i_{1}\ldots i_{r-1}h} - \\ & -L_{j_{1}m}^{(\alpha)h}W_{h_{2}\ldots j_{s}}^{i_{1}\ldots i_{r}} - \ldots - L_{j_{1}m}^{(\alpha)h}W_{j_{1}\ldots j_{s-1}h}^{i_{1}\ldots i_{r}} \\ W_{j_{1}\ldots j_{s}}^{(\alpha)i_{1}\ldots i_{r}} \mid_{m}^{(\beta)} & = & \frac{\delta W_{j_{1}\ldots j_{s}}^{i_{1}\ldots i_{r}}}{\delta y^{(\beta)m}} + C_{(\beta)hm}^{(\alpha)i_{1}}W_{j_{1}\ldots j_{s}}^{hi_{2}\ldots i_{r}} + \ldots + C_{(\beta)hm}^{(\alpha)i_{1}}W_{j_{1}\ldots j_{s-1}h}^{i_{1}\ldots i_{r-1}h} - \\ - C_{(\beta)j_{1}m}^{(\alpha)h}W_{h_{2}\ldots j_{s}}^{i_{1}\ldots i_{r}} - \ldots - C_{(\beta)j_{1}m}^{(\alpha)h}W_{j_{1}\ldots j_{s-1}h}^{i_{1}\ldots i_{r-1}h} - \end{array} \right. \right\}$$

The h- v_β gauge tensorial character is preserved if aditionally we have

i . *i*

$$\begin{cases}
\tilde{L}_{pq}^{(\alpha)r} = \overline{Y}_{p}^{(\alpha)i} \cdot \overline{X}_{q}^{j} \cdot Y_{m}^{(\alpha)r} \cdot L_{ij}^{(\alpha)m} - \overline{X}_{q}^{j} \cdot \overline{Y}_{p}^{(\alpha)i} \cdot \frac{\delta Y_{i}^{(\alpha)r}}{\delta x^{j}} \\
\tilde{C}_{(\beta)pq}^{(\alpha)r} = \overline{Y}_{p}^{(\alpha)i} \cdot \overline{Y}_{q}^{(\beta)j} \cdot Y_{m}^{(\alpha)r} \cdot C_{(\beta)ij}^{(\alpha)m} - \overline{Y}_{q}^{(\beta)j} \cdot \overline{Y}_{p}^{(\alpha)i} \cdot \frac{\delta Y_{i}^{(\alpha)r}}{\delta y^{(\beta)j}},
\end{cases}$$
(18)

where $\alpha = \overline{0,2}, \beta = \overline{1,2}, Y_j^{(0)i} = X_j^i, Y_j^{(1)i} = Y_j^i, Y_j^{(2)i} = Y_{*j}^i$ and the overlined coefficients belong to the corresponding inverse matrices. We remark that for $\beta > \alpha, C_{(\beta)pq}^{(\alpha)r}$ become *d*-gauge tensors.

Definition 2.1. A *d*-linear connection is said to be *d*-linear gauge connection iff its coefficients satisfy (17) and (18). If its coefficients do not depend on $\alpha \in \overline{0,2}$, then it is called *M*-gauge connection.

In the following we shall also denote by $d_m^{(\alpha)h}W_{j_1...j_s}^{(\alpha)i_1...i_r}$ and $d_m^{(\alpha)v_\beta}W_{j_1...j_s}^{(\alpha)i_1...i_r}$ the *h*- and v_β -gauge derivatives of a *d*-gauge tensor, respectively.

3 Metric *d*-gauge connections of second order

Let be $g_{ij}^{(\alpha)}(x, y, y_*), \alpha = \overline{0, 2}$ a system of *d*-tensors, symmetric and positively defined, with rank $(g_{ij}^{(\alpha)}) = n$, where $g_{ij}^{(0)}$ is *h*-*d*-gauge tensor and $g_{ij}^{(\beta)}$ are v_{β} -*d*-gauge tensors, $\beta = \overline{1, 2}$; these *d*-tensors will be called *h*- and v_{β} -gauge metrics respectively.

Let N be a d-gauge linear connection. Then

$$G = g_{ij}^{(0)} dx^i \otimes dx^j + g_{ij}^{(1)} \delta y^{(1)i} \otimes \delta y^{(1)j} + g_{ij}^{(2)} \delta y^{(2)i} \otimes \delta y^{(2)j}$$

is globally defined on E_2 and is said to define a gauge metric structure on E_2 .

Definition 3.1. A *d*-gauge linear connection D on E_2 is a *h*- (resp. v_{β} -) metric connection iff

$$g_{ij|m}^{(\alpha)\ (\alpha)} = 0 \text{ and } d_m^{(\alpha)h} g_{ij}^{(\alpha)} = 0$$
 (19)

(resp. $g_{ij|m}^{(\alpha)(\alpha)(\beta)} = 0$ and $d_m^{(\alpha)v_{\alpha}}g_{ij}^{(\alpha)} = 0$), $\forall \alpha = \overline{0,2}$.

If D is both h- and v_{β} -metric then we say that D is a d-gauge metric connection. **Theorem 3.1.** The following d-linear connection ([7])

$$\begin{cases} L_{ij}^{(\alpha)m} = \frac{1}{2}g^{(\alpha)ms}\left\{\frac{\delta g_{sj}^{(\alpha)}}{\delta x^{i}} + \frac{\delta g_{is}^{(\alpha)}}{\delta x^{j}} - \frac{\delta g_{ij}^{(\alpha)}}{\delta x^{s}}\right\}\\ C_{(\beta)ij}^{(\alpha)m} = \frac{1}{2}g^{(\alpha)ms}\left\{\frac{\delta g_{sj}^{(\alpha)}}{\delta y^{(\beta)i}} + \frac{\delta g_{is}^{(\alpha)}}{\delta y^{(\beta)j}} - \frac{\delta g_{ij}^{(\alpha)}}{\delta y^{(\beta)j}}\right\}, \alpha = \overline{0, k}, \beta = \overline{1, 2} \end{cases}$$
(20)

is a symmetric d-linear gauge connection.

4 Einstein-Yang Mills equations of second order

Let $L_0(x, y, y_*)$ be a Lagrangian defined on a compact set $\Omega \subset^{3n}$, a non-linear gauge connection $N = \{N_j^i, N_{ij}^i\}$, and a metric gauge structure G on E_2 defined by the metric d-gauge fields $g_{ij}^{(\alpha)}(x, y, y_*), \alpha = \overline{0, 2}$.

Let Φ be a gauge field, that in applications belongs usually to the bundle of linear connections. In the present context, L_0 depends on $z = (x, y, y_*)$ through Φ and its derivatives $\frac{\delta \Phi}{\delta x^i}, \frac{\delta \Phi}{\delta y^i}, \frac{\delta \Phi}{\delta y^i_*}$, i.e.

$$L_0(x, y, y_*) = L_0(\Phi, \frac{\delta\Phi}{\delta x^i}, \frac{\delta\Phi}{\delta y^i}, \frac{\delta\Phi}{\delta y^i_*}).$$
(21)

For Φ varying in Ω , the action $\int_{\Omega} L_0(x, y^{(1)}, y^{(2)}) d\omega$, where $d\omega = dx^1 \wedge \ldots \wedge dy^{(2)n}$ depends on the local coordinates. In order to remove this inconvenience, we consider the Lagrangian density:

$$\mathcal{L}(x, y, y_*) = L_0(x, y, y_*) \cdot \sqrt{g^{(0)}g^{(1)}g^{(2)}},$$
(22)

where $g^{(\alpha)} = \det(g_{ij}^{(\alpha)}), \alpha = \overline{0, 2}$. Also, we remark that

$$\mathcal{L}(x, y, y_*) = \mathcal{L}(x, y', y'_*) \cdot \mathcal{J}, \text{ where } \mathcal{J} = \det(\frac{\partial x'^i}{\partial x^j}).$$
(23)

So that, the action $I(\Phi) = \int_{\Omega} \mathcal{L}(x, y, y_*) d\omega$ is independent of the coordinates on $E_2 = Osc^{(2)}(M)$. Applying the variational principle, the extremization of action $I(\Phi)$ leads to the following Euler-Lagrange attached to Φ

$$\frac{\partial \mathcal{L}}{\partial \Phi} - \frac{\partial}{\partial x^i} \frac{\partial \mathcal{L}}{\partial (\frac{\partial \Phi}{\partial x^i})} - \frac{\partial}{\partial y^i} \frac{\partial \mathcal{L}}{\partial (\frac{\partial \Phi}{\partial y^i})} - \dots - \frac{\partial}{\partial y^i_*} \frac{\partial \mathcal{L}}{\partial (\frac{\partial \Phi}{\partial y^i_*})} = 0.$$
(24)

Taking into consideration the gauge transformations, it is more convenient to express (24) in the adapted basis $(\frac{\delta}{\delta x^i}, \frac{\delta}{\delta y^i}, \frac{\delta}{\delta y^i_*})$. The resulting relations look more complicated, but they evidentiate easier that (24) is invariant with respect to the change of coordinates (2) on E_2 .

In (21), L depends on $\frac{\partial \Phi}{\partial x^i}, \frac{\partial \Phi}{\partial y^i}, \frac{\partial \Phi}{\partial y^i_*}$, by means of

$$\frac{\delta\Phi}{\delta x^i} = \frac{\partial\Phi}{\partial x^i} - N^j_i \frac{\partial\Phi}{\partial y^j} - N^j_{*i} \frac{\partial\Phi}{\partial y^j_*}, \qquad \frac{\delta\Phi}{\delta y^i} = \frac{\partial\Phi}{\partial y^i} - N^j_i \frac{\partial\Phi}{\partial y^j_*} \text{ and } \frac{\delta\Phi}{\delta y^j_*} = \frac{\partial\Phi}{\partial y^i_*}.$$

One can easily check that

$$\begin{cases} \frac{\partial L}{\partial \left(\frac{\partial \Phi}{\partial x^{i}}\right)} &= \frac{\partial L}{\partial \left(\frac{\delta \Phi}{\delta y^{i}}\right)} \\ \frac{\partial L}{\partial \left(\frac{\partial \Phi}{\partial y^{i}}\right)} &= \frac{\partial L}{\partial \left(\frac{\delta \Phi}{\delta x^{j}}\right)} \left(-N_{j}^{i}\right) + \frac{\partial L}{\partial \left(\frac{\delta \Phi}{\delta y^{j}}\right)} \left|_{C_{1}}, \\ \frac{\partial L}{\partial \left(\frac{\partial \Phi}{\partial y^{i}_{*}}\right)} &= \frac{\partial L}{\partial \left(\frac{\delta \Phi}{\delta x^{j}}\right)} \left(-N_{*j}^{i}\right) + \frac{\partial L}{\partial \left(\frac{\delta \Phi}{\delta y^{j}}\right)} \left|_{C_{1}} \left(-N_{j}^{i}\right) + \frac{\partial L}{\partial \left(\frac{\delta \Phi}{\delta y^{i}_{*}}\right)} \left|_{C_{1}, C_{2}}. \end{cases}$$

where

$$\begin{cases} \# |_{C_1} = \# |_{\frac{\delta\Phi}{\delta x^j} = C_1 = const.} \\ \# |_{C_1, C_2} = \# |_{\frac{\delta\Phi}{\delta x^j} = C_1 = const., \frac{\delta\Phi}{\delta y^j} = C_2 = const.} \end{cases}$$

Using these relations in (24), after reducing the terms, one obtains

Theorem 4.1 The adapted form of the Einstein-Yang Mills equations on $Osc^{(2)}(M)$ for a M-gauge connecton is

$$\begin{cases} \frac{1}{\sqrt{g}} \frac{\delta \mathcal{L}}{\delta \Phi} \equiv \frac{\partial L}{\partial \Phi} - \left(\delta_i \Phi^i + \delta'_i \Phi^{(1)i} + \delta''_i \Phi^{(2)i} \right) + \\ + \Phi^j \delta'_i N'^j_j + \Phi^{(1)j} \delta''_i N^j_j + \Phi^j \delta''_i N''^j_j + \Phi^j N'^s_i \delta''_s N'^j_j - \\ - \frac{1}{\sqrt{g}} \left(\Phi^i \delta_i \sqrt{g} + \Phi^{(1)i} \delta'_i \sqrt{g} + \Phi^{(2)i} \delta''_i \sqrt{g} \right) + \frac{1}{\sqrt{g}} L \frac{\delta \sqrt{g}}{\delta \Phi} = 0, \end{cases}$$
(25)

where

$$\Phi \in \left\{ g_{ij}, g'_{ij}, g''_{ij}, L^{i}_{jk}, C'^{i}_{jk}, C''^{i}_{jk}, N'^{i}_{j}, N''^{i}_{j} \right\}$$
(26)

and we used the notations

$$\left\{ \begin{array}{l} \Phi^i = \frac{\partial L}{\partial(\delta_i \Phi)}, \Phi^{(1)i} = \frac{\partial L}{\partial(\delta'_i \Phi)} \mid_{C_1}, \Phi^{(12)i} = \frac{\partial L}{\partial(\delta''_i \Phi)} \mid_{C_1, C_2}, \\ \delta_i = \frac{\delta}{\delta x^i}, \delta'_i = \frac{\delta}{\delta y^i}, \delta''_i = \frac{\delta}{\delta y^i_*}, \\ L^i_{jk} = L^{(\alpha)i}_{jk}, C'^i_{jk} = C^{(\alpha)i}_{(1)jk}, C''^i_{jk} = C^{(\alpha)i}_{(2)jk}, \alpha = \overline{0, 2}, \\ \sqrt{g} = \sqrt{g^{(1)}g^{(2)}g^{(3)}}, N'^i_j = N^i_j, N''^i_j = N^i_{*j}. \end{array} \right.$$

Remark. The last left term in (25) is effective only for $\Phi \in \{g_{ij}, g'_{ij}, g''_{ij}\}$.

From (25) results the invariance of the Euler-Lagrange equations with respect to the coordinate changes (2). Similar calculation proves that the Euler-Lagrange equations are not gauge-invariant in general, but if L is a scalar field which is invariant relative to both (2) and (4), then this becomes true. Therefore, an important problem is to determine the Lagrangian densities which are gauge-invariant. The Utiyama theorem is generalized in ([8]), where is shown that in the osculator bundle associated to the bundle of frames P_n , a gauge-invariant Lagrangian \mathcal{L} depends only on the curvature form of a given connection from the bundle of connections (i.e., $\mathcal{L} = \mathcal{L}_0 \circ \Omega$, where Ω is the curvature form and \mathcal{L}_0 is a fixed gauge-invariant Lagrangian density). For a given gauge non-linear connection $N = \{N'_j^i, N''_j^i\}$ and a M-linear connec-

For a given gauge non-linear connection $N = \{N'_{j}^{i}, N''_{j}^{i}\}$ and a *M*-linear connection $D = \{L_{jk}^{i}, C'_{jk}^{i}, C''_{jk}^{i}\}$, are derived the following components of the corresponding torsion *d*-gauge tensors

$$\begin{cases} T_{jk}^{i} = L_{jk}^{i} - L_{kj}^{i}, C_{jk}^{\prime i}, C_{(0)jk}^{\prime \prime i}, R_{(0)jk}^{(1)i} = \delta_{k}N_{j}^{\prime i} - \delta_{j}N_{k}^{\prime i}, \\ R_{(0)jk}^{(2)i} = \delta_{k}N_{j}^{\prime \prime i} - \delta_{j}N_{k}^{\prime \prime i} + N_{s}^{\prime i} \left(\delta_{k}N_{j}^{\prime s} - \delta_{j}N_{k}^{\prime s}\right), \\ R_{(1)jk}^{(1)i} = \delta_{k}^{\prime}N_{j}^{\prime i} - \delta_{j}^{\prime}N_{k}^{\prime i}, R_{(2)jk}^{(2)i} = \delta_{k}^{\prime \prime}N_{j}^{\prime i} - \delta_{j}^{\prime \prime}N_{k}^{\prime i}, R_{(2)jk}^{(1)i} = 0, \\ P_{(1)jk}^{(1)i} = \delta_{k}^{\prime}N_{j}^{\prime i} - L_{kj}^{i}, P_{(1)jk}^{(2)i} = \delta_{k}^{\prime}N_{j}^{\prime i} + N_{s}^{\prime i}\delta_{k}^{\prime}N_{j}^{\prime s} - \delta_{j}^{\prime}N_{k}^{\prime i}, \\ P_{(2)jk}^{(1)i} = \delta_{k}^{\prime \prime}N_{j}^{\prime i}, P_{(2)jk}^{(2)i} = \delta_{k}^{\prime \prime}N_{j}^{\prime \prime i} + N_{s}^{\prime i}\delta_{k}^{\prime}N_{j}^{\prime s} - L_{kj}^{i}, \\ P_{(1)(2)jk}^{(2)i} = \delta_{k}^{\prime \prime}N_{j}^{\prime \prime i} - C_{kj}^{\prime i}, \\ S_{(1)jk}^{i} = C_{jk}^{\prime i} - C_{kj}^{\prime i}, S_{(2)jk}^{i} = C_{jk}^{\prime \prime \prime i} - C_{kj}^{\prime \prime \prime i}, \end{cases}$$

and the curvature d-gauge tensors

$$\begin{split} R^m_{rpq} &= \delta_q L^m_{rp} - \delta_p L^m_{rq} + L^j_{rp} L^m_{jr} - L^j_{rq} L^M_{jp} + \sum_{\beta=1}^2 C^m_{(\beta)rj} R^{(\beta)j}_{(0)pq}, \\ P^m_{(\beta)rpq} &= \frac{\delta L^m_{rp}}{\delta y^{(\beta)q}} - C^m_{(\beta)rq|p} + \sum_{\gamma=1}^2 C^m_{(\gamma)rj} P^{(\gamma)j}_{(\beta)pq}, \beta = \overline{1,2} \\ P^m_{(1)(2)rpq} &= \frac{\delta C^m_{(1)rp}}{\delta y^{(2)q}} - C^m_{(2)rq} |_p^{(1)} + C^m_{(2)rj} P^{(2)j}_{(1)(2)pq}, \\ S^m_{(\beta)rpq} &= \frac{\delta C^m_{(\beta)rp}}{\delta y^{(\beta)q}} - \frac{\delta C^m_{(\beta)rq}}{\delta y^{(\beta)p}} + \\ &+ C^j_{(\gamma)rp} C^m_{(\beta)jq} - C^j_{(\gamma)rq} C^m_{(\beta)jp} + R^{(1)j}_{(\beta)pq} C^m_{(\beta)rj}, \beta = \overline{1,2} \end{split}$$

where $C_{(1)} = C', C_{(2)} = C''$. If D is a d-gauge connection, then the torsions and curvatures described above are d-gauge tensors.

Theorem 4.2. The Einstein-Yang Mills equations in G. S. Asanov's form have the expressions

$$\begin{cases} \frac{1}{\sqrt{g}} \frac{\delta \mathcal{L}}{\delta \Phi} \equiv \frac{\partial L}{\partial \Phi} - \left(\Phi^{i} \mid_{i} + \Phi^{(1)i} \mid_{i}^{(1)} + \Phi^{(12)i} \mid_{i}^{(2)} \right) + \\ + \left(T_{jm}^{m} + P_{(1)jm}^{(1)m} + P_{(2)jm}^{(2)m} \right) \Phi^{j} + \\ + \left(P_{(2)jm}^{(1)m} - 2C_{(1)mj}^{m} + S_{(1)jm}^{(1)m} \right) \Phi^{(1)j} + \\ + \left(S_{(2)jm}^{(2)m} - 2C_{(2)mj}^{m} \right) \Phi^{(12)j} - \\ - \frac{1}{\sqrt{g}} \left(D_{j}^{*} \sqrt{g} + D_{j}^{*} \sqrt{g} + D_{j}^{\prime *} \sqrt{g} \right) \Phi^{j} + \theta = 0, \end{cases}$$

where

$$\left\{ \begin{array}{l} D_i^*\sqrt{g} = \delta_i\sqrt{g} - 3L_{mi}^m\sqrt{g} \\ D_i'^*\sqrt{g} = \delta_i'\sqrt{g} - 3C_{(1)mi}^m\sqrt{g} \\ D_i''^*\sqrt{g} = \delta_i''\sqrt{g} - 3C_{(2)mi}^m\sqrt{g} \end{array} \right.$$

In (27) we denoted $\theta = \frac{L}{2}A^{ij}$, where for $\Phi \in \{g_{ij}^{(0)}, g_{ij}^{(1)}, g_{ij}^{(2)}\}$, A^{ij} equals respectively $g^{(0)ij}, g^{(1)ij}, g^{(2)ij}$ (the *d*-gauge tensors which are reciprocal to $g_{ij}^{(0)}, g_{ij}^{(1)}, g_{ij}^{(2)}$), and for the rest of alternatives for θ, A^{ij} is set null.

We remark that raising and lowering the indices by means of the tensors

$$\{g^{(0)ij}, g^{(1)ij}, g^{(2)ij}; g^{(0)}_{ij}, g^{(1)}_{ij}, g^{(2)}_{ij}\}$$

preserves the gauge character of d-tensor fields. Therefore, the torsions and curvatures of the M-gauge connection D produce scalar gauge fields as follows

$$\begin{cases} L_{(\alpha),\tau} = \tau_{ij}^m \tau_m^{ij}, \\ L_{(\alpha),\varrho} = \varrho_{ijl}^m \varrho_m^{ijl} \end{cases}$$

where $\{\tau^i_{jk}\}$ is any torsion *d*-tensor field of D, $\{\varrho^i_{jkl}\}$ curvature of D, and

$$\left\{ \begin{array}{l} \tau_m^{ij} = g^{(\alpha)ir} g^{(\alpha)js} g^{(\alpha)}_{mq} \tau_{rs}^q, \\ \varrho_m^{ijl} = g^{(\alpha)ir} g^{(\alpha)js} g^{(\alpha)lt} g^{(\alpha)}_{mq} \varrho_{rst}^q. \end{array} \right.$$

Thus, a general gauge invariant Lagrangian which depends only on the curvatures and torsions of a metric gauge connection is $\mathcal{L} = L\sqrt{g}$, where L is a linear combination with real coefficients of gauge scalar fields built as above.

In the following, we determine the Einstein-Yang Mills equations for several types of such elementary Lagrangians.

a) For $L = T_{ij}^m T_m^{ij}$, an *M*-gauge connection *D* and for $\Phi = L_{jk}^i$, the equations (25) become

$$\frac{1}{\sqrt{g}}\frac{\delta\mathcal{L}}{\delta\Phi} \equiv 2T^i_{jk} = 0$$

and are equivalent to the condition that D is h-symmetrical ([6],[2]).

b) For $L = R_{(0)ij}^{(1)m} R_{(0)m}^{(1)ij}$, an *M*-gauge connection *D* and for $\Phi = N_i^k$, we have $\Phi^{(1)i} = \Phi^{(12)i} \equiv 0, \frac{\partial L}{\partial \Phi} = 0, \Phi^j = 2R_{(0)k}^{(1)ij}$.

In this case, the Asanov equations are

$$\frac{1}{\sqrt{g}} \frac{\delta \mathcal{L}}{\delta \Phi} \equiv -D_i \Phi^i + \left(T^m_{jm} + P^{(1)m}_{(1)jm} + P^{(2)m}_{(2)jm} \right) \Phi^j + - \frac{1}{\sqrt{g}} \Phi^j \left(D^*_j \sqrt{g} + D'^*_j \sqrt{g} + D''^*_j \sqrt{g} \right) = 0.$$

The expressions (25) for these n^2 equations in the unknowns $\{N_i^k\}$ become

$$\begin{split} \frac{1}{\sqrt{g}} \frac{\delta \mathcal{L}}{\delta \Phi} &\equiv -\delta_i \Phi^i + \Phi^j \left(\delta'_i N'^i_j + \delta''_i N''^i_j + N'^s_i \delta''_s N''^i_j - \frac{\delta_j \sqrt{g}}{\sqrt{g}} \right) = 0 \\ &\Leftrightarrow \delta_j R^{(1)ij}_{(0)k} = R^{(1)ij}_{(0)k} \left(\left. \partial_s N'^s_j + \partial''_s N''^s_j - \frac{\delta_j g}{2g} \right); i, k = \overline{1, n} \end{split}$$

where $\partial_s = \frac{\partial}{\partial x^s}, \partial''_s = \frac{\partial}{\partial y^s_*}.$

c) For $L = P_{(2)ij}^{(1)m} P_{(2)m}^{(1)ij}$, an *M*-gauge connection *D* and for $\Phi = N_i^k$, we get $\Phi^i = \Phi^{(1)i} = 0$, $\frac{\partial L}{\partial \Phi} = 0$, $\Phi^{(12)j} = 2P_{(2)ij}^{(1)m}$. In the case of identical metric components, i.e., $g_{ij}^{(0)} = g_{ij}^{(1)} = g_{ij}^{(2)} = g_{ij}$, the Einstein-Yang Mills equations (25) have the form

$$\begin{split} \frac{1}{\sqrt{g}} \frac{\delta \mathcal{L}}{\delta \Phi} &\equiv -\delta''_{j} \Phi^{(12)j} - \frac{\delta''_{j}\sqrt{g}}{\sqrt{g}} \Phi^{(12)j} = 0 \\ &\Leftrightarrow 2\partial''_{j} P^{(1)ij}_{(2)m} = -P^{(1)ij}_{(2)m} \cdot \partial''_{j} (ln\sqrt{g}) \\ &\Leftrightarrow \partial''_{j} \Psi^{t}_{sr} + \Psi^{t}_{sr} \cdot \partial''_{j} \left(\frac{ln\sqrt{g}}{2} + g^{ir}g^{sj}g_{mt} \right) = 0. \end{split}$$

where we denoted $\Psi_{sr}^t = \partial''_s N'_r^t$.

The investigation of the solutions of the Einstein-Yang Mills equations on $Osc^{(2)}(M)$ for certain relevant cases will be the subject of a forecoming paper.

References

- Asanov G.S., Finsler geometry, relativity and gauge theories, D.Reidel, Dordrecht, 1985.
- [2] Balan V., A class of solutions for the generalized gauge Asanov equations, Math. Reports, Acad. Editors, Bucharest, 45(4), 1993, 289-292.
- [3] Bejancu A., Functions of direction-dependent gauge theory, Mech. Seminary, Timisoara (13), 1988, 1-60.
- [4] Drehler W., Mayer M.E., Fibre bundle techniques in gauge theories, Springer Verlag, New York, 1977.
- [5] Eck D., Gauge natural bundles and generalized gauge theories, Memoires of American Math. Society, vol.33, (247), 1981.
- [6] Miron R., Anastasiei M., The geometry of Lagrange spaces. Theory and applications, Kluwer Acad. Publishers, 1994.
- [7] Miron R., Atanasiu Gh., Compendium sur les espaces d'ordre superieur, Mech. Seminary, Timişoara (40), 1994.
- [8] Miron R., Atanasiu Gh., Lagrange geometry of second order, Math. Comput. Modelling, vol. 20, no.4/5, 1994, 41-46.
- [9] Munteanu Gh., Structure equations on Osc^(k) M bundle, Analele St. Univ "Al. I. Cuza" Iaşi (to appear).
- [10] Sardanashvili G., Sacharov O., Gauge gravitation theory, World Scientific Publishing, 1992.
- [11] Utiyama R., Invariant theoretical interpretation of interaction, Phys.Rev., 101 (1956), p.1597.

Authors' addresses:

V.Balan Department.of Mathematics I, Politehnica University of Bucharest, Romania,

Gh.Munteanu Department of Geometry, "Transilvania" University of Braşov, Romania,

P.C.Stavrinos Department of Algebra and Geometry, University of Athens, Greece.