GENERALIZED GAUGE ASANOV EQUATIONS ON $\operatorname{Osc}^{(2)}(\mathrm{M})$ BUNDLE

V.Balan, Gh.Munteanu and P.C.Stavrinos

Abstract

The paper introduces the notions of gauge transformations and gauge derivatives, and gives the detailed form of the generalized Einstein Yang-Mills equations for the osculator bundle $\operatorname{Osc}^{(2)}(M)$ of a differentiable manifold M ([7],[8]).

AMS Subject Classification: 53C60, 53C80, 81T13, 53C07
Key words: gauge transformations, osculator bundle, Einstein-Yang Mills equations.

1 Generalized gauge transformations of second order

For a certain state of a mechanical system, many physical theories are concerned with determining the evolution of the given state. This evolution is usually gouverned by Euler-Lagrange equations and has to be invariant with respect to coordinate changes. In gauge theories, is also required the invariance under the so-called gauge transformations. In classical gauge theory the physical system is represented by sections in an associate bundle, and has to be invariant with respect to these gauge changes.

Let M be a differentiable manifold, $\operatorname{dim} M=n,(U, \phi)$ a local map at $x \in U$ and $x=\left(x^{i}\right)$ the local coordinates. If $\left(U^{\prime}, \phi^{\prime}\right)$ is another local map at x, then the expression of $\phi^{\prime} \phi^{-1}:^{n} \rightarrow^{n}$ is

$$
\begin{equation*}
x^{\prime i}=x^{\prime i}(x) \tag{1}
\end{equation*}
$$

Let $E_{2}=\operatorname{Osc}^{(2)} M$ be the osculator bundle of order $2([7],[8])$, which admits a (locally trivial) fiber bundle structure, locally isomorphical with the 2-jet bundle of M. The total space is characterized in a local map $\left(\left(\pi^{2^{-1}}\right)(U), h^{2}\right)$ at $E_{2, z}$ by the coordinates $z=\left(x^{i}, y^{i}, y_{*}^{i}\right), \pi^{2}(z)=x$, with the change-rules

[^0]\[

\left\{$$
\begin{align*}
x^{\prime i} & =x^{\prime i}(x) \tag{2}\\
y^{\prime i} & =\frac{\partial x^{\prime}}{\partial x^{\prime}} y^{j} \\
2 y^{\prime i} & =\frac{\partial y^{\prime}}{\partial x^{j}} y^{j}+2 \frac{\partial y^{\prime i}}{\partial y^{j}} y_{*}^{j}
\end{align*}
$$\right.
\]

In this case, $\pi^{2}: E_{2} \rightarrow M$ is considered here as bundle of base M, but one can consider also the structure $\pi_{1}^{2}: E_{2} \rightarrow E_{1}$, where E_{1} is the tangent bundle $T M$, $\pi^{1}: E_{1} \rightarrow M$ with $\pi^{2}=\pi_{1}^{2} \circ \pi^{1}$.

In classical gauge theories, the gauge transformations are automorphisms of the associated bundle of a principal bundle of Lie group G, which induce the identity on the base manifold. The osculating bundle $O s c^{(2)}(M)$ (denoted hereafter E_{2}) is an associated bundle of the principal bundle of frames of second order P_{2} ([8]). G.S.Asanov ([1]) considers a set of generalized gauge transformations; this concept will be developed in the present approach for E_{2}.

Definition 1.1. A gauge transformation on E_{2} is a sequence $\left(f_{0}, f_{1}, f_{2}\right)$ of diffeomorphisms, $f_{0}: M \rightarrow M, f_{1}: E_{1} \rightarrow E_{1}$ and $f_{2}: E_{2} \rightarrow E_{2}$, such that

$$
\left\{\begin{array}{l}
\pi^{1} \circ f_{0}=f_{1} \circ \pi^{1} \tag{3}\\
\pi_{1}^{2} \circ f_{1}=f_{2} \circ \pi_{1}^{2}
\end{array}\right.
$$

In a local map at $x \in M,\left(\pi^{1^{-1}}(U), h_{1}\right)$ of coordinates $\left(x^{i}, y^{i}\right)$ on E_{1}, since $\pi^{1} \circ f_{0}=$ $f_{1} \circ \pi^{1}$, the application $h_{1} \circ f_{1} \circ h_{1}^{-1}: R^{n} \times R^{n} \rightarrow R^{n} \times R^{n}$ has the expression $z_{1}=\left(x^{i}, y^{i}\right) \rightarrow\left(X^{i}(x), Y^{i}\left(x, y^{i}\right)\right)=\tilde{z}_{1}$.

Then, relative to the map $\left(\pi_{1}^{2^{-1}}(U), h_{1}^{2}\right)$, the application $h_{1}^{2} \circ f_{2} \circ h_{1}^{2^{-1}}$ will have the expression $z_{2}=\left(x^{i}, y_{*}^{i}\right) \rightarrow\left(\tilde{z}_{1}^{i}, Y_{*}^{i}\left(x, y, y_{*}\right)\right)=\tilde{z}_{2}$.

Thus, a gauge transformation will have the local shape

$$
\left\{\begin{array}{l}
\tilde{x}^{i}=X^{i}(x) \tag{4}\\
\tilde{y}^{i}=Y^{i}(x, y) \\
\tilde{y}_{*}^{i}=Y_{*}^{i}\left(x, y, y_{*}\right)
\end{array}\right.
$$

For being a triplet of diffeomorphisms, (4) must have nonvanishing Jacobian, i.e.,

$$
\begin{equation*}
\operatorname{det}(\tilde{z})=\operatorname{det}\left(\frac{\partial X^{i}}{\partial x^{j}}\right) \cdot \operatorname{det}\left(\frac{\partial Y^{i}}{\partial y^{j}}\right) \cdot \operatorname{det}\left(\frac{\partial Y_{*}^{i}}{\partial y_{*}^{j}}\right) \neq 0 \tag{5}
\end{equation*}
$$

Since the triple $\left(f_{0}, f_{1}, f_{2}\right)$ is globally defined, it satisfies the compatibility conditions with the coordinate changes on E_{2}

$$
\begin{cases}{\tilde{x^{\prime}}}^{i}\left(X^{j}\right)(x) & =X^{\prime i}\left(x^{\prime j}(x)\right) \tag{6}\\ {\tilde{y^{\prime}}}^{i}\left(x, y^{\prime}\right) & =Y^{\prime i}\left(x^{\prime}, y^{\prime}\right) \\ {\tilde{y^{\prime}}}^{i}\left(x, y^{\prime}, y^{\prime}{ }_{*}\right) & =Y^{\prime}{ }_{*}\left(x^{\prime}, y^{\prime}, y^{\prime}{ }_{*}\right)\end{cases}
$$

Typical examples of gauge transformations are, e.g., 1) $\tilde{x}^{i}=x^{i}, \tilde{y}^{i}=Y^{i}(x, y), \tilde{y}_{*}^{i}=Y_{*}^{i}\left(x, y, y_{*}\right)$,
2) $\tilde{x}^{i}=X^{i}(x), \tilde{y}^{i}=Y_{j}^{i}(x) y^{j}, \tilde{y}_{*}^{i}=Y_{* j}^{i}(x) y_{*}^{j}$,
3) $\tilde{x}^{i}=X^{i}(x), \tilde{y}^{i}=A_{j_{1}}^{i}(x) y^{j_{1}}, \tilde{y}_{*}^{i}=A_{j_{1} j_{2}}^{i}(x) y^{j_{1}} y^{j_{2}}+A_{j_{1}}^{i}(x) y_{*}^{j_{1}}$,
where $A_{j_{1} j_{2}}^{i}$ are symmetrical, and all obey the conditions (5).
Considering the composition of diffeomorphisms, we infer
Proposition 1.1. The set of gauge transformations on $E_{2}=\operatorname{Osc}^{(2)}(M)$ represents a subgroup in Diff $M \times \operatorname{Diff} E_{1} \times \operatorname{Diff} E_{2}$.

Let consider the tangent spaces in z to $E_{2}, T_{z}\left(E_{2}\right)$, having the rules of change for the local bases ([7])

$$
\begin{cases}\frac{\partial}{\partial x^{i}} & =\frac{\partial y^{\prime m}}{\partial x^{i}} \frac{\partial}{\partial y^{\prime m}}+\frac{\partial y^{\prime m}}{\partial x^{i}} \frac{\partial}{\partial y^{\prime m}}+\frac{\partial x^{\prime m}}{\partial x^{i}} \frac{\partial}{\partial x^{\prime m}} \tag{7}\\ \frac{\partial}{\partial y^{i}} & =\frac{\partial y_{*}^{\prime m}}{\partial y^{i}} \frac{\partial}{\partial y^{\prime m}}+\frac{\partial y^{\prime m}}{\partial y^{i}} \frac{\partial}{\partial y^{\prime m}} \\ \frac{\partial}{\partial y_{*}^{i}} & =\frac{\partial y_{*}^{\prime m}}{\partial y_{*}^{i}} \frac{\partial}{\partial y^{\prime m}}\end{cases}
$$

and the local changes imposed by (4)

$$
\left\{\begin{align*}
\frac{\partial}{\partial x^{i}} & =\frac{\partial Y_{*}^{m}}{\partial x^{i}} \frac{\partial}{\partial \tilde{y}_{*}^{m}}+\frac{\partial Y^{m}}{\partial x^{i}} \frac{\partial}{\partial \tilde{y}^{m}}+X_{i}^{m} \frac{\partial}{\partial \tilde{x}^{m}} \tag{8}\\
\frac{\partial}{\partial y^{i}} & =\frac{\partial Y_{m}^{m}}{\partial y^{i}} \frac{\partial}{\partial \tilde{y}_{*}^{m}}+Y_{i}^{m} \frac{\partial}{\partial \tilde{y}^{m}} \\
\frac{\partial}{\partial y_{*}^{i}} & =Y_{* i}^{m} \frac{\partial}{\partial \tilde{y}_{*}^{m}}
\end{align*}\right.
$$

where

$$
X_{i}^{m}=\frac{\partial X^{m}}{\partial x^{i}}, Y_{i}^{m}=\frac{\partial Y^{m}}{\partial y^{i}}, Y_{* i}^{m}=\frac{\partial Y_{*}^{m}}{\partial y_{*}^{i}}
$$

A special class of geometric objects which occur on E_{2} is the one of d-tensors, which can be formally defined like systems of functions $W_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}$ on E_{2}, obeying the rules of change ([6])

$$
\begin{equation*}
W_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}\left(x^{\prime}, y^{\prime}, y^{\prime}\right)=\frac{\partial x^{\prime i_{1}}}{\partial x^{h_{1}}} \cdots \frac{\partial x^{\prime i_{r}}}{\partial x^{h_{r}}} \cdot \frac{\partial x^{l_{1}}}{\partial x^{j_{1}}} \cdots \frac{\partial x^{l_{s}}}{\partial x^{\prime j_{s}}} \cdot W_{l_{1} \ldots l_{s}}^{h_{1} \ldots h_{r}}\left(x, y, y_{*}\right) \tag{9}
\end{equation*}
$$

The set of d-tensors determines a sub-algebra of the tensor algebra on E_{2}. We denote $Y_{j}^{(1) i}=Y_{j}^{i}, Y_{j}^{(2) i}=Y_{* j}^{i}$ and by $\bar{X}_{j}^{i}, \bar{Y}_{j}^{(\alpha) i}$ the elements of the matrices inverse to X_{j}^{i} and $Y_{j}^{(\alpha) i}, \alpha=\overline{1,2}$ respectively.

Definition 1.2. A h-d-gauge tensor is a d-tensor $W_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}$ on E_{2} which satisfies also

$$
\begin{equation*}
W_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}\left(\tilde{x}, \tilde{y}, \tilde{y}_{*}\right)=X_{h_{1}}^{i_{1}} \ldots X_{h_{r}}^{i_{r}} \cdot \bar{X}_{j_{1}}^{l_{1}} \ldots \bar{X}_{j_{s}}^{l_{s}} \cdot W_{l_{1} \ldots l_{s}}^{h_{1} \ldots h_{r}}\left(x, y, y_{*}\right) \tag{10}
\end{equation*}
$$

We call v_{α} - d-gauge tensor, $\alpha=\overline{1,2}$, a d-tensor $W_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}$ on E_{2} which satisfies the additional property

$$
\begin{equation*}
W_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}\left(\tilde{x}, \tilde{y}, \tilde{y}_{*}\right)=Y_{h_{1}}^{(\alpha) i_{1}} \ldots Y_{h_{r}}^{(\alpha) i_{r}} \cdot \bar{Y}_{j_{1}}^{(\alpha) l_{1}} \ldots \bar{Y}_{j_{s}}^{(\alpha) l_{s}} \cdot W_{l_{1} \ldots l_{s}}^{h_{1} \ldots h_{r}}\left(x, y, y_{*}\right) \tag{11}
\end{equation*}
$$

For example, $\frac{\partial}{\partial y_{*}^{i}}$ is a $v_{\alpha}-d$-gauge tensor. Combining these definitions, we can consider $h-v_{\alpha}-d$-gauge tensors or $v_{1}-v_{2}-d$-gauge tensors. The set of all types of such tensors will be called the set of d-gauge tensors.

2 Gauge covariant derivatives

A non-linear connection N on $E_{2}=\operatorname{Osc}^{(2)}(M)$ is determined by giving a splitting in an exact sequence of bundles or, equivalently, by providing a sub-bundle $N\left(E_{2}\right)$ which is supplementary to the vertical bundle $V\left(E_{2}\right)=\operatorname{Ker}\left(\pi^{2}\right)^{T}$, where $\left(\pi^{2}\right)^{T}$: $T\left(E_{2}\right) \rightarrow T(M)$ is the tangent mapping ([7]). If N is a non-linear connection, then $T\left(E_{2}\right)=N\left(E_{2}\right) \oplus V\left(E_{2}\right)$. The expression of the horizontal lift $\frac{\delta}{\delta x^{i}}=l_{h}\left(\frac{\partial}{\partial x^{i}}\right)$ of $\frac{\partial}{\partial x^{i}}$ is

$$
\begin{equation*}
\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-N_{i}^{j} \frac{\partial}{\partial y^{j}}-N_{* i}^{j} \frac{\partial}{\partial y_{*}^{j}} \tag{12}
\end{equation*}
$$

and we have $\frac{\delta}{\delta x^{i}}=\frac{\partial x^{\prime m}}{\partial x^{i}} \frac{\delta}{\delta x^{\prime m}} ; N_{i}^{j}$ and $N_{* i}^{j}$ are called the coefficients of the non-linear connection N.

Let denote by J the natural almost tangent structure on $E_{2}, J^{3}=0$. In $z \in E_{2}$ we obtain the following distributions corresponding to the non-linear connection N : $N\left(E_{2}\right)=N_{0}, N_{1}=J\left(N_{0}\right), N_{2}=J^{2}\left(N_{0}\right)$ having respectively the following local bases

$$
\begin{equation*}
\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta y^{i}}=J\left(\frac{\delta}{\delta x^{i}}\right)=\frac{\partial}{\partial y^{i}}-N_{i}^{j} \frac{\partial}{\partial y_{*}^{j}} \tag{13}
\end{equation*}
$$

and $\frac{\delta}{\delta y_{*}^{j}}=J\left(\frac{\delta}{\delta y^{i}}\right)=\frac{\partial}{\partial y_{*}^{i}}$.
These are d-vector fields and $\left\{\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta y^{i}}, \frac{\delta}{\delta y_{*}^{i}}\right\}$ is called adapted basis in $T_{z}\left(E_{2}\right)$. The coefficients of the non-linear connection $N\left(E_{2}\right)$ change obeying the rules

$$
\left\{\begin{array}{l}
N_{m}^{\prime i} \frac{\partial x^{\prime \prime}}{\partial x^{j}}=\frac{\partial x^{\prime i}}{\partial x^{m}} N_{j}^{m}-\frac{\partial y^{\prime i}}{\partial x^{j}} \tag{14}\\
N_{* m}^{\prime i}{ }_{* m} \frac{\partial x^{\prime \prime}}{\partial x^{j}}=\frac{\partial x^{i}}{\partial x^{m}} N_{* j}^{m}+\frac{\partial y^{\prime i}}{\partial x^{m}} N_{j}^{m}-\frac{\partial y^{\prime i}}{\partial x^{j}}
\end{array}\right.
$$

The associated dual adapted basis is $\left\{d x^{i}, \delta y^{i}, \delta y_{*}^{i}\right\}$, where
$\delta y^{i}=d y^{i}+N_{j}^{i} x^{j} ; \quad \delta y_{*}^{i}=d y_{*}^{i}+N_{j}^{i} d y^{j}+\left(N_{* j}^{i}+N_{m}^{i} \cdot N_{j}^{m}\right) d x^{j}$.
The adapted fields $\left\{\frac{\delta}{\delta x^{2}}, \frac{\delta}{\delta y^{2}}, \frac{\delta}{\delta y_{*}^{i}}\right\}$ are d-tensors but not gauge fields, generally. The adapted basis consists of d-gauge tensors iff

$$
\left\{\begin{array}{l}
\tilde{N}_{m}^{i} X_{j}^{m}=Y_{m}^{i} N_{j}^{m}-\frac{\partial Y^{i}}{\partial x^{j}} \tag{15}\\
\tilde{N}_{m}^{i} Y_{j}^{m}=Y_{* m}^{i} N_{j}^{m}-\frac{\partial Y_{*}^{i}}{\partial x^{j}} \\
\tilde{N}_{* m}^{i} Y_{j}^{m}=Y_{* m}^{i} N_{* j}^{m}+\frac{\partial Y_{*}^{i}}{\partial y^{m}} N_{j}^{m}-\frac{\partial Y_{*}^{i}}{\partial x^{j}}
\end{array}\right.
$$

Let denote by $V_{1}=V_{z}\left(E_{2}\right)$ and $V_{2}=\operatorname{Ker}\left(\pi_{1, z}^{2}\right)^{T}$, the so-called vertical distributions locally spanned by $\left\{\frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial y_{*}^{i}}\right\}$ and respectively $\left\{\frac{\partial}{\partial y_{*}^{i}}\right\}$; let v_{1}, v_{2} be the two corresponding projectors. For a non-linear connection N, we denote by h the projector onto $N_{z}\left(E_{2}\right)=N_{0}$. We obtain the following derivation operators ([7])
$D_{X}^{(\alpha) h} Y=D_{X^{h}} Y^{v_{\alpha}}$ and $D_{X}^{(\alpha) v_{\beta}} Y=D_{X^{v_{\beta}}} Y^{v_{\alpha}}, \beta=\overline{1,2}, \alpha=\overline{0,2}$ with $v_{0}=h$, defined locally by

$$
\begin{cases}D_{\frac{\delta}{\delta x j}} \frac{\delta}{\delta y^{(\alpha) i}} & =L_{i j}^{(\alpha) m} \frac{\delta}{\delta y^{(\alpha) m}} \tag{16}\\ D_{\frac{\delta}{\delta y^{(\beta) j}} \overline{\delta y^{(\alpha) i}}}=C_{(\beta) i j}^{\left(\alpha y^{(\alpha) m}\right.}, \alpha=\overline{0,2}, \beta=\overline{1,2}\end{cases}
$$

where $y^{(0) i}=x^{i}, y^{(1) i}=y^{i}$ and $y^{(2) i}=y_{*}^{i}$; their coefficients change by the following rules

$$
\left\{\begin{array}{l}
L_{p q}^{(\alpha)^{\prime} i} \frac{\partial x^{\prime p}}{\partial x^{h}} \frac{\partial x^{\prime q}}{\partial x^{m}}=L_{h m}^{(\alpha) p} \frac{\partial x^{\prime i}}{\partial x^{p}}-\frac{\partial^{2} x^{\prime i}}{\partial x^{h} \partial x^{m}} \tag{17}\\
C_{(\beta) p q}^{(\alpha))^{\prime}} \frac{\partial x^{p} p}{\partial x^{h}} \frac{\partial x^{\prime}}{\partial x^{m}}=\frac{\partial x^{i}}{\partial x^{j}} C_{(\beta) h m}^{(\alpha) i}
\end{array}\right.
$$

We remark that, in particular, the coefficients $L^{(\alpha)}$ can be equal and that $C_{(\beta)}^{(\alpha)}$ are d-tensors which can coincide for $\alpha=\overline{0,2}$. In this case, D will be called M-linear connection.

Also, $D^{(\alpha) h}$ and $D^{(\alpha) v_{\beta}}$ determine the following covariant derivation operators on d-tensors

The $h-v_{\beta}$ gauge tensorial character is preserved if aditionally we have

$$
\left\{\begin{array}{l}
\tilde{L}_{p q}^{(\alpha) r}=\bar{Y}_{p}^{(\alpha) i} \cdot \bar{X}_{q}^{j} \cdot Y_{m}^{(\alpha) r} \cdot L_{i j}^{(\alpha) m}-\bar{X}_{q}^{j} \cdot \bar{Y}_{p}^{(\alpha) i} \cdot \frac{\delta Y_{i}^{(\alpha) r}}{\delta x^{j}} \tag{18}\\
\tilde{C}_{(\beta) p q}^{(\alpha) r}=\bar{Y}_{p}^{(\alpha) i} \cdot \bar{Y}_{q}^{(\beta) j} \cdot Y_{m}^{(\alpha) r} \cdot C_{(\beta) i j}^{(\alpha) m}-\bar{Y}_{q}^{(\beta) j} \cdot \bar{Y}_{p}^{(\alpha) i} \cdot \frac{\delta Y_{i}^{(\alpha) r}}{\delta y^{(\beta) j}}
\end{array}\right.
$$

where $\alpha=\overline{0,2}, \beta=\overline{1,2}, Y_{j}^{(0) i}=X_{j}^{i}, Y_{j}^{(1) i}=Y_{j}^{i}, Y_{j}^{(2) i}=Y_{* j}^{i}$ and the overlined coefficients belong to the corresponding inverse matrices. We remark that for $\beta>$ $\alpha, C_{(\beta) p q}^{(\alpha) r}$ become d-gauge tensors.

Definition 2.1. A d-linear connection is said to be d-linear gauge connection iff its coefficients satisfy (17) and (18). If its coefficients do not depend on $\alpha \in \overline{0,2}$, then it is called M-gauge connection.

In the following we shall also denote by $d_{m}^{(\alpha) h} W_{j_{1} \ldots j_{s}}^{(\alpha) i_{1} \ldots i_{r}}$ and $d_{m}^{(\alpha) v_{\beta}} W_{j_{1} \ldots j_{s}}^{(\alpha) i_{1} \ldots i_{r}}$ the h - and v_{β}-gauge derivatives of a d-gauge tensor, respectively.

3 Metric d-gauge connections of second order

Let be $g_{i j}^{(\alpha)}\left(x, y, y_{*}\right), \alpha=\overline{0,2}$ a system of d-tensors, symmetric and positively defined, with rank $\left(g_{i j}^{(\alpha)}\right)=n$, where $g_{i j}^{(0)}$ is h - d-gauge tensor and $g_{i j}^{(\beta)}$ are v_{β} - d-gauge tensors, $\beta=\overline{1,2}$; these d-tensors will be called h - and v_{β}-gauge metrics respectively.

Let N be a d-gauge linear connection. Then

$$
G=g_{i j}^{(0)} d x^{i} \otimes d x^{j}+g_{i j}^{(1)} \delta y^{(1) i} \otimes \delta y^{(1) j}++g_{i j}^{(2)} \delta y^{(2) i} \otimes \delta y^{(2) j}
$$

is globally defined on E_{2} and is said to define a gauge metric structure on E_{2}.
Definition 3.1. A d-gauge linear connection D on E_{2} is a h - (resp. $v_{\beta^{-}}$) metric connection iff

$$
\begin{equation*}
g_{i j \mid m}^{(\alpha)(\alpha)}=0 \text { and } d_{m}^{(\alpha) h} g_{i j}^{(\alpha)}=0 \tag{19}
\end{equation*}
$$

(resp. $g_{i j \mid m}^{(\alpha)(\alpha)(\beta)}=0$ and $\left.d_{m}^{(\alpha) v_{\alpha}} g_{i j}^{(\alpha)}=0\right), \forall \alpha=\overline{0,2}$.
If D is both h - and v_{β}-metric then we say that D is a d-gauge metric connection.
Theorem 3.1. The following d-linear connection ([7])

$$
\left\{\begin{array}{l}
L_{i j}^{(\alpha) m}=\frac{1}{2} g^{(\alpha) m s}\left\{\frac{\delta g_{s j}^{(\alpha)}}{\delta x^{i}}+\frac{\delta g_{i s}^{(\alpha)}}{\delta x^{j}}-\frac{\delta g_{i j}^{(\alpha)}}{\delta x^{s}}\right\} \tag{20}\\
C_{(\beta) i j}^{(\alpha) m}=\frac{1}{2} g^{(\alpha) m s}\left\{\frac{\delta g_{s j}^{(\alpha)}}{\delta y^{(\beta) i}}+\frac{\delta g_{i s}^{(\alpha)}}{\delta y^{(\beta) j}}-\frac{\delta g_{i j}^{(\alpha)}}{\delta y^{(\beta) s}}\right\}, \alpha=\overline{0, k}, \beta=\overline{1,2}
\end{array}\right.
$$

is a symmetric d-linear gauge connection.

4 Einstein-Yang Mills equations of second order

Let $L_{0}\left(x, y, y_{*}\right)$ be a Lagrangian defined on a compact set $\Omega \subset^{3 n}$, a non-linear gauge connection $N=\left\{N_{j}^{i}, N_{* j}^{i}\right\}$, and a metric gauge structure G on E_{2} defined by the metric d-gauge fields $g_{i j}^{(\alpha)}\left(x, y, y_{*}\right), \alpha=\overline{0,2}$.

Let Φ be a gauge field, that in applications belongs usually to the bundle of linear connections. In the present context, L_{0} depends on $z=\left(x, y, y_{*}\right)$ through Φ and its derivatives $\frac{\delta \Phi}{\delta x^{2}}, \frac{\delta \Phi}{\delta y^{2}}, \frac{\delta \Phi}{\delta y_{*}^{2}}$, i.e.

$$
\begin{equation*}
L_{0}\left(x, y, y_{*}\right)=L_{0}\left(\Phi, \frac{\delta \Phi}{\delta x^{i}}, \frac{\delta \Phi}{\delta y^{i}}, \frac{\delta \Phi}{\delta y_{*}^{i}}\right) . \tag{21}
\end{equation*}
$$

For Φ varying in Ω, the action $\int_{\Omega} L_{0}\left(x, y^{(1)}, y^{(2)}\right) d \omega$, where $d \omega=d x^{1} \wedge \ldots \wedge d y^{(2) n}$ depends on the local coordinates. In order to remove this inconvenience, we consider the Lagrangian density:

$$
\begin{equation*}
\mathcal{L}\left(x, y, y_{*}\right)=L_{0}\left(x, y, y_{*}\right) \cdot \sqrt{g^{(0)} g^{(1)} g^{(2)}}, \tag{22}
\end{equation*}
$$

where $g^{(\alpha)}=\operatorname{det}\left(g_{i j}^{(\alpha)}\right), \alpha=\overline{0,2}$. Also, we remark that

$$
\begin{equation*}
\mathcal{L}\left(x, y, y_{*}\right)=\mathcal{L}\left(x, y^{\prime}, y^{\prime}{ }_{*}\right) \cdot \mathcal{J}, \text { where } \mathcal{J}=\operatorname{det}\left(\frac{\partial x^{\prime i}}{\partial x^{j}}\right) . \tag{23}
\end{equation*}
$$

So that, the action $I(\Phi)=\int_{\Omega} \mathcal{L}\left(x, y, y_{*}\right) d \omega$ is independent of the coordinates on $E_{2}=O s c^{(2)}(M)$. Applying the variational principle, the extremization of action $I(\Phi)$ leads to the following Euler-Lagrange attached to Φ

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \Phi}-\frac{\partial}{\partial x^{i}} \frac{\partial \mathcal{L}}{\partial\left(\frac{\partial \Phi}{\partial x^{i}}\right)}-\frac{\partial}{\partial y^{i}} \frac{\partial \mathcal{L}}{\partial\left(\frac{\partial \Phi}{\partial y^{i}}\right)}-\ldots-\frac{\partial}{\partial y_{*}^{i}} \frac{\partial \mathcal{L}}{\partial\left(\frac{\partial \Phi}{\partial y_{*}^{i}}\right)}=0 \tag{24}
\end{equation*}
$$

Taking into consideration the gauge transformations, it is more convenient to express (24) in the adapted basis $\left(\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta y^{i}}, \frac{\delta}{\delta y_{*}^{i}}\right)$. The resulting relations look more complicated, but they evidentiate easier that (24) is invariant with respect to the change of coordinates (2) on E_{2}.

In (21), L depends on $\frac{\partial \Phi}{\partial x^{i}}, \frac{\partial \Phi}{\partial y^{i}}, \frac{\partial \Phi}{\partial y_{*}^{i}}$, by means of

$$
\frac{\delta \Phi}{\delta x^{i}}=\frac{\partial \Phi}{\partial x^{i}}-N_{i}^{j} \frac{\partial \Phi}{\partial y^{j}}-N_{* i}^{j} \frac{\partial \Phi}{\partial y_{*}^{j}}, \quad \frac{\delta \Phi}{\delta y^{i}}=\frac{\partial \Phi}{\partial y^{i}}-N_{i}^{j} \frac{\partial \Phi}{\partial y_{*}^{j}} \text { and } \frac{\delta \Phi}{\delta y_{*}^{j}}=\frac{\partial \Phi}{\partial y_{*}^{i}} .
$$

One can easily check that

$$
\begin{cases}\frac{\partial L}{\partial\left(\frac{\partial \Phi}{\partial i^{2}}\right)} & =\frac{\partial L}{\partial\left(\frac{\delta \Phi}{\delta \tilde{L}^{i}}\right)} \\ \frac{\partial L^{2}}{\partial\left(\frac{\partial \Phi}{\partial y^{i}}\right)} & =\frac{N_{j}^{i}}{\partial\left(\frac{\delta \Phi}{\delta x j}\right)}\left(-N_{j}^{i}\right)+\left.\frac{\partial L}{\partial\left(\frac{\delta \Phi}{\delta y^{i}}\right)}\right|_{C_{1}}, \\ \frac{\partial L}{\partial\left(\frac{\partial \Phi}{\partial y_{*}^{i}}\right)} & =\frac{\partial L}{\partial\left(\frac{\partial \Phi}{\partial x^{j}}\right)}\left(-N_{* j}^{i}\right)+\left.\frac{\partial L}{\partial\left(\frac{\delta \Phi}{\delta y^{j}}\right)}\right|_{C_{1}}\left(-N_{j}^{i}\right)+\left.\frac{\partial L}{\partial\left(\frac{\delta \Phi}{\delta y_{*}^{i}}\right)}\right|_{C_{1}, C_{2}}\end{cases}
$$

where

$$
\begin{cases}\left.\#\right|_{C_{1}} & =\left.\#\right|_{\frac{\delta \Phi}{\delta \infty}=C_{1}=\text { const. }} \\ \left.\#\right|_{C_{1}, C_{2}} & =\left.\#\right|_{\frac{\delta \Phi}{\delta x^{j}}=C_{1}=\text { const. }, \frac{\delta \Phi}{\delta y^{j}}=C_{2}=\text { const. }}\end{cases}
$$

Using these relations in (24), after reducing the terms, one obtains

Theorem 4.1 The adapted form of the Einstein- Yang Mills equations on $\operatorname{Osc}^{(2)}(M)$ for a M-gauge connecton is

$$
\left\{\begin{align*}
& \frac{1}{\sqrt{g}} \frac{\delta \mathcal{L}}{\delta \Phi} \equiv \frac{\partial L}{\partial \Phi}-\left(\delta_{i} \Phi^{i}+\delta^{\prime}{ }_{i} \Phi^{(1) i}+\delta^{\prime \prime}{ }_{i} \Phi^{(2) i}\right)+ \tag{25}\\
&+\Phi^{j} \delta^{\prime}{ }_{i} N^{\prime}{ }_{j}{ }_{j}+\Phi^{(1) j} \delta^{\prime \prime}{ }_{i} N_{j}^{i}+\Phi^{j} \delta^{\prime \prime}{ }_{i}{N^{\prime \prime}}^{i}{ }_{j}+\Phi^{j}{N^{\prime}}^{s} \delta^{\prime \prime}{ }_{5} N^{\prime i}{ }_{j}- \\
&-\frac{1}{\sqrt{g}}\left(\Phi^{i} \delta_{i} \sqrt{g}+\Phi^{(1) i} \delta^{\prime}{ }_{i} \sqrt{g}+\Phi^{(2) i} \delta^{\prime \prime}{ }_{i} \sqrt{g}\right)+\frac{1}{\sqrt{g}} L \frac{\delta \sqrt{g}}{\delta \Phi}=0,
\end{align*}\right.
$$

where

$$
\begin{equation*}
\Phi \in\left\{g_{i j}, g_{i j}^{\prime}, g^{\prime \prime}{ }_{i j}, L_{j k}^{i},{C^{\prime}}_{j k}^{i}, C^{\prime \prime i}{ }_{j k},{N^{\prime}}_{j}^{i}, N^{\prime \prime i}{ }_{j}\right\} \tag{26}
\end{equation*}
$$

and we used the notations

$$
\left\{\begin{array}{l}
\Phi^{i}=\frac{\partial L}{\partial\left(\delta_{i} \Phi\right)}, \Phi^{(1) i}=\left.\frac{\partial L}{\partial\left(^{\prime} \Phi\right)}\right|_{C_{1}}, \Phi^{(12) i}=\left.\frac{\partial L}{\partial\left(\delta^{\prime \prime}{ }_{i} \Phi\right)}\right|_{C_{1}, C_{2}}, \\
\delta_{i}=\frac{\delta}{\delta x^{i}}, \delta^{\prime}{ }_{i}=\frac{\delta}{\delta y^{i}}, \delta^{\prime \prime}{ }_{i}=\frac{\delta}{\delta y_{i}^{i}} \\
L_{j k}^{i}=L_{j k}^{(\alpha) i}, C^{\prime \prime}{ }_{j k}=C_{(1) j) i}^{(\alpha) i}, C^{\prime \prime \prime}{ }_{j k}=C_{(2) j k}^{(\alpha) i}, \alpha=\overline{0,2}, \\
\sqrt{g}=\sqrt{g^{(1)} g^{(2)} g^{(3)}}, N^{\prime \prime}{ }_{j}^{i}=N_{j}^{i}, N^{\prime \prime}{ }_{j}=N_{* j}^{i} .
\end{array}\right.
$$

Remark. The last left term in (25) is effective only for $\Phi \in\left\{g_{i j}, g^{\prime}{ }_{i j}, g^{\prime \prime}{ }_{i j}\right\}$.
From (25) results the invariance of the Euler-Lagrange equations with respect to the coordinate changes (2). Similar calculation proves that the Euler-Lagrange equations are not gauge-invariant in general, but if L is a scalar field which is invariant relative to both (2) and (4), then this becomes true. Therefore, an important problem is to determine the Lagrangian densities which are gauge-invariant. The Utiyama theorem is generalized in ([8]), where is shown that in the osculator bundle associated to the bundle of frames P_{n}, a gauge-invariant Lagrangian \mathcal{L} depends only on the curvature form of a given connection from the bundle of connections (i.e., $\mathcal{L}=\mathcal{L}_{0} \circ \Omega$, where Ω is the curvature form and \mathcal{L}_{0} is a fixed gauge-invariant Lagrangian density).

For a given gauge non-linear connection $N=\left\{{N^{\prime}}_{j}^{i}, N^{\prime \prime}{ }_{j}^{i}\right\}$ and a M-linear connection $D=\left\{L_{j k}^{i}, C^{\prime}{ }_{j k},{C^{\prime \prime}}^{i}{ }_{j k}\right\}$, are derived the following components of the corresponding torsion d-gauge tensors
and the curvature d-gauge tensors

$$
\left\{\begin{array}{l}
R_{r p q}^{m}=\delta_{q} L_{r p}^{m}-\delta_{p} L_{r q}^{m}+L_{r p}^{j} L_{j r}^{m}-L_{r q}^{j} L_{j p}^{M}+\sum_{\beta=1}^{2} C_{(\beta) r j}^{m} R_{(0) p q}^{(\beta) j}, \\
P_{(\beta) r p q}^{m}=\frac{\delta L_{r p}^{m}}{\delta y^{(\beta) q}}-C_{(\beta) r q \mid p}^{m}+\sum_{\gamma=1}^{2} C_{(\gamma) r j}^{m} P_{(\beta) p q}^{(\gamma))}, \beta=\overline{1,2} \\
P_{(1)(2) r p q}^{m}=\frac{\delta C_{(1) r p}^{m}}{\delta y^{(2) q}}-\left.C_{(2) r q}^{m}\right|_{p} ^{(1)}+C_{(2) r j}^{m} P_{(1)(2) p q}^{(2) j}, \\
S_{(\beta) r p q}^{m}=\frac{\delta C_{(\beta) r p}^{m}}{\delta y^{(\beta) q}}-\frac{\delta C_{(\beta) r q}^{m}}{\delta y^{(\beta) p}}+ \\
\quad+C_{(\gamma) r p}^{j} C_{(\beta) j q}^{m}-C_{(\gamma) r q}^{j} C_{(\beta) j p}^{m}+R_{(\beta) p q}^{(1) j} C_{(\beta) r j}^{m}, \beta=\overline{1,2}
\end{array}\right.
$$

where $C_{(1)}=C^{\prime}, C_{(2)}=C^{\prime \prime}$. If D is a d-gauge connection, then the torsions and curvatures described above are d-gauge tensors.

Theorem 4.2. The Einstein- Yang Mills equations in G. S. Asanov's form have the expressions

$$
\left\{\begin{align*}
\frac{1}{\sqrt{g}} \frac{\delta \mathcal{L}}{\delta \Phi} & \equiv \frac{\partial L}{\partial \Phi}-\left(\left.\Phi^{i}\right|_{i}+\left.\Phi^{(1) i}\right|_{i} ^{(1)}+\left.\Phi^{(12) i}\right|_{i} ^{(2)}\right)+ \tag{27}\\
& +\left(T_{j m}^{m}+P_{(1) j m}^{(1) m}+P_{(2) j m}^{(2) m}\right) \Phi^{j}+ \\
& +\left(P_{(2) j m}^{(1) m}-2 C_{(1) m j}^{m}+S_{(1) j m}^{(1) m}\right) \Phi^{(1) j}+ \\
& +\left(S_{(2) j m}^{(2) m}-2 C_{(2) m j}^{m}\right) \Phi^{(12) j}- \\
-\frac{1}{\sqrt{g}} & \left(D_{j}^{*} \sqrt{g}+D_{j}^{\prime *} \sqrt{g}+D_{j}^{\prime \prime *} \sqrt{g}\right) \Phi^{j}+\theta=0
\end{align*}\right.
$$

where

$$
\left\{\begin{array}{l}
D_{i}^{*} \sqrt{g}=\delta_{i} \sqrt{g}-3 L_{m i}^{m} \sqrt{g} \\
D_{i}^{\prime *} \sqrt{g}=\delta^{\prime}{ }_{i} \sqrt{g}-3 C_{(1) m i}^{m} \sqrt{g} \\
{D^{\prime \prime *}}_{i}^{\prime *} \sqrt{g}=\delta^{\prime \prime}{ }_{i} \sqrt{g}-3 C_{(2) m i}^{m} \sqrt{g}
\end{array}\right.
$$

In (27) we denoted $\theta=\frac{L}{2} A^{i j}$, where for $\Phi \in\left\{g_{i j}^{(0)}, g_{i j}^{(1)}, g_{i j}^{(2)}\right\}, A^{i j}$ equals respectively $g^{(0) i j}, g^{(1) i j}, g^{(2) i j}$ (the d-gauge tensors which are reciprocal to $g_{i j}^{(0)}, g_{i j}^{(1)}, g_{i j}^{(2)}$), and for the rest of alternatives for $\theta, A^{i j}$ is set null.

We remark that raising and lowering the indices by means of the tensors

$$
\left\{g^{(0) i j}, g^{(1) i j}, g^{(2) i j} ; g_{i j}^{(0)}, g_{i j}^{(1)}, g_{i j}^{(2)}\right\}
$$

preserves the gauge character of d-tensor fields. Therefore, the torsions and curvatures of the M-gauge connection D produce scalar gauge fields as follows

$$
\left\{\begin{array}{l}
L_{(\alpha), \tau}=\tau_{i j}^{m} \tau_{m}^{i j}, \\
L_{(\alpha), \varrho}=\varrho_{i j \varrho}^{m} \varrho_{m}^{i j l},
\end{array}\right.
$$

where $\left\{\tau_{j k}^{i}\right\}$ is any torsion d-tensor field of $D,\left\{\varrho_{j k l}^{i}\right\}$ curvature of D, and

$$
\left\{\begin{array}{l}
\tau_{m}^{i j}=g^{(\alpha) i r} g^{(\alpha) j s} g_{m q}^{(\alpha)} \tau_{r s}^{q}, \\
\varrho_{m}^{i j l}=g^{(\alpha) i r} g^{(\alpha) j s} g^{(\alpha) l t} g_{m q}^{(\alpha)} \varrho_{r s t}^{q} .
\end{array}\right.
$$

Thus, a general gauge invariant Lagrangian which depends only on the curvatures and torsions of a metric gauge connection is $\mathcal{L}=L \sqrt{g}$, where L is a linear combination with real coefficients of gauge scalar fields built as above.

In the following, we determine the Einstein-Yang Mills equations for several types of such elementary Lagrangians.
a) For $L=T_{i j}^{m} T_{m}^{i j}$, an M-gauge connection D and for $\Phi=L_{j k}^{i}$, the equations (25) become

$$
\frac{1}{\sqrt{g}} \frac{\delta \mathcal{L}}{\delta \Phi} \equiv 2 T_{j k}^{i}=0
$$

and are equivalent to the condition that D is h-symmetrical ([6],[2]).
b) For $L=R_{(0) i j}^{(1) m} R_{(0) m}^{(1) i j}$, an M-gauge connection D and for $\Phi=N_{i}^{k}$, we have

$$
\Phi^{(1) i}=\Phi^{(12) i} \equiv 0, \frac{\partial L}{\partial \Phi}=0, \Phi^{j}=2 R_{(0) k}^{(1) i j}
$$

In this case, the Asanov equations are

$$
\begin{aligned}
\frac{1}{\sqrt{g}} \frac{\delta \mathcal{L}}{\delta \Phi} \equiv & -D_{i} \Phi^{i}+\left(T_{j m}^{m}+P_{(1) j m}^{(1) m}+P_{(2) j m}^{(2) m}\right) \Phi^{j}+ \\
& -\frac{1}{\sqrt{g}} \Phi^{j}\left(D_{j}^{*} \sqrt{g}+D_{j}^{\prime *} \sqrt{g}+D_{j}^{\prime \prime} \sqrt{g}\right)=0 .
\end{aligned}
$$

The expressions (25) for these n^{2} equations in the unknowns $\left\{N_{i}^{k}\right\}$ become

$$
\begin{aligned}
\frac{1}{\sqrt{g}} \frac{\delta \mathcal{L}}{\delta \Phi} \equiv & -\delta_{i} \Phi^{i}+\Phi^{j}\left({\left.\delta^{\prime}{ }_{i} N^{\prime}{ }_{j}^{i}+\delta^{\prime \prime}{ }_{i}{N^{\prime \prime}}_{j}^{i}+{N^{\prime}}_{i}^{s} \delta^{\prime \prime}{ }_{s} N^{\prime \prime i}{ }_{j}-\frac{\delta_{j} \sqrt{g}}{\sqrt{g}}\right)=0} \quad \Leftrightarrow \delta_{j} R_{(0) k}^{(1) i j}=R_{(0) k}^{(1) i j}\left(\partial_{s}{N^{\prime s}}_{j}^{s}+\partial^{\prime \prime}{ }_{s}{N^{\prime \prime}}^{s}-\frac{\delta_{j} g}{2 g}\right) ; i, k=\overline{1, n}\right.
\end{aligned}
$$

where $\partial_{s}=\frac{\partial}{\partial x^{s}}, \partial^{\prime \prime}{ }_{s}=\frac{\partial}{\partial y_{*}^{s}}$.
c) For $L=P_{(2) i j}^{(1) m} P_{(2) m}^{(1) i j}$, an M-gauge connection D and for $\Phi=N_{i}^{k}$, we get $\Phi^{i}=\Phi^{(1) i}=0, \frac{\partial L}{\partial \Phi}=0, \Phi^{(12) j}=2 P_{(2) i j}^{(1) m}$. In the case of identical metric components, i.e., $g_{i j}^{(0)}=g_{i j}^{(1)}=g_{i j}^{(2)}=g_{i j}$, the Einstein-Yang Mills equations (25) have the form

$$
\begin{aligned}
\frac{1}{\sqrt{g}} \frac{\delta \mathcal{L}}{\delta \Phi} \equiv & -\delta^{\prime \prime}{ }_{j} \Phi^{(12) j}-\frac{\delta^{\prime \prime}{ }_{j \sqrt{g}}}{\sqrt{g}} \Phi^{(12) j}=0 \\
& \Leftrightarrow 2 \partial^{\prime \prime}{ }_{j} P_{(2) m}^{(1) i j}=-P_{(2) m}^{(1) i j} \cdot \partial^{\prime \prime}{ }_{j}(\ln \sqrt{g}) \\
& \Leftrightarrow \partial^{\prime \prime}{ }_{j} \Psi_{s r}^{t}+\Psi_{s r}^{t} \cdot \partial^{\prime \prime}{ }_{j}\left(\frac{\ln \sqrt{g}}{2}+g^{i r} g^{s j} g_{m t}\right)=0,
\end{aligned}
$$

where we denoted $\Psi_{s r}^{t}=\partial^{\prime \prime}{ }_{s} N^{\prime t}{ }_{r}$.
The investigation of the solutions of the Einstein-Yang Mills equations on $O s c^{(2)}(M)$ for certain relevant cases will be the subject of a forecoming paper.

References

[1] Asanov G.S., Finsler geometry, relativity and gauge theories, D.Reidel, Dordrecht, 1985.
[2] Balan V., A class of solutions for the generalized gauge Asanov equations, Math. Reports, Acad. Editors, Bucharest, 45(4), 1993, 289-292.
[3] Bejancu A., Functions of direction-dependent gauge theory, Mech. Seminary, Timisoara (13), 1988, 1-60.
[4] Drehler W., Mayer M.E., Fibre bundle techniques in gauge theories, Springer Verlag, New York, 1977.
[5] Eck D., Gauge natural bundles and generalized gauge theories, Memoires of American Math. Society, vol.33, (247), 1981.
[6] Miron R., Anastasiei M., The geometry of Lagrange spaces. Theory and applications, Kluwer Acad. Publishers, 1994.
[7] Miron R., Atanasiu Gh., Compendium sur les espaces d'ordre superieur, Mech. Seminary, Timişoara (40), 1994.
[8] Miron R., Atanasiu Gh., Lagrange geometry of second order, Math. Comput. Modelling, vol. 20, no.4/5, 1994, 41-46.
[9] Munteanu Gh., Structure equations on $O s c^{(k)} M$ bundle, Analele St. Univ "Al. I. Cuza" Iaşi (to appear).
[10] Sardanashvili G., Sacharov O., Gauge gravitation theory, World Scientific Publishing, 1992.
[11] Utiyama R., Invariant theoretical interpretation of interaction, Phys.Rev., 101 (1956), p. 1597.

Authors' addresses:
V.Balan

Department. of Mathematics I,
Politehnica University of Bucharest, Romania,
Gh.Munteanu
Department of Geometry,
"Transilvania" University of Braşov, Romania,

P.C.Stavrinos

Department of Algebra and Geometry, University of Athens, Greece.

[^0]: Editor Gr.Tsagas Proceedings of the Workshop on Global Analysis, Differential Geometry and Lie Algebras, 1995, 21-31
 (c)Balkan Society of Geometers, Geometry Balkan Press

