GENERALIZED GAUGE ASANOV EQUATIONS
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Abstract

The paper introduces the notions of gauge transformations and gauge deriva-
tives, and gives the detailed form of the generalized Einstein Yang-Mills equa-
tions for the osculator bundle Osc!® (M) of a differentiable manifold M ([7],[8]).
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1 Generalized gauge transformations of second or-
der

For a certain state of a mechanical system, many physical theories are concerned with
determining the evolution of the given state. This evolution is usually gouverned by
Euler-Lagrange equations and has to be invariant with respect to coordinate changes.
In gauge theories, is also required the invariance under the so-called gauge transfor-
mations. In classical gauge theory the physical system is represented by sections in
an associate bundle, and has to be invariant with respect to these gauge changes.

Let M be a differentiable manifold, dim M = n, (U, ¢) a local map at x € U
and x = (x%) the local coordinates. If (U’,¢') is another local map at z, then the
expression of ¢'¢~! =" is

2 = 2'i(z) M)

Let Ey=0sc® M be the osculator bundle of order 2 ([7],[8]), which admits a
(locally trivial) fiber bundle structure, locally isomorphical with the 2-jet bundle of
M. The total space is characterized in a local map ((72  )(U),h?) at B, by the
coordinates z = (x%, 5%, y), 7?(2) = x, with the change-rules
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2 _ x’i(gj)’

11 _ 82" i
no Y g oyt j
2y, = Dd Yy +2 Dy7 Yx

In this case, 72 : E5 — M is considered here as bundle of base M, but one can
consider also the structure 77% : By — FEj, where F; is the tangent bundle TM,
7l By — M with 72 = 12 o 7l

In classical gauge theories, the gauge transformations are automorphisms of the
associated bundle of a principal bundle of Lie group G, which induce the identity on
the base manifold. The osculating bundle Osc(®) (M) (denoted hereafter Fs) is an as-
sociated bundle of the principal bundle of frames of second order P» ([8]). G.S.Asanov
([1]) considers a set of generalized gauge transformations; this concept will be devel-
oped in the present approach for Fs.

Definition 1.1. A gauge transformation on Es is a sequence (fo, f1, f2) of diffeo-
morphisms, fo: M — M, f1 : By — E7 and f5: Fs — FE5, such that

{771C>f()=f107f1 (3)

2o fi = faom}

In alocal map at z € M, (r' (U), hy) of coordinates (2, y") on Ey, since wlo fo =
f1 om!, the application hy o fi o hfl : R” x R* — R™ x R" has the expression
2 = (2%, y) — (Xi(2), Yi(x,9")) = 7.

Then, relative to the map (72 (U), h2), the application h2 o f 0 h2 " will have
the expression zp = (2%, y%) — (21, Yi(2,y,9.)) = Zo.

Thus, a gauge transformation will have the local shape

o= X'(x),
g o= Yi(xy), (4)
v, = Y%,y,9.),

For being a triplet of diffeomorphisms, (4) must have nonvanishing Jacobian, i.e.,

i oXi oY’ Y}
det(z) = det(%) : det(aiyj) - det( o

) #0. (5)

Since the triple (fo, f1, f2) is globally defined, it satisfies the compatibility condi-
tions with the coordinate changes on Fy

T(XN@) = X'@@)
viwy) = Yy (6)
Vi@ ) = Y@ yy)

Typical examples of gauge transformations are, e.g.,
]‘) ‘%Z = xlaﬂl = Yz(x,y)vgi = Y*Z(xay,y*)a



GENERALIZED GAUGE ASANOV EQUATIONS 23

2) & = X'(2),§' = Y/ @)y, 5 = Yi;(2)yl, |
3) &= X'(x), 7" = Aj, (2)y", 0L = Aj 5, (@)y7 y7? + A (2)y
where A% . are symmetrical, and all obey the conditions (5).

Considering the composition of diffeomorphisms, we infer

Proposition 1.1. The set of gauge transformations on Fo = 050(2)(M) repre-
sents a subgroup in Dif fM x Dif fE, x Dif fEs.

Let consider the tangent spaces in z to Fa, T, (F2), having the rules of change for
the local bases ([7])

i - ayl’;n 8 ay/’ffl 8 aa:/"'L a
oxt - ozt ay/in + Oxt ay/m + Oxt Ox'™
o _ I o W™ o
o _ ol s
oy, T Oyl o'
and the local changes imposed by (4)
8. _ oy o ay™ _9 m_9
oxt T ozt Oym + dxt Ogm + X oxm
9. _ Y™ 9 m_9
oy = oy ogm T Y g (8)
A m_0
ol = Vi
where
m m m
xm 0X m_ oY m_ oY

i_axi7z_ayi7*z_ayi

A special class of geometric objects which occur on Ej is the one of d-tensors,
which can be formally defined like systems of functions W;llj“ on F5, obeying the
rules of change ([6])

axlil axlir al'll &Tls hi...h
= oxh T Ogphe O/t T HgptIe W (@, Y, ). (9)

01,1 1o
le...j:(x 7y 7y *)

The set of d-tensors determines a sub-algebra of the tensor algebra on Es. We
denote Yj(l)i = in, Yj(Q)i = ij and by Y;,?;a)i the elements of the matrices inverse
to X} and Yj(a)i, a = 1,2 respectively.

Definition 1.2. A h-d-gauge tensor is a d-tensor W;llj“ on Fs which satisfies
also

Wi (3,5, = X X KoKW (g, ). (10)

We call v,-d-gauge tensor, a = 1,2, a d-tensor W;ll; on Fy which satisfies the
additional property
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Wit (G, g,) = YO Ly P PO gyt gy ). (1)

J1---Js J1

For example is a vq-d-gauge tensor. Combining these definitions, we can consider

k) 6 ’L
h-v,-d-gauge tensors or v1-vo-d-gauge tensors. The set of all types of such tensors

will be called the set of d-gauge tensors.

2 (Gauge covariant derivatives

A non-linear connection N on Fy = Osc(® (M) is determined by giving a splitting
in an exact sequence of bundles or, equivalently, by providing a sub-bundle N(Es)
which is supplementary to the vertical bundle V(E;) = Ker(n?)T, where (72T :
T(E3) — T(M) is the tangent mapping ([7]). If N is a non—linear connection, then
T(E3) = N(E3) ® V(FE3). The expression of the horizontal lift 511 = (aw) of 8‘21
is

1) 0 -0 ; 5
- = - — N — 7. 12
oxt  Oxt Coyi 8 (12)
and we have <2, = 22" N} J and N, I are called the coefficients of the non-linear

oxt ozt 5.L”""
connection N.

Let denote by J the natural almost tangent structure on E,, J3 = 0. In z €
we obtain the following distributions corresponding to the non-linear connection N:
N(E3) = Ng, Ny = J(Np), Ny = J%(Np) having respectively the following local bases

P 5 o .0
0 0 _ Vo 2 N9 1
5 Sy J(M) o7 Nigg (13)

9 _ [ W)
and 5y _J(éyi> = By7 -

These are d-vector fields and { U] } is called adapted basis in T, (Es).

J"' bl &yz ) 5 7
The coefficients of the non-linear connection N (F5) change obeying the rules
1 9x’™ _ 9z’ arm ay’"
{ N m 9z - armN OxJ. . (].4)
i 9z'™ _ ozt m 6y m o oy’
N *m Oz - Oxm N BJ,m NJ Oz

The associated dual adapted basis is {dx?, dy*, 0y}, where
0y' = dy' + Nja; 0yl = dy. + Njdy’ + (Ni; + N, - Nj*)da? .

5270 byt Syl
The adapted basis consists of d-gauge tensors iff

The adapted fields { o 9 } are d-tensors but not gauge fields, generally.
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i oYm i Aym _ 9Y?

Nij - YmNj da7

Niym o o= Vi NP O | (15)
\Ti mo_ i m oY, arm _ OY

N*my; - Y*mN*j + Oy Nj Oxd

Let denote by Vi = V.(E>) and Vo = Ker(n? )", the so-called vertical distri-

butions locally spanned by {aiyi’ 8%};} and respectively {Biyi}; let v1,v9 be the two
corresponding projectors. For a non-linear connection N, we denote by h the projector
onto N, (E;) = Nyg. We obtain the following derivation operators ([7])

DY = Dy Y and DY = Dyos YV, 3=T1,2,0 = 0,2
with vy = h, defined locally by

5 _ (a)m __§
D% Sy = Lij Sy(arm (16)
5 _ ()m__§ _ _
Dﬁ Syar = C(ﬁ)ij Syarm > a=0,2,8=1,2,

where ¢y = ¢ y(1DP = 4@ and 3 = y¢; their coefficients change by the following
rules

L(Ol)/i[“)a:/p 9x'4 _ L(a)pax’i 9%
P 9xh dxm - hm OxP Ozxh oz (17)
()i §2'? 92’ 9a't ~(a)i
(B)pa 027 07 = 027 C(B)hm

We remark that, in particular, the coefficients L(®) can be equal and that C((g))
are d-tensors which can coincide for o = 0,2. In this case, D will be called M-linear
connection.

Also, D®" and D(®?s determine the following covariant derivation operators on
d-tensors

SWil i

(@)iy...ip _ §1-.-ds ()i hio...ip ()i i1.ip_1h
le...jls\m - 6;7" + Lhm 1‘?/%.?.3‘5 +.t Lhm 1(W§Jhlg -
o i1y a Q1.
o Ly Whyp g, =~ Lim Wil an
(a)iy.ir ((B) _  OW LT (a)ir 1q his...iy (a)iy rqi1.ir_1h
hde M = gtmwe C(ﬁ)hm(”)/if.js et C(ﬁ)hm(w)};...js -
~CloyimWhiage = = Claypum Wil Glan
The h-vg gauge tensorial character is preserved if aditionally we have
- . . s s . ’L ((1)7‘
LZ()(;)T _ Y;a)l . Xf] . Y’n(’ba)r . LE;Jz)m . X; . Y;(Da) . 63;in (18)
S(a)r _ ()i =(B)j ()7 (a)m (B)J ()i 5Y,;(a)r
C(ﬂ)pq = Y, Y, Ym 'C(ﬂ)z‘j —Y, Y, 5y

where o = 0,2,8 = 1,2, Yj(o)i = X;:,Yj(l)i = }/}i7§/j(2)i = Y*ij and the overlined
coefficients belong to the corresponding inverse matrices. We remark that for § >
)r

a, C’((g)pq become d-gauge tensors.
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Definition 2.1. A d-linear connection is said to be d-linear gauge connection iff
its coefficients satisfy (17) and (18). If its coefficients do not depend on « € 0, 2, then
it is called M-gauge connection.

In the following we shall also denote by dfff )th(ff.)'ijls“‘” and di,? v Wj(loc)z;% the

h- and vg-gauge derivatives of a d-gauge tensor, respectively.

3 Metric d-gauge connections of second order

Let be ggx) (,y,ys),a = 0,2 a system of d-tensors, symmetric and positively defined,
with rank (gl(]a)) = n, where gi(?) is h-d-gauge tensor and gl(jﬂ)
B =1,2; these d-tensors will be called h- and vg-gauge metrics respectively.

Let N be a d-gauge linear connection. Then

are vg-d-gauge tensors,

G =gV de’ @ da? + g1y Vi @ 5y 4 1426y g 5yP
is globally defined on F5 and is said to define a gauge metric structure on Fjs.
Definition 3.1. A d-gauge linear connection D on Ej is a h- (resp. vg-) metric

connection iff

g(j‘jlfg) =0 and dg,(f)hgg;v) =0 (19)

(resp. g((:;‘(:q) ) — 0 and dg,(f)”“ggj‘) =0),Ya =0,2.
If D is both h- and vg-metric then we say that D is a d-gauge metric connection.

Theorem 3.1. The following d-linear connection ([7])

(a) P
plem _ lg(a)"w{égsa‘ + 5955) _ 995
) 2 69;(%0) Sz Sz 2 (20)

(a)ym 1 89,5 595:) 595 _ _
Ciiy = 39 5yt + 5087 — e ha =0k, 5 =12

is a symmetric d-linear gauge connection.

4 Einstein-Yang Mills equations of second order

Let Lo(z,y,y.) be a Lagrangian defined on a compact set  C3", a non-linear gauge
connection N = {N7, N.,;}, and a metric gauge structure G on FE, defined by the

metric d-gauge fields ggf)(x, YY)y = 0,2 .
Let @ be a gauge field, that in applications belongs usually to the bundle of linear
connections. In the present context, Ly depends on z = (x,y, y.) through ® and its

derivatives 2% 0& 60

ozt 8yl oyl 0 1€
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0P 6P 00

L * :L @,7.,7,,7,
O(xvyay) 0( St 5yz 5yi

). (21)

For ® varying in €2, the action [, Lo(z, yM ydw , where dw = dz* A. .. AdyD"
depends on the local coordinates. In order to remove this inconvenience, we consider
the Lagrangian density:

L(z,y,ys) = Lo(z,y,ys) - Vg gD g2, (22)

where ¢(*) = det(g (a)) !

0,2. Also, we remark that

L(z,y,y«) = L(z,y,y,) T, where J = det(aﬂ). (23)

So that, the action I(® fQ Z,Yy, ys)dw is independent of the coordinates on

By = 0sc® (M). Applying the variational principle, the extremization of action I(®)
leads to the following Euler-Lagrange attached to ®

ot o ot 9 oL 9 oL _, (24)
02 Oxia(d%) oyia(hE) T oyloagr) T

Taking into consideration the gauge transformations, it is more convenient to
express (24) in the adapted basis (%, 5%“ %) The resulting relations look more
complicated, but they evidentiate easier that (24) is invariant with respect to the
change of coordinates (2) on Es.

In (21), L depends on 2% 92 92 1,y means of

Oxt? Jy*’ Oyt ’
0P __ 0P P _ 0% i 0P b _ 0%
dxt T 8:1:1 NZJ oyl Niza 7 Syt . Oyt _Nljaiyi and 6y1 = By
One can easily check that
ey R
o e - o 5<Iz
Lo = LN+ 2o,
2(50) 2(3.7) 2(5)
[2) _ oL N L _Nz oL
8(604;) 8(%) ( *J)Jra(éw) |C1 ( J)—’_@(M;) ‘CI,CZ .
YL Sy
where
# ‘Cl - # ‘ M). =C1=const.
# ‘01,02 = ‘ 5‘1’ —Cl const. T—Cz =const.

Using these relations in (24), after reducing the terms, one obtains
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Theorem 4.1 The adapted form of the Einstein- Yang Mills equations on Osc? (M)
or a M-gauge connecton is
gaug

%% = % _ ( 61(1)1 +6/z¢)(1)1 +6//i¢)(2)i) +

FOIF NS+ WIS N 4 BN + BIN'S" N~ (25)
i i i J
3 (W 00 g 8 ) + 0

where
S {gijag/ijvg”ija ]k7cljkaC”]kaN/;'7N”;} (26)

and we used the notations

Pt — AL )i — P12)i —

(5 q>)5» 3( |C1;(S 8(6“ |01,C27
o // —
. (5)@”5 l<75 P e
L;k = ij ) C(l Vik> H;‘k: = C(z)jk,a =0,2,

V= ‘/9(1)9(2)9(3 ,N’; NﬁN”z = Nij~
Remark. The last left term in (25) is effective only for ® € {g:5,9';;,9";;}-

From (25) results the invariance of the Euler-Lagrange equations with respect
to the coordinate changes (2). Similar calculation proves that the Euler-Lagrange
equations are not gauge-invariant in general, but if L is a scalar field which is invariant
relative to both (2) and (4), then this becomes true. Therefore, an important problem
is to determine the Lagrangian densities which are gauge-invariant. The Utiyama
theorem is generalized in ([8]), where is shown that in the osculator bundle associated
to the bundle of frames P,, a gauge-invariant Lagrangian £ depends only on the
curvature form of a given connection from the bundle of connections (i.e., £L = Lo,
where (Q is the curvature form and Ly is a fixed gauge-invariant Lagrangian density).

For a given gauge non-linear connection N = {N'%, LN l} and a M-linear connec-

tion D = {L%,C"};, C"” : ;11> are derived the following components of the corresponding
torsion d-gauge tensors

0 ) % i i 1) % 7
Tgk - ij Lk]? nga ”ka REO;;k = 5kNlj - 5jN/kv
R = §uN"" — 6;N", + N'". (6 N3 — 6;N'3)

RE g =& N/z — N’ R®E 5" N” 5//jN/Z7R(1)Z 0,

Pﬁ%zk_él Nﬂ L P(2)1(23k5/ N//l N/i(;/ N'$ é?)]j\];/
(1)jk T ki (L) sO kG 03 ke
P((21);k o N/Z P((;));k = s N”;— JrN/;(;//kN/j 7L’]i<:j’
Piayie = 5"kN’” —

5(1)31@ C'in O/kJ’S‘2)jlc =" Cukav

and the curvature d-gauge tensors
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m m m m M (B)i
Rrpq 5qL 5 LT —I—L{pLJT LiqLJp + Z C (O)M,
6Lm m m (3 _

Pyroa = sy®a ~ Cloyrap + Z ClyriLiope =12
60"1”)"1’ m (2)j
P(T{L)(Q)qu sod oy O(TS rq p +C(QL TJP(l)(Q)pq’
S(mﬁ Yrpg — 5;(?):1? - 5;([23)):1 + (1)
m J m 1 9
+O(7)7"pc( B)ia C('Y)ch (5)PQC(B)T]’5 =12

where C(1) = C',C(yy = C”. If D is a d-gauge connection, then the torsions and
curvatures described above are d-gauge tensors.

Theorem 4.2. The FEinstein-Yang Mills equations in G. S. Asanov’s form have
the expressions

%% = % _ ( ol |, + ‘(1) L p(12)i |§2)) +
+ (T, + P+ Pg));fn ) Ot
+ S(Q)Jm 2C$)mj) q’(u)j_

~—= (D;\/g+ D' \/g+D"}\/q) ® + 0 =0,

where

D; \/§ = 8/ — 3Ly /g
D'\ = 8'1/5 = 307 ,.1\/5
D"}\fg =0"i\/g = 3CT /G

In (27) we denoted 6 = LA” where for ® € {g” ,gZ(J ,g”)} AY equals respectively
g0 gMii g1 (the d-gauge tensors which are reciprocal to gfj), gfjl), 91(32))7 and

for the rest of alternatives for 6, A% is set null.
We remark that raising and lowering the indices by means of the tensors

{9, g g@1; gD g1 gy

preserves the gauge character of d-tensor fields. Therefore, the torsions and curvatures
of the M-gauge connection D produce scalar gauge fields as follows

L(a) ng ng,
L( )0 szlgyzlv

where {77, } is any torsion d-tensor field of D, {¢};,} curvature of D, and

sz _ g(a)irg(a)js (a)Tgs’
Ul _g((x)m (a)js ( ) g( )Qgs
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Thus, a general gauge invariant Lagrangian which depends only on the curvatures and
torsions of a metric gauge connection is £ = L,/g, where L is a linear combination
with real coefficients of gauge scalar fields built as above.

In the following, we determine the Einstein-Yang Mills equations for several types
of such elementary Lagrangians.

a) For L = TZTT},{, an M-gauge connection D and for ® = L;k, the equations (25)
become

Sl
h| o
@‘h
I
[\
<3
=
I
o

and are equivalent to the condition that D is h-symmetrical ([6],[2]).

b) For L = RE%%ZR%?Z, an M-gauge connection D and for ® = Nf, we have

P i — 0L _ i _ op(1)ij
Wi = Ui =0, 5L =0, ¢ = 2R )

In this case, the Asanov equations are

1L _ ; m (1)m @)m \
Jite =D+ (T + PO 4+ PG ) @0+

1 &j * * *
— ¥ (D;yg+D';\/g+D";/g) =0.

The expressions (25) for these n? equations in the unknowns { N} become

Tie = 00 + @ (%N’; + 6", N": + N'38" N — %) —0
& 6 RG = B (N5 + 0" N5 = 37 ) ik =Ton

where 0, = 825,8”8 = 825.

c) For L = P((;))ZZLP((;))Z, an M-gauge connection D and for ® = NF, we get
Pt = )i = 0, g—qu =0, o127 = 2P D™ 1 the case of identical metric components,

(2)ij
ie., gi(jo) = gz(;) = gg) = gij, the Einstein-Yang Mills equations (25) have the form

5L _ i i —
ﬁﬁ = _5I/j(1)(12)j1_ﬂﬁ\/§q)1(1424)j =0
= 28//J'P((2)):rz = _P((z)):rf +0";(Iny/9)
PN 8//j\Ing + ‘I’ir . a//j ( lng/ﬁ +girgsjgmt) =0,

where we denoted W% = 9" N'..
The investigation of the solutions of the FEinstein-Yang Mills equations on
Osc® (M) for certain relevant cases will be the subject of a forecoming paper.
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