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Abstract

The geometry of the k-osculator bundle over a smooth manifold M was
developed by R.Miron and his school. It was used for the geometrization of the
higher order Lagrangians and the prolongation of the Riemannian, Finslerian
and Lagrangian structures, ([5]).

In this work we show that the prolongation of a Riemannian metric provides
a Riemannian submersion which is notable in some respects. For simplicity we
confine ourselves to the case k = 2.

First we associate to a Riemannian metric g a nonlinear connection in the 2-
oscultor bundle. Using the connection map associated to it ([1]) a prolongation
G of g to Osc2M is constructed in §2. It is shown that the projection map
becomes a Riemannian submersion whose vertical subspace in a fixed point
splits into two subspaces which are also isometric with the tangent space to M .
Some properties of this Riemannian submersion are shown in §3 and 4.
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1 A nonlinear connection of second order associated
to a Riemannian metric

Let (M, g) be a smooth Riemannian manifold, of dimension n and (E = Osc2M,π,M)
its 2-osculator bundle. Then Osc2M is a smooth manifold of dimension 3n.

Let (xi) be the local coordinates in a local chart (U,ϕ),U ⊂ M . The local coor-
dinates on π−1(U) ⊂ E will be denoted by (xi, y(1)i, y(2)i). Let Γi

jk(x) be the local
coefficients of the Levi-Civita connection ∇.

As π∗ : (TE, τE , E) → (TM, τ,M) is an epimorphism of vector bundles, it results
that its kernel is a vector subbundle of the bundle (TE, τE , E). This will be denoted by
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V E and will be called the vertical subbundle of the TE. The fibres of V E determine
an integrable distribution V : u ∈ E → Vu ⊂ TuE which has the dimension 2n, called
vertical distribution. A local basis for this distribution is { ∂

∂y(1)i ,
∂

∂y(2)i }.
On every domain of local charts of E we consider the functions:

N i
j

(1)

(x, y(1)) = Γi
kj(x)y(1)k

N i
j

(2)

(x, y(1), y(2)) = 1
2 (

∂Γi
jk

∂xs (x) − Γi
mk(x)Γm

js(x))y(1)ky(1)s + Γi
kj(x)y(2)k

(1)

We set:
δ

δxi
=

∂

∂xi
− N j

i
(1)

∂

∂y(1)j
− N j

i
(2)

∂

∂y(2)j

Starting from the transformation law of the coefficients Γi
jk(x) , by a long and

tedious calculation one shows that under a change of coordinates on E:
x̃i = x̃i(x1, x2, ..., xn); rank

∥∥∥ ∂x̃i

∂xj

∥∥∥ = n,

ỹ(1)i = ∂x̃i

∂xj y(1)j ,

2ỹ(2)i = ∂ỹ(1)i

∂xj y(1)j + 2 ∂ỹ(1)i

∂y(1)j y(2)j ,

(2)

the local vector fields { δ
δxi }i=1,n change as follows: δ

δxi = ∂x̃j

∂xi
δ

δx̃j
.

Thus we obtain that, for each u ∈ E, { δ
δxi |u}i=1,n span a subspace N0(u) of

dimension n in TuE. The map N0 : u ∈ E → N0(u) ⊂ TuE is a distribution
of dimension n (generally not integrable). The distribution N0 is called the hori-
zontal distribution on E. It is supplementary to the vertical distribution, that is,
TuE = N0(u) ⊕ V (u), ∀u ∈ E.

In other words N0 defines a nonlinear connection N which is clearly derived from
g only.

The F (E)-linear mapping J : χ(E) → χ(E) defined by :
J( ∂

∂xi ) = ∂
∂y(1)i , J( ∂

∂y(1)i ) = ∂
∂y(2)i , J( ∂

∂y(2)i ) = 0 is a 2-tangent structure, that
is, J3 = 0. Let us consider N1 = J(N0) and V2 the distribution locally generated
by { ∂

∂y(2)i }i=1,n. We have three distributions (N0, N1, V2), each of dimension n, such
that :

TuE = N0(u) ⊕ N1(u) ⊕ V2(u), ∀u ∈ E.
A local basis for the F (E)-module χ(E), adapted to the distributions N0, N1, V2,

is :
{ δ

δxi ,
δ

δy(1)i = J( δ
δxi ) = ∂

∂y(1)i − N j
(1)i

∂
∂y(2)j , ∂

∂y(2)i }
The dual basis is {dxi, δy(1)i, δy(2)i} with :

δy(1)i = dy(1)i+ M i
j

(1)

dxj ,

δy(2)i = dy(2)i+ M i
j

(1)

dy(1)j+ M i
j

(2)

dxj ,
(3)
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where: 
M i

j
(1)

(x, y(1)) =N i
j

(1)

(x, y(1)),

M i
j

(2)

(x, y(1), y(2)) =N i
j

(2)

(x, y(1), y(2))+ N i
m

(1)

(x, y(1)) Nm
j

(1)

(x, y(1)).
(4)

Notice that
∂Ni

j

(1)

∂y(1)k =
∂Ni

j

(2)

∂y(2)k = Γi
jk.

2 Prolongation of second order of a Riemannian
metric. A notable Riemannian submersion.

By a caracterisation of nonlinear connections in the k-osculator bundle given in [1],
to give the nonlinear connection N0 is equivalent to give a connection map i.e. a

π-morphism of vector bundles K = (
(1)

K,
(2)

K ) : (TE, τE , E) → (TM ⊕ TM, τ ⊕ τ,M),
where (TM, τ,M) is the tangent bundle over M which verifies:

(2)

K ◦J =
(1)

K,
(2)

K ◦J2 = π∗. (1)

For Xu =
(0)i

X ∂
∂xi |u +

(1)i

X ∂
∂y(1)i |u +

(0)i

X ∂
∂y(2)i |u∈ TuE the map K is given by:

(1)

Ku Xu = (
(1)

Xi + M i
j

(1)

(0)

Xj) ∂
∂xi |π(u),

(2)

Ku Xu = (
(2)

Xi + M i
j

(1)

(1)

Xj + M i
j

(2)

(0)

Xj) ∂
∂xi |π(u),

(2)

where M i
j

(1)

and M i
j

(2)

are taken from (1.4).

Using the connection map K we define a Riemannian metric G on Osc2M which
prolonges g as Sasaki metric on TM does.

For every u ∈ E we define Gu : TuE × TuE → R by:

Gu(Xu, Yu) = gπ(u)(π∗,uXu, π∗,uYu) + gπ(u)(
(1)

Ku Xu,
(1)

Ku Yu)+

+gπ(u)(
(2)

Ku Xu,
(2)

Ku Yu).
(3)

Thus we get a Riemannian metric on Osc2M . Indeed, since the mappings π∗,u,
(1)

Ku

,
(2)

Ku: TuE → Tπ(u) are linear and gπ(u) is bilinear, it results that Gu is bilinear.
It is clear that Gu(Xu, Xu) ≥ 0. If for Xu ∈ TuE we have Gu(Xu, Xu) = 0, then

gπ(u)(π∗,uXu, π∗,uXu) = 0, gπ(u)(
(1)

Ku Xu,
(1)

Ku Xu) = 0 and gπ(u)(
(2)

Ku Xu,
(2)

Ku Xu) = 0
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from which it follows: π∗,uXu =
(1)

Ku Xu =
(2)

Ku Xu = 0. Using (2.2), a direct calculation
shows that Xu takes the form

Xu =
(0)

Xi δ

δxi
|u +(

(1)

Ku Xu)i δ

δy(1)i
|u +(

(2)

Ku Xu)i ∂

∂y(2)i
|u . (4)

Now it is clear that the previous equations imply Xu = 0.
Proposition 2.1. 1. The distributions N0, N1, V2 are mutual orthogonal with

respect to G
2.The mappings:
π∗,u : (N0(u), Gu |N0(u)) → (Tπ(u), gπ(u)),
(1)

Ku: (N1(u), Gu |N1(u)→ (Tπ(u), gπ(u)),
(2)

Ku: (V2(u), Gu |V2(u)→ (Tπ(u), gπ(u)) are linear isometries.

Proof. 1. If Xu ∈ N0(u) and Yu ∈ N1(u) by (2.4) we have
(1)

Ku Xu =
(2)

Ku Xu = 0,

π∗,uYu =
(2)

Ku Yu = 0 and by (2.3) one gets Gu(Xu, Yu) = 0. On proceeds similarly for
the rest.

2. By (2.4) it folows that Xu ∈ N0(u) if and only if
(1)

Ku Xu =
(2)

Ku Xu = 0 and
similarly for Yu. Hence for Xu, Yu ∈ N0(u), by (2.3) one obtains Gu(Xu, Yu) =

gπ(u)(π∗,uXu, π∗,uYu). For Xu, Yu ∈ N1(u) we have π∗,uXu = π∗,uYu = 0 and
(2)

Ku

Xu =
(2)

Ku Yu = 0. By (2.3) one gets that
(1)

K is a linear isometry.
Corollary 2.1. The projection map π : (Osc2M,G) → (M, g) is a Riemannian
submersion.

Notice that the Riemannian submersion π has a special feature: every vertical
subspace Kerπ∗,u splits into two subspace N1(u) and V2(u) of the same dimension n
each of them being isometric with (Tπ(u)M, gπ(u)). This feature has several implica-
tions on the geometry of the Riemannian submersion π. Some of then will be pointed
in the next sections.

3 Some brackets. An expression of the Levi-Civita
connection of G.

Next we establish the brackets for two vector fields on the total space E, by using
geometrical objects on base M . Using these brackets we express the Levi-Civita
connection of the Riemannian manifold (E,G).

We denote by χN0(E) the F(E)-module of the sections of vector bundle (N0E,
τE |N0E , E). χN0(E) is just the F (E)-module of horizontal vector fields on E. χN1(E)
and χV2(E) are denote F (E)-modules of the sections of vector bundles (N1E, τE |N1E

, E) and (V2E, τE |V2E), respectively.
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Proposition 3.1. If X,Y ∈ χN1(E) are π projectable vector fields then:

π∗[X,Y ] = [π∗X,π∗Y ],
(1)

Ku [X,Y ]u = R(π∗,uX,π∗,uY,
(1)

C π(u)),
(2)

Ku [X,Y ]u = 1
2{(∇(1)

C π(u)

R)(π∗,uX,π∗,uY,
(1)

C π(u))+

+R(π∗,uX,π∗,uY,
(2)

C π(u))},

(1)

where
(1)

C π(u)=
(1)

Ku

(1)

Γu,
(2)

C π(u)=
(1)

Ku

(2)

Γu;
(1)

Γ = y(1)i ∂
∂y(2)i and

(2)

Γ = y(1)i ∂
∂y(1)i + 2y(2)i ∂

∂y(2)i

are the Liouville vector fields.

Proof. One obtains the previous equalities using that :
[ δ
δxi ,

δ
δxj ] = R k

p ijz
(1)p δ

δy(1)k + 1
2 (R k

p ij|sz
(1)pz(1)s + R k

p ijz
(2)p) ∂

∂y(2)k ,

where z(1)p = y(1)p, 2z(2)p = 2y(2)p+ Mp
i

(1)

z(1)i and |s denotes the covariant derivative

with respect to ∇.

Proposition 3.2 If X ∈ χN0(E) is π-projectable and Y ∈ χN1(E) is
(1)

K -
projectable then: 

π∗[X,Y ] = 0,
(1)

K [X,Y ] = ∇π∗X

(1)

K Y,
(2)

Ku [X,Y ]u = 1
2R(

(1)

Cπ(u),
(1)

Ku Y, π∗,uX).

(2)

Proof. These equalities result by a straightforward calculation using:[
δ

δxi
,

δ

δy(1)j

]
= Γk

ij

δ

δy(1)k
+

1
2
R k

i jpy
(1)p ∂

∂y(2)k

.
Much more easier are the proofs of

Proposition 3.3. If X ∈ χN0(E) is π-projectable and Y ∈ χV2(E) is
(2)

K -
projectable then:  π∗[X,Y ] =

(1)

K [X,Y ] = 0,
(2)

K [X,Y ] = ∇π∗X

(2)

K Y.

(3)

Proposition 3.4. The distributions N1 and V2 are integrable.

We denote by ∇̃ the Levi-Civta connection of the Riemannian manifold (E,G).
This is uniquely determined by: 2G(∇̃XY,Z) = XG(Y,Z)+Y G(Z,X)−ZG(X,Y )+



6 M. Anastasiei and I. Bucǎtaru

G([X,Y ], Z) + G([Z,X], Y ) + G([Z, Y ], X), ∀X,Y, Z ∈ χ(E)
For the proofs of the following propositions we refer to [2].

Proposition 3.5.
1. If X,Y ∈ χN0(E) are π-projectable then for any u ∈ E:

(∇̃XY )u = (`h)π(u),u(∇πastXπastY )π(u) + 1
2 (`v2)π(u),uR(π∗,uX,π∗,uY,

(1)

C π(u))

+ 1
2 (`v2)π(u),u(∇(1)

C π(u)

R(π∗,uX,π∗,uY,
(1)

C π(u)) + R(π∗,uX,π∗,uY,
(2)

C π(u)).

2. If X ∈ χN0(E) is π-projectable and Y ∈ χN1(E) is
(1)

K -projectable then:

(∇̃XY )u = 1
2 (`h)π(u),uR(

(1)

C π(u),
(1)

Ku Y, π∗,uX) + (`v1)π(u),u(∇π∗X

(1)

K Y )u+

1
2 (`v2)π(u),uR(

(1)

C π(u),
(1)

Ku Y, π∗,uX) ∀u ∈ E.

3. If X ∈ χN0(E) is π-projectable and Y ∈ χV2(E) is
(2)

K -projectable then:

(∇̃XY )u = 1
2 (`h)π(u),u((∇(1)

C π(u)

R)(
(1)

C π(u),
(2)

Ku Y, π∗,uX) + R(
(2)

C π(u),
(2)

Ku Y, π∗,uX))+

1
2 (`v1)π(u),u(R(π∗,uX,

(2)

Ku Y,
(1)

C π(u))) + (`v2)π(u),u(∇π∗X

(2)

K Y )π(u), ∀u ∈ E.

Proposition 3.6.

1. If X ∈ χN1(E) is
(1)

K -projectable and Y ∈ χN0(E) is π-projectable then:

(∇̃XY )u = 1
2 (`h)π(u),uR(

(1)

C π(u),
(1)

Ku X,π∗,uY ) + 1
2 (`v2)π(u),uR(

(1)

C π(u),
(1)

Ku X,π∗,uY )
∀u ∈ E.

2. If X ∈ χV2(E) is
(2)

K -projectable and Y ∈ χN0(E) is π-projectable then:

(∇̃XY )u = 1
2 (`h)π(u),uR(

(1)

C π(u),
(2)

Ku X,π∗,uY ) + 1
2 (`v1)π(u),uR(

(2)

Ku X,π∗,uY,
(1)

C π(u)

), ∀u ∈ E

3. If X ∈ χV2(E) is
(2)

K -projectable and Y ∈ χN1(E) is
(1)

K -projectable then:

(∇̃XY )u = 1
2 (`h)π(u),uR(

(1)

C π(u),
(2)

Ku X,
(1)

Ku Y ), ∀u ∈ E.
Here (`h)π(u),u, (`v1)π(u),u and (`v2)π(u),u : Tπ(u)M → TuE, denote the horizontal

and the vertical lifts.

We have π∗,u ◦ (`h)π(u),u =
(1)

Ku ◦(`v1)π(u),u =
(2)

Ku ◦(`v2)π(u),u = 1Tπ(u)M .
Proposition 3.7.

1. If X,Y ∈ χN1(E) are
(1)

K -projectable then ∇̃XY = 0.

2. If X,Y ∈ χV2(E) are
(2)

K -projectable then ∇̃XY = 0.

4 Geodesics

Let I ⊂ R, 0 ∈ I be an open interval and c : I → c(t) ∈ M be a smooth parametrized
curve on M such that if (U, φ = (xi)) is a local chart in M then c(I) ⊂ U . The curve
c is expressed in local coordinates by c(t) = (xi(t))
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Let v : t ∈ I → v(t) ∈ Tc(t)M be a vector field along of curve c: v(t) = vi(t) ∂
∂xi |c(t)

.
We define a smooth parametrized curve `2(c) : t ∈ I → (xi(t), 1

1!
dxi

dt |t, 1
2!

d2xi

dt2 |t)
on E and then (`2(v))(t) = vi(t) ∂

∂xi |(`2(c))(t) + 1
1!

dvi

dt |t ∂
∂y(1)i |(`2(c))(t) + 1

2!
d2vi

dt2 |t
∂

∂y(2)i |(`2(c))(t) is a vector field along of curve `2(c).
Lemma 4.1. If v, v1 and v2 are vector fields along of curve c and f ∈ F (M)

then:
1. `2(v1 + v2) = `2(v1) + `2(v2),
2. (`2(fv))(t) = (f ◦ c)(t)(`2(v))(t) + 1

1!
df
dt |t vi(t) ∂

∂y(1)i |(`2(c))(t) +
1
2! (

d2f
dt2 |t vi(t) + 2df

dt |t dvi

dt |t) ∂
∂y(2)i |(`2(c))(t).

Remark 4.1. π∗(`2(v)) = v.
Lemma 4.2. For a vector field v along of curve c and f ∈ F (M), we have:

(α)

K (`2((f ◦ c)v)) =
2∑

i=0

1
i!

dif
dti

(α−i)

K (`2(v)), α ∈ {1, 2}.

Proposition 4.1. Let M be a smooth manifold with a linear connection ∇. For

a vector field v along of curve c there are well-defined two vector fields
(α)
∇
dt v : t ∈ I →

(α)
∇
dt v |t∈ Tc(t)M along of curve c (α ∈ {1, 2}) which satisfy:

1.
(α)
∇
dt (v1 + v2) =

(α)
∇
dt v1 +

(α)
∇
dt v2;

2.
(α)
∇
dt (fv) =

2∑
i=0

Ci
α

dif
dti

(α−i)
∇
dt v; (the Leibniz formula)

3. If v is the restiction of a vector field Y ∈ χ(M) then:
(α)
∇
dt v = ∇α

.
c
Y (α ∈ {1, 2}).

Proof. We define
(α)
∇
dt v |t= α!

(α)

K (`2(c))(t) (`2(v))(t) (
(0)
∇
dt v

def
= π∗(`2(v)) = v)

By the lemmas 4.1 and 4.2 we obtain 1. and 2. A straightforward calculation gives:

∇α
.
c
v |t= α!

(α)

K (`2(c))(t) (`2(v))(t) that is ∇α
.
c
v =

(α)
∇
dt v and 3. is proved.

Proposition 4.2. Let c : I → M be a smooth parametrized curve in M . Then c
is a geodesic on M if and only if the component of `2(

.
c) in N1 vanishes.

Proof. The curve c is geodesic on M if and only if
(1)
∇
dt

.
c= 0 equivalently,

(1)

K (`2(c))(t)

(`2(
.
c))(t) = 0 and (v1)(`2(c))(t)(`2(

.
c))(t) = 0. Hence the component of `2(

.
c) in N1

vanishes.
On each domain π−1(U) of local chart (π−1(U), Φ = (xi, y(1)i, y(2)i)) on E, we

consider the system of functions :
Gi(x, y(1), y(2)) = 1

3 (2 M i
j

(1)

(x, y(1))y(2)j+ M i
j

(2)

(x, y(1), y(2))y(1)j) =
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= 1
3 (2 N i

j
(1)

(x, y(1))z(2)j+ N i
j

(2)

(x, y(1), y(2))z(1)j).

Proposition 4.3. The map S : u ∈ E → Su = y(1)i ∂
∂xi |u +2y(2)i ∂

∂y(1)i |u
−3Gi(u) ∂

∂y(2)i is a vector field on E (it will be called the canonical spray).

Proof. For u ∈ E
Su = z(1)i δ

δxi |u +2z(2)i δ
δy(1)i |u +(2 N i

j
(1)

(u)z(2)j+ N i
j

(2)

(u)z(1)j − 3Gi(u)) ∂
∂y(2)i |u=

z(1)i δ
δxi |u +2z(2)i δ

δy(1)i |u∈ TuE. Therefore for each u ∈ E, Su belong to TuE, that
is, S is a vector field on E.

Proposition 4.4. A smooth curve c̃ : t ∈ I → c̃(t) = (xi(t), y(1)i(t), y(2)i(t)) on
E is an integral curve for the canonical spray S if and only if:

c̃ = `2(π ◦ c̃) and
(2)
∇
dt `2(π◦

.

c̃) = 0

Proof. c̃ is an integrable curve for S if and only if
.

c̃ (t) = S
c̃(t)

, ∀t ∈ I
.

c̃ (t) = dxi

dt
∂

∂xi + dy(1)i

dt
∂

∂y(1)i + dy(2)i

dt
∂

∂y(2)i =

(`2(π◦
.

c̃))i δ
δxi + (

(1)
∇
dt `2(π◦

.

c̃))i δ
δy(1)i + (

(2)
∇
dt `2(π◦

.

c̃))i ∂
∂y(2)i ,

According to these considerations we obtain that c̃ is integral curve for S if and only if
(`2(π◦

.

c̃))i = z(1)i,

(
(1)
∇
dt `2(π◦

.

c̃))i = 2z(2)i,
(2)
∇
dt `2(π◦

.

c̃) = 0.

The first two conditions are equivalent with : y(1)i(t) = 1
1!

dxi

dt and y(2)i(t) = 1
2!

d2xi

dt2 .
These imply the following expression for c̃: c̃ = (xi, 1

1!
dxi

dt , 1
2!

d2xi

dt2 ) = `2(π ◦ c̃).
Corollary 4.1. For the curve c : t ∈ I → c(t) ∈ M `2(c) is an integral curve for S
if and only if the components of d

dt (`2(c)) in V2 vanishes.
Let c̃ : t ∈ I → c̃(t) = (xi(t), y(1)i(t), y(2)i(t)) on Osc2M be a smooth curve and

X(t) =
.

c̃ (t) = dxi

dt
δ

δxi |̃
c(t)

+
(1)
∇y(1)i

dt
δ

δy(1)i |̃
c(t)

+
(2)
∇y(2)i

dt
∂

∂y(2)i |̃
c(t)

= E + U1 + U2 the
tangent vector field along of c̃.

Proposition 4.5. Let c̃ be a horizontal curve on Osc2M. If c̃ is a geodesic on
Osc2M then its projection π ◦ c̃ is a geodesic on M .

Proof. If c̃ is a horizontal curve then
.

c̃= E, U1 = U2 = 0 and consequently c̃ is
a geodesic if and only if ∇̃EE = 0. According to the Proposition 3.5.(1) H∇̃EE is
π-projectable and π∗∇̃EE = ∇π∗Eπ∗E. Since π∗E = d

dt (π ◦ c̃) we get ∇̃EE = 0 if
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and only if ∇ d
dt (π◦c̃)

d
dt (π ◦ c̃) = 0, that is π ◦ c̃ is geodesic on M .

Notice the result from the previous proposition is true for any Riemannian submersion.
Proposition 4.6. A smooth curve c̃ on Osc2M which satisfies E = U2 = 0 is a

geodesic on Osc2M .

Proof. As E = U2 = 0, it results that ∇̃XX = ∇̃U1U1. According to the Proposi-
tion 3.7.(1) ∇̃U1U1 = 0. and so the curve c̃ is a geodesic on Osc2M .

Proposition 4.7. A smooth curve c̃ on Osc2M which satisfies E = U1 = 0 is a
geodesic on Osc2M .

Proof. As E = U1 = 0 it results that ∇̃XX = ∇̃U2U2. According to Proposi-
tion 3.7.(2) ∇̃U2U2 = 0. Hence the curve c̃ is a geodesic on Osc2M . Proposition
4.8. A smooth curve c̃ in fibre (E = 0) is a geodesic on Osc2M if and only if:
∇̃U1U2 + ∇̃U2U1 = 0.

Proof. c̃ is a vertical curve. The condition ∇̃XX = 0 are equivalent with ∇̃U1U2 +
∇̃U2U1 = 0 (E = 0, ∇̃U1U1 = 0 and ∇̃U2U2 = 0)
Definition 4.1. The submersion π : (Osc2M,G) → (M, g) is called totally geodesic
if each vertical curve is a geodesic on Osc2M.

Proposition 4.9. The submersion π : (Osc2M,G) → (M, g) is totally geodesic
if and only if the Riemannian manifold (M, g) is locally flat.

Proof. Taking into account Proposition 4.8 we prove that the submersion π is
totally geodesic if and only if for each curve c̃ : t ∈ I → c̃(t) ∈ Osc2M with
.

c̃ (t) = U1(t) + U2(t) we have ∇̃U1U2 + ∇̃U2U1 = 0. According to the Proposition
3.6.(3) ∇̃U1U2 + ∇̃U2U1 = 0, which is equivalent with
1
2R(

(1)

C (π◦c̃)(t)
,
(1)

K c̃(t)
U1,

(2)

K c̃(t)
U2) +1

2R(
(1)

C (π◦c̃)(t)
,
(1)

K c̃(t)
U1,

(2)

K c̃(t)
U2) = 0 ∀U1, U2

and so R = 0
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6600, Iaşi, Romania


