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Abstract. In the present paper we have deduced some necessary and suf-
ficient conditions for invariant submanifolds of trans-Sasakian manifolds
to be totally geodesic. Characterizations of totally umbilical submanifolds
of trans-Sasakian manifolds have also been given.
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1 Introduction

The notion of trans-Sasakian manifolds was introduced by Blair and Oubina [2],[14].
Three dimensional trans-Sasakian manifolds have also been studied in the paper[6].
Trans-Sasakian manifolds of type (α, β) are generalizations of α-Sasakian and β-
Kenmotsu manifolds. It is known that a proper trans-Sasakian manifold exists only
for dimension three. In higher dimension it is either α-Sasakian or β-Kenmotsu.
In geometry of almost contact manifolds, submanifold theory has become a topic of
growing research. There are several works on invariant submanifolds. In [5] the au-
thors studied invariant submanifolds of trans-Sasakian manifolds. In the paper [16],
invariant submanifolds of LP-Sasakian manifolds have been studied. In that paper,
it was attempted to establish a relation between invariant and totally geodesic sub-
manifolds of LP-Sasakian manifolds. Following this paper, in the present paper we
would like to establish relation between invariant submanifolds and totally geodesic
submanifolds of trans-Sasakian manifolds. In the paper [8], totally umbilical subman-
ifolds of Sasakian manifolds have been studied. In the paper [13] totally umbilical
submanifolds of Kaehlerian manifolds have been considered. In the same line of these
papers, in the present paper we have studied totally umbilical submanifolds of trans-
Sasakian manifolds. A differentiable manifold can be characterized as a domain of
a function satisfying suitable differential equations. Obatta [15] first characterized
some Riemannian manifolds as a domain of a function satisfying certain differential
equations. It is known that if a function f is defined on a differentiable manifold and
f satisfies ∆f = −kf, k > 0, then the manifolds is isometric to a sphere. For details
see [9],[13],[15].
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The present paper is organized as follows: In Section 2, we give necessary prelimi-
naries. Section 3 contains the study of invariant submanifolds of trans-Sasakian man-
ifolds with an example. Section 4 is devoted to study totally umbilical submanifolds
of trans-Sasakian manifolds of dimension greater or equal to five. Totally umbilical
submanifolds of three-dimensional trans-Saskian manifolds have been considered in
the last section.

2 Preliminaries

Let M̄ be an n-dimensional (n is odd) smooth differentiable manifold endowed with
an almost contact metric structure (ϕ, ξ, η, g), where ϕ is a (1,1)-tensor field, ξ is a
vector field, η is a one form and g is a compatible Riemannian metric on M̄ . For such
manifolds, we know [1]

(2.1) ϕ2X = −X + η(X)ξ, η(ξ) = 1,

(2.2) η(X) = g(X, ξ),

(2.3) g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

(2.4) ϕξ = 0, ηoϕ = 0, g(X,ϕY ) = −g(ϕX, Y ),

for any X,Y ∈ Γ(TM̄), where Γ(TM̄) denotes the Lie algebra of all vector fields on
M̄ . A connected manifold M̄ endowed with almost contact metric structure (ϕ, ξ, η, g)
is called a trans-Sasakian manifold [14] if (M̄ ×R, J,G) belongs to the class W4 [10],
where J is an almost complex structure on M̄ ×R which is defined by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
),

for any vector field X on M̄ and the smooth function f on M̄ × R, and G is the
usual product metric on M̄ ×R. According to [2], an almost contact metric manifold
is a trans-Sasakian manifold if and only if

(2.5) (∇̄Xϕ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(ϕX, Y )ξ − η(Y )ϕX),

for smooth functions α, β on M̄ , where ∇̄ denote the covariant derivative with respect
to g. Generally, M̄ , is said to be a trans-Sasakian manifold of type (α, β). From the
equation (2.5), it follows that

(2.6) ∇̄Xξ = −αϕX + β(X − η(x)ξ),
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(2.7) (∇̄Xη)Y = −αg(ϕX, Y ) + βg(ϕX, ϕY ).

Let M be the sub-manifold of an n-dimensional almost contact metric manifold
M̄ . Let ∇ and ∇̄ are the Levi-Civita connections of M and M̄ , respectively. Then
for any vector fields X,Y ∈Γ(TM), the second fundamental form σ is defined by

(2.8) ∇̄XY = ∇XY + σ(X,Y ).

A submanifold of a trans-Sasakian manifold is called totally geodesic if

σ(X,Y ) = 0, for X,Y ∈ Γ(TM).

Furthermore, for any section N of normal bundle T⊥M , we have

(2.9) ∇̄XN = −ANX +∇⊥N.

Where ∇⊥ denotes the normal bundle connection of M . The second fundamental
form σ and shape operator AN are related by

(2.10) g(ANX,Y ) = g(σ(X,Y ), N).

For details see [4].
On a Riemannian manifold M , for a (0, k)-type tensor field T (k ≥ 1) and a (0, 2)-

type tensor field E, we denote by Q(E, T ) a (0, k + 2)-type tensor field ([19]) defined
as follows

Q(E, T )(X1, X2, ..., Xk;X,Y ) = − T ((X ∧E Y )X1, X2, ..., Xn)

− T (X1, (X ∧E Y )X2, ..., Xk)− ...

− T (X1, ..., (X ∧E Y )Xk),(2.11)

where (X ∧E Y )Z = E(Y,Z)X − E(X,Z)Y.
From Gauss and Codazzi equations for submanifolds, we get [3]

(2.12) R̄(X,Y, Z,W ) = R(X,Y, Z,W )−g(σ(X,W ), σ(Y,Z))+g(σ(X,Z), σ(Y,W )).

(2.13) (R̄(X,Y )Z)⊥ = (∇̄Xσ)(Y, Z)− (∇̄Y σ)(X,Z).

Here R̄ is the curvature tensor of the ambient manifold. (R̄(X,Y )Z)⊥ is the normal
component of R̄.

From [6], we get for three-dimensional trans-Sasakian manifolds

(2.14) R̄(X,Y )ξ = (4(α2 − β2)− r

2
)(η(Y )X − η(X)Y ).

3 Invariant submanifolds of trans-Sasakian
manifolds

In this section we shall study a three dimensional submanifold M of a trans-Sasakian
manifold M̄ such that the characteristic vector field ξ is tangential to M . Generally,
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a submanifold M is said to be invariant submanifold of M̄ if ϕ(TM) ⊂ TM . On an
invariant submanifold M of M̄ , it follows that ξ ∈ Γ(TM). We see that

(∇̄Xϕ)Y = ∇̄XϕY − ϕ(∇XY )

= ∇XϕY − σ(X,ϕY )− ϕ(∇̄XY − σ(X,Y ))

= (∇Xϕ)Y − σ(X,ϕY ) + ϕ(σX, Y ).

From (2.4) and the above equation we get by considering the submanifold as invariant
and comparing tangential components

(3.1) (∇Xϕ)Y = α(g(X,Y )ξ + η(Y )X)− β(g(ϕX, Y )ξ − η(Y )ϕX).

Thus we have the following lemma
Lemma 3.1. An invariant submanifold of a trans-Sasakian manifold is tarns-

Sasakian.
This Lemma is also proved in [5].

From the equation (2.6) we directly can establish the following lemma.
Lemma 3.2.[16] LetM be the invariant submanifold of a trans-Sasakian manifold

M̄ . Then the following equations hold:

∇Xξ = −αϕX + β(X − η(X)ξ), σ(X, ξ) = 0,

(3.2) σ(X,ϕY ) = σ(ϕX, Y ) = ϕσ(X,Y ),

for any X,Y ∈ Γ(TM).
Lemma 3.3.[7] Let M be an invariant submanifold of a trans-Sasakian manifold

M̄ of dimension greater than three, then we have

(3.3) R(X, ξ)ξ = (α2 − β2 − ξβ)(X − η(X)ξ) + 2αβϕX + (ξα)ϕX,

(3.4) S(X, ξ) = (n− 1)(α2 − β2)η(X)− (n− 2)Xβ − η(X)ξβ − (ϕX)α,

(3.5) S(ξ, ξ) = (n− 1)(α2 − β2 − ξ(β)),

where any X ∈ Γ(TM). Here R and S are respectively the Riemann curvature and
Ricci curvature of the submanifold.

The Projective curvature tensor P of type (1,3) on a Riemannian manifold (M, g)
of dimension n is defined by

(3.6) P (X,Y )Z = R(X,Y )Z − 1

n− 1
[S(Y,Z)X − S(X,Z)Y ],

for any X,Y, Z ∈ Γ(TM).

Theorem 3.1. An invariant submanifold of a trans-Sasakian manifold is totally
geodesic if and only if Q(g, P.σ) = 0, provided that (2αβ + ξα) ̸= 0.
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Proof. Assume Q(g, P.σ) = 0, then

Q(g, P (X,Y ).σ)(W,K;U, V ) = 0,

for the vector fields X,Y,W,K,U, V ∈ Γ(TM). Using (2.11) we have

0 = − g(V,W )(P (X,Y ).σ)(U,K) + g(U,W )(P (X,Y ).σ)(V,K)

− g(V,K)(P (X,Y ).σ)(W,U) + g(U,K)(P (X,Y ).σ)(W,V )

= −g(V,W )[P⊥(X,Y )σ(U,K)− σ(P (X,Y )U,K)− σ(P (X,Y )K,U)]

+ g(U,W )[P⊥(X,Y )(σV,K)− σ(P (X,Y )V,K)− σ(P (X,Y )K,V )]

− g(V,K)[P⊥(X,Y )(σW,U)− σ(P (X,Y )W,U)− σ(P (X,Y )U,W )]

+ g(U,K)[P⊥(X,Y )(σW, V )− σ(P (X,Y )W,V )− σ(P (X,Y )V,W )].

Using Lemma 3.2 and putting Y = K = U =W = ξ in the above equation we have

(3.7) σ(P (X, ξ)ξ, V ) = 0.

By the Lemma 3.4 and the equation (3.12) we have

(3.8) σ(P (X, ξ)ξ, V ) = (2αβ + ξα)σ(V, ϕX).

By the equations (3.13), (3.14) and the assumed condition (2αβ + ξα) ̸= 0, we have

σ(V, ϕX) = 0.

Hence by Lemma 3.2,
σ(V,X) = 0

for any X,Y ∈ Γ(TM). Thus the submanifold is totally geodesic. Converse part is
trivially true. This completes the proof. □

Remark 3.1. The above theorem is also true for invariant submanifolds of
Sasakian and Kenmotsu manifolds.

Theorem 3.2. An invariant submanifold of a trans-Sasakian manifold is totally
geodesic if and only if Q(S, P.σ) = 0, provided that (n−1)(α2−β2+ξ(β))(2αβ+ξα) ̸=
0.

Proof. Assume Q(S, P.σ) = 0, then

Q(g, P (X,Y ).σ)(W,K;U, V ) = 0

for the vector fields X,Y,W,K,U, V ∈ Γ(TM). Using (2.11) we have

0 = − S(V,W )(P (X,Y ).σ)(U,K) + S(U,W )(P (X,Y ).σ)(V,K)

− S(V,K)(P (X,Y ).σ)(W,U) + S(U,K)(P (X,Y ).σ)(W,V )

= −S(V,W )[P⊥(X,Y )σ(U,K)− σ(P (X,Y )U,K)− σ(P (X,Y )K,U)]

+ S(U,W )[P⊥(X,Y )(σV,K)− σ(P (X,Y )V,K)− σ(P (X,Y )K,V )]

− S(V,K)[P⊥(X,Y )(σW,U)− σ(P (X,Y )W,U)− σ(P (X,Y )U,W )]

+ S(U,K)[P⊥(X,Y )(σW, V )− σ(P (X,Y )W,V )− σ(P (X,Y )V,W )].
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Using Lemma 3.2 and putting Y = K = U =W = ξ in the above equation we have

(3.9) S(ξ, ξ)σ(P (X, ξ)ξ, V ) = 0.

By the Lemma 3.4 and the equation (3.12) we have

(3.10) S(ξ, ξ)σ(P (X, ξ)ξ, V ) = (n− 1)(α2 − β2 + ξ(β))(2αβ + ξα)σ(V, ϕX).

By the equations (3.15), (3.16) and the given condition (n−1)(α2−β2+ ξ(β))(2αβ+
ξα) ̸= 0 we have

σ(V, ϕX) = 0.

Hence by the Lemma 3.2,
σ(V,X) = 0

for any X,Y ∈ Γ(TM). Thus the submanifold is totally geodesic. Converse part is
trivially true. This completes the proof. □

Remark 3.2. The above theorem is also true for invariant submanifolds of
Sasakian and Kenmotsu manifolds.

Example 3.1. Let us consider the five dimensional differentiable manifold [11]
M = {(x1, x2, x3, x4, t) ∈ R5 : t ̸= 0}, where (x1, x2, x3, x4, t) are the standard co-
ordinates of R5. We choose the vector fields

e1 = e−t ∂

∂x1
, e2 = e−t ∂

∂x2
, e3 = e−t ∂

∂t
, e4 = e−t ∂

∂x4
, e5 = e−t ∂

∂t
,

which are linearly independent at each point of M̄ . We define g by

g = e2tK,

where K is the Euclidean metric on R. Hence {e1, e2, e3, e4, e5} is orthonormal basis
of M̄ i.e.,

g(ei, ej) = 1 if i = j,

= 0 if i ̸= j, where 1 ≤ i, j ≤ 5.

We consider an 1-form η defined by

η(X) = g(X, e5), X ∈ TM̄.

i.e., we choose e5 = ξ. We define the (1.1) tensor field ϕ by

ϕ(

2∑
i=1

(xi
∂

∂xi
+ xi+2

∂

∂xi+2
) + t

∂

∂t
) =

2∑
i=1

(xi
∂

∂xi+2
)− xi+2

∂

∂xi
).

Thus we have

ϕ(e1) = e3, ϕ(e2) = e4, ϕ(e3) = −e1, ϕ(e4) = −e2, ϕ(e5) = 0.
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The linear property of g and ϕ shows that

η(e5) = 1, ϕ2(X) = −X + η(X)e5,

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X,Y on M̄(ϕ, ξ, η, g) defines an almost contact manifold with
e5 = ξ. Moreover, let ∇̄ is the Levi-Civita connection with respect to metric g. Then
we have

[ei, e5] = e−tei i = 1, 2, 3, 4, 5, [ei, ej ] = 0, 1 ≤ i, j ≤ 4.

By Koszul formula, we obtain the following

∇̄e1e1 = −e−te5, ∇̄e2e2 = −e−te5, ∇̄e3e3 = −e−te5, ∇̄e4e4 = −e−te5,

∇̄e5e5 = 0, ∇̄e5ei = 0, ∇̄eie5 = e−tei, for 1 ≤ i ≤ 4,

∇̄eiej = 0, otherwise.

Thus we see that M̄ is a trans-Sasakian manifold of type (0, e−t).
Let M be a sub set of M̄ and consider the isometric immersion f : M → M̄

defined by

f(x1, x3, t) = (x1, 0, x3, 0, t).

It is easy to prove that M = {(x1, x3, t) ∈ R3 : t ̸= 0}, where (x1, x3, t) are the
standard co-ordinate of R3. We choose the vector fields

e1 = e−t ∂

∂x1
, e3 = e−t ∂

∂x3
, e5 = e−t ∂

∂t
,

which are linearly independent at each point of M . We define g1 by

g1 = e2tK1,

where K1 is the Euclidean metric on R. Hence {e1, e3, e5} are orthonormal basis of
M̄ i.e., g(ei, ej) = 1 if i = j and 0 otherwise. Here i = 1, 3, 5.

We define 1-form η1 and (1,1) tensor ϕ1 respectively by η1 = g1(X, e5),

ϕ1(x1
∂

∂x1
+ x3

∂

∂x3
+ t

∂

∂t
) = (x1

∂

∂x3
− x3

∂

∂x1
).

Thus we have

ϕ1(e1) = e3, ϕ1(e3) = −e1, ϕ1(e5) = 0.

The linear property of g1 and ϕ1 shows that

η1(e5) = 1, ϕ21(X) = −X + η1(X)e5,

g1(ϕ1X,ϕ1Y ) = g1(X,Y )− η1(X)η1(Y )
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for any vector fields X,Y on M(ϕ1, ξ, η1, g1). It is seen that M is an invariant sub-
manifold of M̄ with e5 = ξ. Moreover, let ∇ be the Levi-Civita connection with
respect to the metric g1. Then we have

[ei, e5] = e−tei, [ei, ej ] = 0, i, j = 1, 3, 5.

By using Kouszul formula, we obtain

∇e1e1 = −e−te5, ∇e3e3 = −e−te5, ∇e5e5 = 0 ,∇e1e5 = e−te1,

∇e3e5 = e−te3, ∇e5e1 = 0, ∇e5e3 = 0, ∇e1e3 = 0, ∇e3e1 = 0.

Using the above results we see that σ(X,Y ) = 0. So the submanifold is totally
geodesic.

4 Totally umbilical submanifolds of a trans-Sasakian
manifold

LetM be an n-dimensional totally umbilical submanifold of a trans -Sasakian manifold
M̄ . Here, we take n ≥ 5. The second fundamental form σ of M is given by σ(X,Y ) =
g(X,Y )H where X,Y ∈ Γ(TM) and H is mean curvature vector [8].

If we set µ = ||H||2, then for the umbilical submanifold M with mean curvature
parallel in the normal bundle, we have X.µ = 0 for any X ∈ Γ(TM), that is, µ is
constant.

If µ ̸= 0, define a unit vector e ∈ ν in the normal bundle, by setting H =
√
µe.

The normal bundle can be split into the direct sum µ = {e}⊕{e}⊥, where {e}⊥ is the
orthogonal compliment of the line sub-bundle e spanned by e. For each X ∈ Γ(TM).
Set

(4.1) ϕX = ψ(X)−A(X)e+ P (X), ϕe = t+ F,

where ψ(x) is the tangential components of ϕX, while A(X) and P (X) are the {e}
and {e}⊥ components, respectively. t and F are the {e} and {e}⊥ components of ϕe,
respectively, in view of the skew-symmetry of ϕ.

Lemma 4.1. Let M be a totally umbilical submanifold of a trans-Sasakian man-
ifold M̄ with curvature vector parallel to the normal bundle. If µ ̸= 0, then for any
X ∈ Γ(TM) following hold:
(i) ∇̄Xe = −√

µX,
(ii) ∇Xt = −√

µψ(X)− αg(e, ξ)X − βg(e, ξ)ψ(X),
(iii)∇⊥

XF = −√
µP (X)− βA(X)ξ.

Proof. Taking inner product with respect to Y, in both sides of the equation (2.8),
we obtain

∇̄XN = −g(H,N)X +∇⊥
XN.



Certain submanifolds of trans-Sasakian manifolds 185

Putting N = e in the above equation, we obtain

∇̄Xe = −√
µX.

Thus (i) is proved. Next we compute (∇̄Xϕ)e, for X ∈ Γ(TM). Using the equations
(2.5) and (4.1) we obtain

∇Xt+∇⊥
XF +

√
µ(ψ(X)−A(X)e+ P (X)) + σ(X,ϕ(e))

= α(g(X, e)ξ − η(e)X) + β(g(ϕX, e)ξ − η(e)ϕ(X)).

Next comparing the tangential part we have

∇Xt = −√
µϕ(X)− αg(e, ξ)X − βg(e, ξ)ψ(X).

Thus (ii) is proved. Now comparing {e}⊥ component and using the result A(X) =
g(X, t) we obtain

∇⊥
XF = −√

µP (X)− βA(X)ξ.

Thus (iii) is proved. □
Lemma 4.2. Let M be a totally umbilical sub-manifold of a tans-Sasakian man-

ifold M̄ with mean curvature vector parallel in the normal bundle. If µ ̸= 0, and
ξ ⊥ e, then, setting ξ = ξ1 + ξ2, where ξ1 is the tangential component and ξ2 is the
{e}⊥-component of ξ, we have

(i) ∇Xξ1 = −αψ(X) + β(X − η(X)ξ1),
(ii)(∇Xψ)Y = (α− µ

α )(g(X,Y )ξ1 − η(Y )X) + β(g(ϕX, Y )ξ1 − η(Y )ψ(X)).

Proof. Putting ξ = ξ1 + ξ2 in the equation (2.6) and (4.1) we have

∇Xξ1 +∇Xξ2 + σ(X, ξ) = −α(ψX −A(X)e+ P (X)) + β(X − g(X, ξ)ξ).

Comparing tangential part we have (i), and comparing e component, we have σ(X, ξ) =
αA(X)e i.e.,

(4.2)
√
µη(X) = αA(X),

√
µξ1 = αt.

Now using the equations (2.5) and (4.1) we have

∇X(ψY )−∇X(AY )e−A(Y )(∇Xe)− ψ(∇XY ) +A(∇XY )e−
P (∇XY ) = α(g(X,Y )ξ − η(Y )X) + β(g(ϕX, Y )ξ − η(Y )ϕX).

Using the Lemma 4.1, we obtain from the above equation

(∇Xψ)Y + (∇XP )Y +
√
µg(X,Y )(

√
µ

α
ξ1 + F ) +

√
µβ

α
g(X,Y )e−

µ

α
g(X,Y )e = α(g(X,Y )ξ − η(Y )X) + β(g(ϕX, Y )ξ − η(Y )ϕX).

Comparing the tangential part we obtain (ii). □
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It is known that a trans-Sasakian manifold of dimension greater or equal to five is
either α-Sasakian or β-Kenmotsu[12]. So let us first study umbilical submanifolds
of α-Sasakian manifolds, then umbilical submanifolds of β-Kenmotsu manifold of di-
mension greater or equal to five. We shall now deduce the following:

Theorem 4.1. Let M be a totally umbilical submanifold of an α-Sasakian man-
ifold of dimension greater or equal to five with mean curvature vector parallel in the
normal bundle. Then one of the following hold :
(i) M is totally geodesic
(ii) M is isometric to a sphere
(iii) M is homothetic to a Sasakian manifold.

Proof. Since H is parallel in the normal bundle, µ is a constant. If µ = 0, then H = 0,
and consequently σ(X,Y ) = 0, X,Y ∈ Γ(TM). Thus the submanifold M is totally
geodesic, which proves the first part of the theorem.

Next we assume that µ ̸= 0. Define a smooth function f : M → R by f =
g(e, ξ), X ∈ Γ(TM). Then Lemma 4.1, and equations (2.6), (2.8), (2.9), imply that

Xf = g(∇Xξ, e) + g(ξ,∇Xe)

= αg(X, t)−√
µg(ξ,X).

So, by using the equations (2.6) and the Lemma 4.1, we have,

XY f − (∇XY )f = −α2fg(X,Y ).

Then

(4.3) g(∇Xgradf, Y ) = −α2fg(X,Y ).

Taking trace of this equation we have

(4.4) ∆f = −α2nf.

If f is non-constant function, according to [15], the equation (4.4) is the differen-
tial equation whose existence ensures necessary and sufficient condition for M to be
isometric to a sphere of radius 1

α .
If f is a constant, then equation (4.4) gives −nα2f = 0, α is non-zero and conse-

quently f = 0, that is ξ ⊥ e.
Now define a smooth function G :M → R by

(4.5) G =
1

2
tr.ψ2.

Note that (4.1) gives g(ψY,X) = −g(ψY,X), X, Y ∈ Γ(TM).
Let ω be a 1-form defined by ω = dG. For each p ∈ M we can choose a local

orthonormal frame {e1, ...., en} ofM such that∇ei(p) = 0. Thus, for any Z ∈ Γ(TM),
we have

(4.6) ω(Z) = ZG =

n∑
i=1

g((∇Zψ)(ei), ψ(ei)).
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Using the Lemma 4.2, we obtain

(4.7) ω(Z) = 2(α− µ

α
)g(ψZ, ξ1).

The first covariant derivative of (4.7) is

(∇ω)(Y, Z) = 2(α− µ

α
)(−αg(ψY, ψZ)) + 2(α− µ

α
)2(g(ξ1, ξ1)g(Y,Z)− g(Y, ξ)g(Z, ξ1)).

And consequently using the equation (4.7) and the above equation we have

(4.8) (∇2ω)(X,Y, Z) + k2(2g(Y,Z)ω(X) + g(X,Y )ω(Z) + g(X,Z)ω(Y )) = 0.

where k2 = (α − µ
α ). According to Tanno [18], existence of the differential equation

(4.8) in which, G being non-constant, is the necessary and sufficient condition for M
to be isometric to a sphere. This again leads to case (ii). Suppose G is constant
function. Then equation (4.7) gives ψ(ξ1) = 0. Define a smooth function G1 :M → R
by

G1 = g(ξ1, ξ1).

Then using the Lemma 4.2, we get Xα = 0, X ∈ Γ(TM). In others words ξ1 has
constant length. Taking the covariant derivative in (i) of Lemma 4.2 and using (ii),
we get

(4.9) ∇X∇Y ξ1 −∇∇XY ξ1 = k2(g(X,Y )ξ1 − g(Y, ξ1)X).

where k2 = (α − µ
α ). Furthermore, from (i) of the Lemma 4.2, it follows that ξ1

is a Killing vector field. Since k ̸= 0 as (α− µ
α ) ̸= 0 and ξ1 is a Killing vector field of

constant length, which satisfies (4.9), a result of Okumura [13] states that, if ξ1 ̸= 0,
then M is homothetic to a Sasakian manifold. which is (iii). Thus to complete the
proof we have only to show that ξ1 = 0 cannot happen.

We note that if ξ1 = 0 then ξ ∈ {e}⊥ as ξ ⊥ e. Lemma 4.2 gives ψ(X) = 0,
i.e. ϕX is normal to M for all X ∈ Γ(TM). Again, equation (4.2) gives t = 0, i.e.
ϕe = F ∈ {e}⊥, and g(ϕX, ϕe) = g(X, e)− η(X)η(e) = 0, X ∈ Γ(TM), g(ϕe, ξ) = 0.
Thus the dim of ν ≥ dim{M} +dim{ξ} + dim{e} + dim{ϕe} - 1, which is impossible

as dim{M̄}=2n+ 1. This completes the proof. □

Theorem 4.2. Let M be a totally umbilical submanifold of a β-Kenmotsu man-
ifold of dimension greater or equal to five with mean curvature vector parallel in the
normal bundle. Then one of the following hold:
(i) M is totally geodesic
(ii) M is isometric to a sphere
(iii) M is homothetic to a Sasakian manifold.

Proof. Since H is parallel in the normal bundle, µ is a constant. If µ = 0, then H = 0,
and consequently σ(X,Y ) = 0, X,Y ∈ Γ(TM). Thus the submanifold M is totally
geodesic, which proves the first part of the theorem.
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Next we assume that µ ̸= 0. Define a smooth function f : M → R by f =
g(e, ξ), X ∈ Γ(TM). Then Lemma 4.1, and equations (2.6), (2.8), (2.9), imply that

Xf = g(∇Xξ, e) + g(ξ,∇Xe)

= βg(Y, e)− g(ξ, Y )(βf +
√
µ).

So, by using the equation (2.6) and the Lemma 4.1, we have,

XY f − (∇XY )f = −2
√
µβg(X,Y )− β2g(X,Y )f + 2βη(X)η(Y )(βf +

√
µ).

Then

(4.10) g(∇Xgradf, Y ) = −2
√
µβg(X,Y )− β2g(X,Y )f + 2βη(X)η(Y )(βf +

√
µ).

Taking trace of this equation we have

(4.11) ∆f = 2
√
µβ(n+ 1)− β2(n+ 2)f.

Replace f1 by f , where f1 is defined by

(4.12) f1 = f +
2
√
µβ(n+ 1)

β2(n+ 2)
.

If β is constant then ∆f = ∆f1, and the Equation (4.11) gives

(4.13) ∆f1 = −β2(n+ 2)f1.

If f1 is non constant function, then the equation (4.13) is the differential equation in
[15], which is necessary and sufficient condition for M to be isometric to a sphere of
radius 1

β2(n+2) .

Now if f1 is a non-constant function then by similar calculation done to prove the
previous theorem we can prove this theorem. □

5 Totally umbilical submanifolds of three-dimensional
trans-Sasakian manifolds

In the previous section, we have studied submanifolds of trans-sasakian manifolds
of dimension greater or equal to five. In this section, we shall study totally umbili-
cal submanifolds of a three-dimensional trans-Sasakian maifold. Here we prove the
following:

Theorem 5.1. A totally umbilical submanifold of a three-dimensional trans-
Sasakian manifold is totally geodesic.

Proof. From the equation (2.4), we get

R̄(X,Y )Z = (4(α2 − β2)− r

2
)(η(Y )X − η(X)Y ).
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Since the right hand side of the above equation is a vector field in the tangent bundle
of the submanifold, we get

(5.1) (R̄(X,Y )Z)⊥ = 0.

Now if the submanifold is totally umbilical then

σ(X,Y ) = g(X,Y )H.

Here H is mean curvature vector. Hence

(5.2) (∇Wσ)(X,Y ) = g(X,Y )∇⊥
WH.

Hence from (2.13)

(5.3) (R̄(X,Y )Z)⊥ = g(Y, Z)∇⊥
XH − g(X,Z)∇⊥

YH.

In view of (5.1) and (5.3)

g(Y,Z)∇⊥
XH = g(X,Z)∇⊥

YH.

Putting Z = ξ and replacing X by ϕX, we get

(5.4) ∇⊥
ϕXH.

So form (5.2)

(∇ϕWσ)(X,Y ) = 0.

Hence

∇⊥
ϕWσ(X,Y )− σ(∇ϕWX,Y )− σ(X,∇ϕWY ) = 0.

Putting Y = ξ and using the Lemma 3.2 we have

(5.5) ασ(X,W ) + βσ(X,ϕW ) = 0.

Replacing W by ϕW we get

(5.6) −βσ(X,W ) + ασ(X,ϕW ) = 0.

From (5.5) and (5.6) we get

(5.7) σ(X,W ) = 0.

This proves the theorem. □

Remark 5.1. The submanifolds of a three-dimensional trans-Sasakian manifold
are either of dimension one or two. One dimensional submanifolds are trivial. Two
dimensional submanifolds are hypersurfaces. So, we can state the following :

Corollary 5.1. A totally umbilical hypersurface of a three-dimensional trans-
Sasakian manifold is totally geodesic.
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