Certain submanifolds of trans-Sasakian manifolds

A. Sarkar and N. Biswas

Abstract. In the present paper we have deduced some necessary and sufficient conditions for invariant submanifolds of trans-Sasakian manifolds to be totally geodesic. Characterizations of totally umbilical submanifolds of trans-Sasakian manifolds have also been given.

M.S.C. 2010: 53C40, 53C25.

Key words: trans-Sasakian manifold; invariant submanifold; totally geodesic submanifold; totally umbilical submanifold.

1 Introduction

The notion of trans-Sasakian manifolds was introduced by Blair and Oubina [2],[14]. Three dimensional trans-Sasakian manifolds have also been studied in the paper[6]. Trans-Sasakian manifolds of type (α, β) are generalizations of α -Sasakian and β -Kenmotsu manifolds. It is known that a proper trans-Sasakian manifold exists only for dimension three. In higher dimension it is either α -Sasakian or β -Kenmotsu. In geometry of almost contact manifolds, submanifold theory has become a topic of growing research. There are several works on invariant submanifolds. In [5] the authors studied invariant submanifolds of trans-Sasakian manifolds. In the paper [16], invariant submanifolds of LP-Sasakian manifolds have been studied. In that paper, it was attempted to establish a relation between invariant and totally geodesic submanifolds of LP-Sasakian manifolds. Following this paper, in the present paper we would like to establish relation between invariant submanifolds and totally geodesic submanifolds of trans-Sasakian manifolds. In the paper [8], totally umbilical submanifolds of Sasakian manifolds have been studied. In the paper [13] totally umbilical submanifolds of Kaehlerian manifolds have been considered. In the same line of these papers, in the present paper we have studied totally umbilical submanifolds of trans-Sasakian manifolds. A differentiable manifold can be characterized as a domain of a function satisfying suitable differential equations. Obatta [15] first characterized some Riemannian manifolds as a domain of a function satisfying certain differential equations. It is known that if a function f is defined on a differentiable manifold and f satisfies $\Delta f = -kf$, k > 0, then the manifolds is isometric to a sphere. For details see [9], [13], [15].

Differential Geometry - Dynamical Systems, Vol.24, 2022, pp. 177-190.

[©] Balkan Society of Geometers, Geometry Balkan Press 2022.

The present paper is organized as follows: In Section 2, we give necessary preliminaries. Section 3 contains the study of invariant submanifolds of trans-Sasakian manifolds with an example. Section 4 is devoted to study totally umbilical submanifolds of trans-Sasakian manifolds of dimension greater or equal to five. Totally umbilical submanifolds of three-dimensional trans-Saskian manifolds have been considered in the last section.

2 Preliminaries

Let \overline{M} be an *n*-dimensional (*n* is odd) smooth differentiable manifold endowed with an almost contact metric structure (ϕ, ξ, η, g) , where ϕ is a (1,1)-tensor field, ξ is a vector field, η is a one form and g is a compatible Riemannian metric on \overline{M} . For such manifolds, we know [1]

(2.1)
$$\phi^2 X = -X + \eta(X)\xi, \qquad \eta(\xi) = 1,$$

(2.2)
$$\eta(X) = g(X,\xi),$$

(2.3)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

(2.4)
$$\phi \xi = 0, \quad \eta o \phi = 0, \quad g(X, \phi Y) = -g(\phi X, Y),$$

for any $X, Y \in \Gamma(T\overline{M})$, where $\Gamma(T\overline{M})$ denotes the Lie algebra of all vector fields on \overline{M} . A connected manifold \overline{M} endowed with almost contact metric structure (ϕ, ξ, η, g) is called a trans-Sasakian manifold [14] if $(\overline{M} \times R, J, G)$ belongs to the class W_4 [10], where J is an almost complex structure on $\overline{M} \times R$ which is defined by

$$J(X, f\frac{d}{dt}) = (\phi X - f\xi, \eta(X)\frac{d}{dt}),$$

for any vector field X on \overline{M} and the smooth function f on $\overline{M} \times R$, and G is the usual product metric on $\overline{M} \times R$. According to [2], an almost contact metric manifold is a trans-Sasakian manifold if and only if

(2.5)
$$(\bar{\nabla}_X \phi)Y = \alpha(g(X,Y)\xi - \eta(Y)X) + \beta(g(\phi X,Y)\xi - \eta(Y)\phi X),$$

for smooth functions α, β on \overline{M} , where $\overline{\nabla}$ denote the covariant derivative with respect to g. Generally, \overline{M} , is said to be a trans-Sasakian manifold of type (α, β) . From the equation (2.5), it follows that

(2.6)
$$\overline{\nabla}_X \xi = -\alpha \phi X + \beta (X - \eta(x)\xi),$$

Certain submanifolds of trans-Sasakian manifolds

(2.7)
$$(\bar{\nabla}_X \eta)Y = -\alpha g(\phi X, Y) + \beta g(\phi X, \phi Y)$$

Let M be the sub-manifold of an *n*-dimensional almost contact metric manifold \overline{M} . Let ∇ and $\overline{\nabla}$ are the Levi-Civita connections of M and \overline{M} , respectively. Then for any vector fields $X, Y \in \Gamma(TM)$, the second fundamental form σ is defined by

(2.8)
$$\bar{\nabla}_X Y = \nabla_X Y + \sigma(X, Y).$$

A submanifold of a trans-Sasakian manifold is called totally geodesic if

$$\sigma(X, Y) = 0,$$
 for $X, Y \in \Gamma(TM).$

Furthermore, for any section N of normal bundle $T^{\perp}M$, we have

(2.9)
$$\bar{\nabla}_X N = -A_N X + \nabla^\perp N.$$

Where ∇^{\perp} denotes the normal bundle connection of M. The second fundamental form σ and shape operator A_N are related by

(2.10)
$$g(A_N X, Y) = g(\sigma(X, Y), N).$$

For details see [4].

On a Riemannian manifold M, for a (0, k)-type tensor field $T(k \ge 1)$ and a (0, 2)-type tensor field E, we denote by Q(E, T) a (0, k + 2)-type tensor field ([19]) defined as follows

$$Q(E,T)(X_1, X_2, ..., X_k; X, Y) = - T((X \wedge_E Y)X_1, X_2, ..., X_n) - T(X_1, (X \wedge_E Y)X_2, ..., X_k) - ... (2.11) - T(X_1, ..., (X \wedge_E Y)X_k),$$

where $(X \wedge_E Y)Z = E(Y, Z)X - E(X, Z)Y$.

From Gauss and Codazzi equations for submanifolds, we get [3]

$$(2.12) \ \ \bar{R}(X,Y,Z,W) = R(X,Y,Z,W) - g(\sigma(X,W),\sigma(Y,Z)) + g(\sigma(X,Z),\sigma(Y,W)).$$

(2.13)
$$(\bar{R}(X,Y)Z)^{\perp} = (\bar{\nabla}_X \sigma)(Y,Z) - (\bar{\nabla}_Y \sigma)(X,Z).$$

Here \bar{R} is the curvature tensor of the ambient manifold. $(\bar{R}(X,Y)Z)^{\perp}$ is the normal component of \bar{R} .

From [6], we get for three-dimensional trans-Sasakian manifolds

(2.14)
$$\bar{R}(X,Y)\xi = (4(\alpha^2 - \beta^2) - \frac{r}{2})(\eta(Y)X - \eta(X)Y).$$

3 Invariant submanifolds of trans-Sasakian manifolds

In this section we shall study a three dimensional submanifold M of a trans-Sasakian manifold \overline{M} such that the characteristic vector field ξ is tangential to M. Generally,

a submanifold M is said to be invariant submanifold of \overline{M} if $\phi(TM) \subset TM$. On an invariant submanifold M of \overline{M} , it follows that $\xi \in \Gamma(TM)$. We see that

$$\begin{aligned} (\nabla_X \phi)Y &= \nabla_X \phi Y - \phi(\nabla_X Y) \\ &= \nabla_X \phi Y - \sigma(X, \phi Y) - \phi(\bar{\nabla}_X Y - \sigma(X, Y)) \\ &= (\nabla_X \phi)Y - \sigma(X, \phi Y) + \phi(\sigma X, Y). \end{aligned}$$

From (2.4) and the above equation we get by considering the submanifold as invariant and comparing tangential components

(3.1)
$$(\nabla_X \phi)Y = \alpha(g(X,Y)\xi + \eta(Y)X) - \beta(g(\phi X,Y)\xi - \eta(Y)\phi X).$$

Thus we have the following lemma

Lemma 3.1. An invariant submanifold of a trans-Sasakian manifold is tarns-Sasakian.

This Lemma is also proved in [5].

From the equation (2.6) we directly can establish the following lemma.

Lemma 3.2.[16] Let M be the invariant submanifold of a trans-Sasakian manifold \overline{M} . Then the following equations hold:

$$\nabla_X \xi = -\alpha \phi X + \beta (X - \eta (X)\xi), \qquad \sigma(X,\xi) = 0,$$

(3.2)
$$\sigma(X,\phi Y) = \sigma(\phi X,Y) = \phi\sigma(X,Y),$$

for any $X, Y \in \Gamma(TM)$.

Lemma 3.3.[7] Let M be an invariant submanifold of a trans-Sasakian manifold \overline{M} of dimension greater than three, then we have

(3.3)
$$R(X,\xi)\xi = (\alpha^2 - \beta^2 - \xi\beta)(X - \eta(X)\xi) + 2\alpha\beta\phi X + (\xi\alpha)\phi X,$$

(3.4)
$$S(X,\xi) = (n-1)(\alpha^2 - \beta^2)\eta(X) - (n-2)X\beta - \eta(X)\xi\beta - (\phi X)\alpha,$$

(3.5)
$$S(\xi,\xi) = (n-1)(\alpha^2 - \beta^2 - \xi(\beta)),$$

where any $X \in \Gamma(TM)$. Here R and S are respectively the Riemann curvature and Ricci curvature of the submanifold.

The Projective curvature tensor P of type (1,3) on a Riemannian manifold (M,g) of dimension n is defined by

(3.6)
$$P(X,Y)Z = R(X,Y)Z - \frac{1}{n-1}[S(Y,Z)X - S(X,Z)Y],$$

for any $X, Y, Z \in \Gamma(TM)$.

Theorem 3.1. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only if $Q(g, P.\sigma) = 0$, provided that $(2\alpha\beta + \xi\alpha) \neq 0$.

Proof. Assume $Q(g, P.\sigma) = 0$, then

$$Q(g, P(X, Y).\sigma)(W, K; U, V) = 0,$$

for the vector fields $X, Y, W, K, U, V \in \Gamma(TM)$. Using (2.11) we have

$$0 = -g(V,W)(P(X,Y).\sigma)(U,K) + g(U,W)(P(X,Y).\sigma)(V,K)$$

- g(V,K)(P(X,Y).\sigma)(W,U) + g(U,K)(P(X,Y).\sigma)(W,V)

$$= -g(V,W)[P^{\perp}(X,Y)\sigma(U,K) - \sigma(P(X,Y)U,K) - \sigma(P(X,Y)K,U)] + g(U,W)[P^{\perp}(X,Y)(\sigma V,K) - \sigma(P(X,Y)V,K) - \sigma(P(X,Y)K,V)] - g(V,K)[P^{\perp}(X,Y)(\sigma W,U) - \sigma(P(X,Y)W,U) - \sigma(P(X,Y)U,W)] + g(U,K)[P^{\perp}(X,Y)(\sigma W,V) - \sigma(P(X,Y)W,V) - \sigma(P(X,Y)V,W)].$$

Using Lemma 3.2 and putting $Y = K = U = W = \xi$ in the above equation we have

(3.7)
$$\sigma(P(X,\xi)\xi,V) = 0.$$

By the Lemma 3.4 and the equation (3.12) we have

(3.8)
$$\sigma(P(X,\xi)\xi,V) = (2\alpha\beta + \xi\alpha)\sigma(V,\phi X).$$

By the equations (3.13), (3.14) and the assumed condition $(2\alpha\beta + \xi\alpha) \neq 0$, we have

$$\sigma(V,\phi X) = 0$$

Hence by Lemma 3.2,

$$\sigma(V, X) = 0$$

for any $X, Y \in \Gamma(TM)$. Thus the submanifold is totally geodesic. Converse part is trivially true. This completes the proof.

Remark 3.1. The above theorem is also true for invariant submanifolds of Sasakian and Kenmotsu manifolds.

Theorem 3.2. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only if $Q(S, P.\sigma) = 0$, provided that $(n-1)(\alpha^2 - \beta^2 + \xi(\beta))(2\alpha\beta + \xi\alpha) \neq 0$.

Proof. Assume $Q(S, P.\sigma) = 0$, then

$$Q(g, P(X, Y).\sigma)(W, K; U, V) = 0$$

for the vector fields $X, Y, W, K, U, V \in \Gamma(TM)$. Using (2.11) we have

$$0 = - S(V,W)(P(X,Y).\sigma)(U,K) + S(U,W)(P(X,Y).\sigma)(V,K) - S(V,K)(P(X,Y).\sigma)(W,U) + S(U,K)(P(X,Y).\sigma)(W,V)$$

$$= -S(V,W)[P^{\perp}(X,Y)\sigma(U,K) - \sigma(P(X,Y)U,K) - \sigma(P(X,Y)K,U)]$$

 $+ \quad S(U,W)[P^{\perp}(X,Y)(\sigma V,K)-\sigma(P(X,Y)V,K)-\sigma(P(X,Y)K,V)]$

- $S(V,K)[P^{\perp}(X,Y)(\sigma W,U) \sigma(P(X,Y)W,U) \sigma(P(X,Y)U,W)]$
- + $S(U,K)[P^{\perp}(X,Y)(\sigma W,V) \sigma(P(X,Y)W,V) \sigma(P(X,Y)V,W)].$

Using Lemma 3.2 and putting $Y = K = U = W = \xi$ in the above equation we have

(3.9)
$$S(\xi,\xi)\sigma(P(X,\xi)\xi,V) = 0.$$

By the Lemma 3.4 and the equation (3.12) we have

(3.10)
$$S(\xi,\xi)\sigma(P(X,\xi)\xi,V) = (n-1)(\alpha^2 - \beta^2 + \xi(\beta))(2\alpha\beta + \xi\alpha)\sigma(V,\phi X).$$

By the equations (3.15), (3.16) and the given condition $(n-1)(\alpha^2 - \beta^2 + \xi(\beta))(2\alpha\beta + \xi\alpha) \neq 0$ we have

$$\sigma(V,\phi X) = 0.$$

Hence by the Lemma 3.2,

$$\sigma(V, X) = 0$$

for any $X, Y \in \Gamma(TM)$. Thus the submanifold is totally geodesic. Converse part is trivially true. This completes the proof.

Remark 3.2. The above theorem is also true for invariant submanifolds of Sasakian and Kenmotsu manifolds.

Example 3.1. Let us consider the five dimensional differentiable manifold [11] $M = \{(x_1, x_2, x_3, x_4, t) \in \mathbb{R}^5 : t \neq 0\}$, where (x_1, x_2, x_3, x_4, t) are the standard coordinates of \mathbb{R}^5 . We choose the vector fields

$$e_1 = e^{-t} \frac{\partial}{\partial x_1}, \quad e_2 = e^{-t} \frac{\partial}{\partial x_2}, \quad e_3 = e^{-t} \frac{\partial}{\partial t}, \quad e_4 = e^{-t} \frac{\partial}{\partial x_4}, \quad e_5 = e^{-t} \frac{\partial}{\partial t},$$

which are linearly independent at each point of \overline{M} . We define g by

$$g = e^{2t}K,$$

where K is the Euclidean metric on \mathbb{R} . Hence $\{e_1, e_2, e_3, e_4, e_5\}$ is orthonormal basis of \overline{M} i.e.,

$$\begin{array}{rcl} g(e_i,e_j) &=& 1 & \mbox{if} & i=j, \\ &=& 0 & \mbox{if} & i\neq j, & \mbox{where} \ 1\leq i,j\leq 5 \end{array}$$

We consider an 1-form η defined by

$$\eta(X) = g(X, e_5), \quad X \in T\overline{M}.$$

i.e., we choose $e_5 = \xi$. We define the (1.1) tensor field ϕ by

$$\phi(\sum_{i=1}^{2}(x_{i}\frac{\partial}{\partial x_{i}}+x_{i+2}\frac{\partial}{\partial x_{i+2}})+t\frac{\partial}{\partial t})=\sum_{i=1}^{2}(x_{i}\frac{\partial}{\partial x_{i+2}})-x_{i+2}\frac{\partial}{\partial x_{i}}).$$

Thus we have

$$\phi(e_1) = e_3, \quad \phi(e_2) = e_4, \quad \phi(e_3) = -e_1, \quad \phi(e_4) = -e_2, \quad \phi(e_5) = 0.$$

The linear property of g and ϕ shows that

$$\eta(e_5) = 1, \quad \phi^2(X) = -X + \eta(X)e_5,$$

 $g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$

for any vector fields X, Y on $\overline{M}(\phi, \xi, \eta, g)$ defines an almost contact manifold with $e_5 = \xi$. Moreover, let $\overline{\nabla}$ is the Levi-Civita connection with respect to metric g. Then we have

$$[e_i, e_5] = e^{-t}e_i \quad i = 1, 2, 3, 4, 5, \quad [e_i, e_j] = 0, \quad 1 \le i, j \le 4.$$

By Koszul formula, we obtain the following

$$\bar{\nabla}_{e_1} e_1 = -e^{-t} e_5, \quad \bar{\nabla}_{e_2} e_2 = -e^{-t} e_5, \quad \bar{\nabla}_{e_3} e_3 = -e^{-t} e_5, \quad \bar{\nabla}_{e_4} e_4 = -e^{-t} e_5, \\ \bar{\nabla}_{e_5} e_5 = 0, \quad \bar{\nabla}_{e_5} e_i = 0, \quad \bar{\nabla}_{e_i} e_5 = e^{-t} e_i, \quad \text{for } 1 \le i \le 4, \\ \bar{\nabla}_{e_i} e_j = 0, \quad \text{otherwise.}$$

Thus we see that \overline{M} is a trans-Sasakian manifold of type $(0, e^{-t})$.

Let M be a sub set of \overline{M} and consider the isometric immersion $f: M \to \overline{M}$ defined by

$$f(x_1, x_3, t) = (x_1, 0, x_3, 0, t).$$

It is easy to prove that $M = \{(x_1, x_3, t) \in \mathbb{R}^3 : t \neq 0\}$, where (x_1, x_3, t) are the standard co-ordinate of \mathbb{R}^3 . We choose the vector fields

$$e_1 = e^{-t} \frac{\partial}{\partial x_1}, \quad e_3 = e^{-t} \frac{\partial}{\partial x_3}, \quad e_5 = e^{-t} \frac{\partial}{\partial t},$$

which are linearly independent at each point of M. We define g_1 by

$$g_1 = e^{2t} K_1,$$

where K_1 is the Euclidean metric on \mathbb{R} . Hence $\{e_1, e_3, e_5\}$ are orthonormal basis of \overline{M} i.e., $g(e_i, e_j) = 1$ if i = j and 0 otherwise. Here i = 1, 3, 5.

We define 1-form η_1 and (1,1) tensor ϕ_1 respectively by $\eta_1 = g_1(X, e_5)$,

$$\phi_1(x_1\frac{\partial}{\partial x_1} + x_3\frac{\partial}{\partial x_3} + t\frac{\partial}{\partial t}) = (x_1\frac{\partial}{\partial x_3} - x_3\frac{\partial}{\partial x_1}).$$

Thus we have

$$\phi_1(e_1) = e_3, \quad \phi_1(e_3) = -e_1, \quad \phi_1(e_5) = 0.$$

The linear property of g_1 and ϕ_1 shows that

$$\eta_1(e_5) = 1, \qquad \phi_1^2(X) = -X + \eta_1(X)e_5,$$
$$g_1(\phi_1 X, \phi_1 Y) = g_1(X, Y) - \eta_1(X)\eta_1(Y)$$

for any vector fields X, Y on $M(\phi_1, \xi, \eta_1, g_1)$. It is seen that M is an invariant submanifold of \overline{M} with $e_5 = \xi$. Moreover, let ∇ be the Levi-Civita connection with respect to the metric g_1 . Then we have

$$[e_i, e_5] = e^{-t}e_i, \quad [e_i, e_j] = 0, \quad i, j = 1, 3, 5.$$

By using Kouszul formula, we obtain

$$\nabla_{e_1}e_1 = -e^{-t}e_5, \quad \nabla_{e_3}e_3 = -e^{-t}e_5, \quad \nabla_{e_5}e_5 = 0 \quad , \nabla_{e_1}e_5 = e^{-t}e_1, \\ \nabla_{e_3}e_5 = e^{-t}e_3, \quad \nabla_{e_5}e_1 = 0, \quad \nabla_{e_5}e_3 = 0, \quad \nabla_{e_1}e_3 = 0, \quad \nabla_{e_3}e_1 = 0.$$

Using the above results we see that $\sigma(X, Y) = 0$. So the submanifold is totally geodesic.

4 Totally umbilical submanifolds of a trans-Sasakian manifold

Let M be an n-dimensional totally umbilical submanifold of a trans -Sasakian manifold \overline{M} . Here, we take $n \geq 5$. The second fundamental form σ of M is given by $\sigma(X, Y) = g(X, Y)H$ where $X, Y \in \Gamma(TM)$ and H is mean curvature vector [8].

If we set $\mu = ||H||^2$, then for the umbilical submanifold M with mean curvature parallel in the normal bundle, we have $X \cdot \mu = 0$ for any $X \in \Gamma(TM)$, that is, μ is constant.

If $\mu \neq 0$, define a unit vector $e \in \nu$ in the normal bundle, by setting $H = \sqrt{\mu}e$. The normal bundle can be split into the direct sum $\mu = \{e\} \oplus \{e\}^{\perp}$, where $\{e\}^{\perp}$ is the orthogonal compliment of the line sub-bundle e spanned by e. For each $X \in \Gamma(TM)$. Set

(4.1)
$$\phi X = \psi(X) - A(X)e + P(X), \qquad \phi e = t + F,$$

where $\psi(x)$ is the tangential components of ϕX , while A(X) and P(X) are the $\{e\}$ and $\{e\}^{\perp}$ components, respectively. t and F are the $\{e\}$ and $\{e\}^{\perp}$ components of ϕe , respectively, in view of the skew-symmetry of ϕ .

Lemma 4.1. Let M be a totally umbilical submanifold of a trans-Sasakian manifold \overline{M} with curvature vector parallel to the normal bundle. If $\mu \neq 0$, then for any $X \in \Gamma(TM)$ following hold: (i) $\overline{\nabla}_X e = -\sqrt{\mu}X$,

(ii) $\nabla_X t = -\sqrt{\mu}\psi(X) - \alpha g(e,\xi)X - \beta g(e,\xi)\psi(X),$ (iii) $\nabla_X^{\perp}F = -\sqrt{\mu}P(X) - \beta A(X)\xi.$

Proof. Taking inner product with respect to Y, in both sides of the equation (2.8), we obtain

$$\bar{\nabla}_X N = -g(H, N)X + \nabla_X^{\perp} N.$$

Putting N = e in the above equation, we obtain

$$\bar{\nabla}_X e = -\sqrt{\mu}X.$$

Thus (i) is proved. Next we compute $(\bar{\nabla}_X \phi)e$, for $X \in \Gamma(TM)$. Using the equations (2.5) and (4.1) we obtain

$$\begin{aligned} \nabla_X t + \nabla_X^{\perp} F &+ \sqrt{\mu}(\psi(X) - A(X)e + P(X)) + \sigma(X, \phi(e)) \\ &= \alpha(g(X, e)\xi - \eta(e)X) + \beta(g(\phi X, e)\xi - \eta(e)\phi(X)). \end{aligned}$$

Next comparing the tangential part we have

$$\nabla_X t = -\sqrt{\mu}\phi(X) - \alpha g(e,\xi)X - \beta g(e,\xi)\psi(X).$$

Thus (ii) is proved. Now comparing $\{e\}^{\perp}$ component and using the result A(X) = g(X,t) we obtain

$$\nabla_X^{\perp} F = -\sqrt{\mu} P(X) - \beta A(X)\xi.$$

Thus (iii) is proved.

Lemma 4.2. Let M be a totally umbilical sub-manifold of a tans-Sasakian manifold \overline{M} with mean curvature vector parallel in the normal bundle. If $\mu \neq 0$, and $\xi \perp e$, then, setting $\xi = \xi_1 + \xi_2$, where ξ_1 is the tangential component and ξ_2 is the $\{e\}^{\perp}$ -component of ξ , we have

(i)
$$\nabla_X \xi_1 = -\alpha \psi(X) + \beta(X - \eta(X)\xi_1),$$

(ii) $(\nabla_X \psi)Y = (\alpha - \frac{\mu}{\alpha})(g(X, Y)\xi_1 - \eta(Y)X) + \beta(g(\phi X, Y)\xi_1 - \eta(Y)\psi(X)).$

Proof. Putting $\xi = \xi_1 + \xi_2$ in the equation (2.6) and (4.1) we have

$$\nabla_X \xi_1 + \nabla_X \xi_2 + \sigma(X,\xi) = -\alpha(\psi X - A(X)e + P(X)) + \beta(X - g(X,\xi)\xi).$$

Comparing tangential part we have (i), and comparing e component, we have $\sigma(X,\xi) = \alpha A(X)e$ i.e.,

(4.2)
$$\sqrt{\mu}\eta(X) = \alpha A(X), \qquad \sqrt{\mu}\xi_1 = \alpha t.$$

Now using the equations (2.5) and (4.1) we have

$$\nabla_X(\psi Y) - \nabla_X(AY)e - A(Y)(\nabla_X e) - \psi(\nabla_X Y) + A(\nabla_X Y)e - P(\nabla_X Y) = \alpha(g(X,Y)\xi - \eta(Y)X) + \beta(g(\phi X,Y)\xi - \eta(Y)\phi X).$$

Using the Lemma 4.1, we obtain from the above equation

$$\begin{aligned} (\nabla_X \psi)Y + (\nabla_X P)Y + \sqrt{\mu}g(X,Y)(\frac{\sqrt{\mu}}{\alpha}\xi_1 + F) + \frac{\sqrt{\mu}\beta}{\alpha}g(X,Y)e - \\ \frac{\mu}{\alpha}g(X,Y)e &= \alpha(g(X,Y)\xi - \eta(Y)X) + \beta(g(\phi X,Y)\xi - \eta(Y)\phi X). \end{aligned}$$

Comparing the tangential part we obtain (ii).

It is known that a trans-Sasakian manifold of dimension greater or equal to five is either α -Sasakian or β -Kenmotsu[12]. So let us first study umbilical submanifolds of α -Sasakian manifolds, then umbilical submanifolds of β -Kenmotsu manifold of dimension greater or equal to five. We shall now deduce the following:

Theorem 4.1. Let M be a totally umbilical submanifold of an α -Sasakian manifold of dimension greater or equal to five with mean curvature vector parallel in the normal bundle. Then one of the following hold :

(i) M is totally geodesic

(ii) M is isometric to a sphere

(iii) M is homothetic to a Sasakian manifold.

Proof. Since H is parallel in the normal bundle, μ is a constant. If $\mu = 0$, then H = 0, and consequently $\sigma(X, Y) = 0$, $X, Y \in \Gamma(TM)$. Thus the submanifold M is totally geodesic, which proves the first part of the theorem.

Next we assume that $\mu \neq 0$. Define a smooth function $f : M \to R$ by $f = g(e,\xi), X \in \Gamma(TM)$. Then Lemma 4.1, and equations (2.6), (2.8), (2.9), imply that

$$Xf = g(\nabla_X \xi, e) + g(\xi, \nabla_X e)$$

= $\alpha g(X, t) - \sqrt{\mu} g(\xi, X).$

So, by using the equations (2.6) and the Lemma 4.1, we have,

$$XYf - (\nabla_X Y)f = -\alpha^2 fg(X, Y).$$

Then

(4.3)
$$g(\nabla_X \operatorname{grad} f, Y) = -\alpha^2 f g(X, Y).$$

Taking trace of this equation we have

(4.4)
$$\Delta f = -\alpha^2 n f.$$

If f is non-constant function, according to [15], the equation (4.4) is the differential equation whose existence ensures necessary and sufficient condition for M to be isometric to a sphere of radius $\frac{1}{\alpha}$.

If f is a constant, then equation (4.4) gives $-n\alpha^2 f = 0$, α is non-zero and consequently f = 0, that is $\xi \perp e$.

Now define a smooth function $G: M \to R$ by

$$(4.5) G = \frac{1}{2}tr.\psi^2.$$

Note that (4.1) gives $g(\psi Y, X) = -g(\psi Y, X), \quad X, Y \in \Gamma(TM).$

Let ω be a 1-form defined by $\omega = dG$. For each $p \in M$ we can choose a local orthonormal frame $\{e_1, \ldots, e_n\}$ of M such that $\nabla e_i(p) = 0$. Thus, for any $Z \in \Gamma(TM)$, we have

(4.6)
$$\omega(Z) = ZG = \sum_{i=1}^{n} g((\nabla_Z \psi)(e_i), \psi(e_i)).$$

186

Using the Lemma 4.2, we obtain

(4.7)
$$\omega(Z) = 2(\alpha - \frac{\mu}{\alpha})g(\psi Z, \xi_1).$$

The first covariant derivative of (4.7) is

$$(\nabla\omega)(Y,Z) = 2(\alpha - \frac{\mu}{\alpha})(-\alpha g(\psi Y, \psi Z)) + 2(\alpha - \frac{\mu}{\alpha})^2(g(\xi_1, \xi_1)g(Y, Z) - g(Y, \xi)g(Z, \xi_1)).$$

And consequently using the equation (4.7) and the above equation we have

(4.8)
$$(\nabla^2 \omega)(X, Y, Z) + k^2 (2g(Y, Z)\omega(X) + g(X, Y)\omega(Z) + g(X, Z)\omega(Y)) = 0.$$

where $k^2 = (\alpha - \frac{\mu}{\alpha})$. According to Tanno [18], existence of the differential equation (4.8) in which, G being non-constant, is the necessary and sufficient condition for M to be isometric to a sphere. This again leads to case (ii). Suppose G is constant function. Then equation (4.7) gives $\psi(\xi_1) = 0$. Define a smooth function $G_1: M \to R$ by

$$G_1 = g(\xi_1, \xi_1).$$

Then using the Lemma 4.2, we get $X\alpha = 0$, $X \in \Gamma(TM)$. In others words ξ_1 has constant length. Taking the covariant derivative in (i) of Lemma 4.2 and using (ii), we get

(4.9)
$$\nabla_X \nabla_Y \xi_1 - \nabla_{\nabla_X Y} \xi_1 = k^2 (g(X, Y)\xi_1 - g(Y, \xi_1)X).$$

where $k^2 = (\alpha - \frac{\mu}{\alpha})$. Furthermore, from (i) of the Lemma 4.2, it follows that ξ_1 is a Killing vector field. Since $k \neq 0$ as $(\alpha - \frac{\mu}{\alpha}) \neq 0$ and ξ_1 is a Killing vector field of constant length, which satisfies (4.9), a result of Okumura [13] states that, if $\xi_1 \neq 0$, then M is homothetic to a Sasakian manifold. which is (iii). Thus to complete the proof we have only to show that $\xi_1 = 0$ cannot happen.

We note that if $\xi_1 = 0$ then $\xi \in \{e\}^{\perp}$ as $\xi \perp e$. Lemma 4.2 gives $\psi(X) = 0$, i.e. ϕX is normal to M for all $X \in \Gamma(TM)$. Again, equation (4.2) gives t = 0, i.e. $\phi e = F \in \{e\}^{\perp}$, and $g(\phi X, \phi e) = g(X, e) - \eta(X)\eta(e) = 0$, $X \in \Gamma(TM)$, $g(\phi e, \xi) = 0$. Thus the dim of $\nu \geq \dim\{M\} + \dim\{e\} + \dim\{\phi e\} - 1$, which is impossible

as dim{ \bar{M} }=2n + 1. This completes the proof.

Theorem 4.2. Let M be a totally umbilical submanifold of a β -Kenmotsu manifold of dimension greater or equal to five with mean curvature vector parallel in the normal bundle. Then one of the following hold:

(i) M is totally geodesic

(ii) M is isometric to a sphere

(iii) M is homothetic to a Sasakian manifold.

Proof. Since H is parallel in the normal bundle, μ is a constant. If $\mu = 0$, then H = 0, and consequently $\sigma(X, Y) = 0$, $X, Y \in \Gamma(TM)$. Thus the submanifold M is totally geodesic, which proves the first part of the theorem.

Next we assume that $\mu \neq 0$. Define a smooth function $f : M \to R$ by $f = g(e,\xi), X \in \Gamma(TM)$. Then Lemma 4.1, and equations (2.6), (2.8), (2.9), imply that

$$Xf = g(\nabla_X \xi, e) + g(\xi, \nabla_X e)$$

= $\beta g(Y, e) - g(\xi, Y)(\beta f + \sqrt{\mu})$

So, by using the equation (2.6) and the Lemma 4.1, we have,

$$XYf - (\nabla_X Y)f = -2\sqrt{\mu}\beta g(X,Y) - \beta^2 g(X,Y)f + 2\beta\eta(X)\eta(Y)(\beta f + \sqrt{\mu}).$$

Then

(4.10)
$$g(\nabla_X \operatorname{grad} f, Y) = -2\sqrt{\mu}\beta g(X, Y) - \beta^2 g(X, Y)f + 2\beta\eta(X)\eta(Y)(\beta f + \sqrt{\mu}).$$

Taking trace of this equation we have

(4.11)
$$\Delta f = 2\sqrt{\mu}\beta(n+1) - \beta^2(n+2)f.$$

Replace f_1 by f, where f_1 is defined by

(4.12)
$$f_1 = f + \frac{2\sqrt{\mu}\beta(n+1)}{\beta^2(n+2)}.$$

If β is constant then $\Delta f = \Delta f_1$, and the Equation (4.11) gives

(4.13)
$$\Delta f_1 = -\beta^2 (n+2) f_1.$$

If f_1 is non constant function, then the equation (4.13) is the differential equation in [15], which is necessary and sufficient condition for M to be isometric to a sphere of radius $\frac{1}{\beta^2(n+2)}$.

Now if f_1 is a non-constant function then by similar calculation done to prove the previous theorem we can prove this theorem.

5 Totally umbilical submanifolds of three-dimensional trans-Sasakian manifolds

In the previous section, we have studied submanifolds of trans-sasakian manifolds of dimension greater or equal to five. In this section, we shall study totally umbilical submanifolds of a three-dimensional trans-Sasakian maifold. Here we prove the following:

Theorem 5.1. A totally umbilical submanifold of a three-dimensional trans-Sasakian manifold is totally geodesic.

Proof. From the equation (2.4), we get

$$\bar{R}(X,Y)Z = (4(\alpha^2 - \beta^2) - \frac{r}{2})(\eta(Y)X - \eta(X)Y).$$

Since the right hand side of the above equation is a vector field in the tangent bundle of the submanifold, we get

(5.1)
$$(\bar{R}(X,Y)Z)^{\perp} = 0.$$

Now if the submanifold is totally umbilical then

$$\sigma(X,Y) = g(X,Y)H.$$

Here H is mean curvature vector. Hence

(5.2)
$$(\nabla_W \sigma)(X, Y) = g(X, Y) \nabla_W^{\perp} H.$$

Hence from (2.13)

(5.3)
$$(\bar{R}(X,Y)Z)^{\perp} = g(Y,Z)\nabla_X^{\perp}H - g(X,Z)\nabla_Y^{\perp}H.$$

In view of (5.1) and (5.3)

$$g(Y,Z)\nabla_X^{\perp}H = g(X,Z)\nabla_Y^{\perp}H.$$

Putting $Z = \xi$ and replacing X by ϕX , we get

(5.4)
$$\nabla^{\perp}_{\phi X} H.$$

So form (5.2)

$$(\nabla_{\phi W}\sigma)(X,Y) = 0.$$

Hence

$$\nabla_{\phi W}^{\perp} \sigma(X, Y) - \sigma(\nabla_{\phi W} X, Y) - \sigma(X, \nabla_{\phi W} Y) = 0.$$

Putting $Y = \xi$ and using the Lemma 3.2 we have

(5.5) $\alpha\sigma(X,W) + \beta\sigma(X,\phi W) = 0.$

Replacing W by ϕW we get

(5.6)
$$-\beta\sigma(X,W) + \alpha\sigma(X,\phi W) = 0.$$

From (5.5) and (5.6) we get

(5.7)
$$\sigma(X,W) = 0.$$

This proves the theorem.

Remark 5.1. The submanifolds of a three-dimensional trans-Sasakian manifold are either of dimension one or two. One dimensional submanifolds are trivial. Two dimensional submanifolds are hypersurfaces. So, we can state the following :

Corollary 5.1. A totally umbilical hypersurface of a three-dimensional trans-Sasakian manifold is totally geodesic.

References

- D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, 2005.
- [2] D. E. Blair and J. A. Oubina, Conformal and related changes of matric on the product of two almost contact metric manifolds, Publ. Math. 34 (1990), 199-207.
- [3] B. Y. Chen, Totally umbilical submanifolds, Soochow J. Math., 5 (1979), 9-37.
- [4] B. Y. Chen, Geometry of Submanifolds, Dover Publications, 2019.
- [5] D. Chinea, and P. S. Prestelo, Invariant submanifolds of a trans-Sasakian manifold, Publ. Math. Debrecen, 38 (1991), 103-109.
- U. C. De and A. Sarkar, On three dimensional trans-Sasakian manifolds, Extracta Mathematicae, 23 (2008), 265-277.
- [7] A. De, Totally geodesic submanifolds of a trans-Sasakian manifold, Proc. Est. Acad. Sci., 62 (2013), 249-257.
- [8] S. Deshmukh and M. A. Al-Gwiz, Totally umbilical submanifolds of Sasakian manifolds, New Zeland J. Math., 22 (1993), 43-47.
- [9] F. Erkekogulu, E. Garcia-Rio, D. Kupeli and B. Unal, *Characterizing specific Riemannian manifolds by differential equation*, Acta Applicandae Mathematicae, **76** (2003), 195-219.
- [10] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.
- [11] C. Hu, Y. Wang, A note on invariant Submanifolds of trans-Sasakian manifolds, Int. Elect. J. of Geom., 9 (2016) 27-35.
- [12] J. C. Marrero and D. Chinea, On trans-Sasakian manifolds, In Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, Vol. I-III (Spanish) (Puerto de la Cruz, 1989), Univ. La Laguna, 1990, 655-659.
- [13] M. Okumura, Totally umbilical submanifolds of a Kaeher manifold, J. Math. Soc. Japan, 19 (1964), 371-327.
- [14] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985), 187-193.
- [15] M. Obata, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. U.S.-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, 101-114.
- [16] A. Sarkar, M. Sen, On invariant submanifolds of LP-Sasakian manifolds, 27 (2012), 35-58.
- [17] Y. Tashiro, Complex Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc., 117 (1965), 251-275.
- [18] S. Tanno, Some differential equations on Riemannian manifolds, J. Math. Soc., Japan, 30 (1978), 509-531.
- [19] L. Verstraelen, Comments on pseudosymmetry in the sense of R. Deszcz, Geometry and Topology of Submanifolds, 6 (1994), 199-209.

Authors' address:

Avijit Sarkar and Nirmal Biswas Department of Mathematics, University of Kalyani Kalyani 741235, West Bengal, India. E-mail:avjaj@yahoo.co.in , nirmalbiswas.maths@gmail.com