Harmonic vector fields on extended 3-dimensional Riemannian Lie groups

F. Koudjo, E. Loubeau and L. Todjihounde

Abstract

Given two Riemannian manifolds $\left(B, g_{B}\right)$ and $\left(F, g_{F}\right)$, we give harmonicity conditions for vector fields on the Riemannian warped product $B \times_{f} F$, with $\left.f: B \longrightarrow\right] 0,+\infty$ [, using a characteristic variational condition. Then, we apply this to the case $B=I \subset \mathbb{R}$ and F is a three-dimensional connected Riemannian Lie group G equipped with a left-invariant metric, to determine harmonic vector fields on $I \times_{f} G$. We give examples of harmonic vector fields on G which are not left-invariant and determine harmonic vector fields on $I \times_{f} G$. We conclude with of vector fields on $I \times_{f} G$ which are harmonic maps.

M.S.C. 2010: Primary: 58E20; Secondary: 58E20; 53C25; 53C50.

Key words: Harmonic maps; harmonic vector fields; tangent sphere bundle; Three dimensional Riemannian Lie groups; warped products.

1 Introduction

One of the most studied objects in Differential Geometry is the energy functional of a map $\varphi:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ between Riemannian manifolds of dimensions m and n, respectively, given by

$$
E(\varphi)=\int_{D} e(\varphi) v_{g} .
$$

where D is a compact domain of $M, e(\varphi): M \rightarrow[0, \infty[$ the energy density of φ defined by

$$
e(\varphi)(x)=\frac{1}{2}\left\|d \varphi_{x}\right\|^{2}=\frac{1}{2} \sum_{i=1}^{m} h\left(d \varphi_{x}\left(e_{i}\right), d \varphi_{x}\left(e_{i}\right)\right),
$$

for $x \in M,\left\{e_{i}\right\}_{i=1}^{m}$ an orthonormal basis of $T_{x} M$ and $d \varphi_{x}$ the differential of the map φ at the point x ([1],[5]).

Denote by $C^{\infty}(M, N)$ the space of smooth maps from M to N, ∇^{φ} the connection of the vector bundle $\varphi^{-1} T N$ induced from the Levi-Civita connection $\bar{\nabla}$ of (N, h) and ∇ the Levi-Civita connection of (M, g).

Differential Geometry - Dynamical Systems, Vol.24, 2022, pp. 92-118.
(C) Balkan Society of Geometers, Geometry Balkan Press 2022.

A map $\varphi:(M, g) \rightarrow(N, h)$ is said to be harmonic if it is a critical point of the energy functional $E(. ; D): C^{\infty}(M, N) \rightarrow \mathbb{R}$ for any compact domain D. It is well-known ([5]) that the map $\varphi:(M, g) \rightarrow(N, h)$ is harmonic if and only if

$$
\begin{equation*}
\tau(\varphi)=\operatorname{tr}(\nabla d \varphi)=\sum_{i=1}^{m}\left\{\nabla_{e_{i}}^{\varphi} d \varphi\left(e_{i}\right)-d \varphi\left(\nabla_{e_{i}} e_{i}\right)\right\}=0 \tag{1.1}
\end{equation*}
$$

where $\left\{e_{i}\right\}_{i=1}^{m}$ an orthonormal basis of $T_{x} M$. The equation $\tau(\varphi)=0$ is called the harmonic map equation. Denote by $\left(T M, g_{S}\right)$ the tangent bundle of (M, g) equipped with the Sasaki metric g_{S} (cf. section 2).A vector field X on M is a section of the tangent bundle, and in particular it is a map of M into $T M$. Its energy $E(V, D)$ on a compact domain D is given by

$$
E(V, D)=\frac{m}{2} \operatorname{Vol}(D)+\frac{1}{2} \int_{D}\|\nabla V\|^{2} v_{g} \approx \operatorname{Vol}(D)+E^{v}(V)
$$

It was shown in [9] and [12] that if M is compact and a vector field X is a harmonic map from (M, g) into $\left(T M, g_{S}\right)$, then X must be parallel. Critical points of the restriction of E to vector fields, with respect to variations through vector fields are called harmonic vector fields The corresponding critical point conditions have been determined in [14] and [16]. It should be pointed out that a harmonic vector field determines a harmonic map when an additional condition involving the curvature is satisfied ([6],[8]). The main goal of this paper is to study the harmonicity conditions for vector fields on the Riemannian warped product $M=B \times_{f} F$. Then we apply this to the case $B=I \subset \mathbb{R}$ and F is a three-dimensional connected Riemannian Lie group G equipped with a left-invariant metric, to determine harmonic vector fields on $I \times_{f} G$. We give examples of harmonic vector fields on G which are not left-invariant and determine a harmonic vector fields on $I \times_{f} G$. We also determine the vector fields on $I \times{ }_{f} G$ which are harmonic maps.

2 Preliminaries

2.1 The tangent bundle and the unit tangent sphere bundle

Let (M, g) be an m-dimensional Riemannian manifold and ∇ the associated LeviCivita connection. Its Riemann curvature tensor R is defined by

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

for all vector fields X, Y and Z on M. The tangent bundle of (M, g), denoted by $T M$, consists of pairs (x, u) where x is a point in M and u a tangent vector to M at x. The mapping $\pi: T M \rightarrow M:(x, u) \mapsto x$ is the natural projection from $T M$ onto M. The tangent space $T_{(x, u)} T M$ at a point (x, u) in $T M$ is the direct sum of the vertical subspace $\mathcal{V}_{(x, u)}=\operatorname{Ker}\left(\left.d \pi\right|_{(x, u)}\right)$ and the horizontal subspace $\mathcal{H}_{(x, u)}$, with respect to the Levi-Civita connection ∇ of (M, g) :

$$
T_{(x, u)} T M=\mathcal{H}_{(x, u)} \oplus \mathcal{V}_{(x, u)}
$$

For any vector $w \in T_{x} M$, there exists a unique vector $w^{h} \in \mathcal{H}_{(x, u)}$ at the point $(x, u) \in T M$, called the horizontal lift of w to (x, u), such that $d \pi\left(w^{h}\right)=w$ and a
unique vector $w^{v} \in \mathcal{V}_{(x, u)}$, the vertical lift of w to (x, u), such that $w^{v}(d f)=w(f)$ for all functions f on M. Hence, every tangent vector $\bar{w} \in T_{(x, u)} T M$ can be decomposed as $\bar{w}=w_{1}^{h}+w_{2}^{v}$ for uniquely determined vectors $w_{1}, w_{2} \in T_{x} M$. The horizontal (resp. vertical) lift of a vector field X on M to $T M$ is the vector field X^{h} (resp. X^{v}) on $T M$ whose value at the point (x, u) is the horizontal (respectively, vertical) lift of X_{x} to (x, u).

The tangent bundle $T M$ of a Riemannian manifold (M, g) can be endowed in a natural way with a Riemannian metric g_{S}, the Sasaki metric, depending only on the Riemannian structure g of the base manifold M. It is uniquely determined by

$$
\begin{equation*}
g_{S}\left(X^{h}, Y^{h}\right)=g_{S}\left(X^{v}, Y^{v}\right)=g(X, Y) \circ \pi, \quad g_{S}\left(X^{h}, Y^{v}\right)=0 \tag{2.1}
\end{equation*}
$$

for all vector fields X and Y on M. More intuitively, the metric g_{S} is constructed in such a way that the vertical and horizontal subbundles are orthogonal and the bundle map $\pi:\left(T M, g_{S}\right) \mapsto(M, g)$ is a Riemannian submersion. We denote by $\mathfrak{X}(M)$ the set of globally defined vector fields on the base manifold (M, g). In the sequel, we concentrate on the map $V:(M, g) \rightarrow\left(T M, g_{S}\right)$. The tension field $\tau(V)$ of $V:(M, g) \rightarrow\left(T M, g_{S}\right)$ is given by [6]

$$
\begin{equation*}
\tau(V)=(-S(V))^{h}+(-\bar{\Delta} V)^{v} \tag{2.2}
\end{equation*}
$$

where $\left\{e_{i}\right\}_{i=1}^{m}$ is a local orthonormal frame field of $(M, g), S(V)=\sum_{i=1}^{m} R\left(\nabla_{e_{i}} V, V\right) e_{i}$ and $\bar{\Delta} V=\nabla^{*} \nabla V=\sum_{i=1}^{m}\left\{\nabla_{\nabla_{e_{i} e_{i}}} V-\nabla_{e_{i}} \nabla_{e_{i}} V\right\}$. Consequently, V defines a harmonic map from (M, g) to $\left(T M, g_{s}\right)$ if and only if

$$
\begin{equation*}
\operatorname{tr}[R(\nabla . V, V) .]=0 \quad \text { and } \quad \nabla^{*} \nabla V=0 \tag{2.3}
\end{equation*}
$$

A smooth vector field V is said to be a harmonic section if and only if it is a critical point of E^{v} where E^{v} is the vertical energy. The corresponding Euler-Lagrange equation is given by

$$
\nabla^{*} \nabla V=0
$$

2.2 Warped Products

Let $\left(B^{m}, g_{B}\right)$ and $\left(F^{n}, g_{F}\right)$ be Riemannian manifolds with $\left.f: B \longrightarrow\right] 0,+\infty[\mathrm{a}$ smooth function on B . The warped product $M=B \times_{f} F$ is the product manifold $B \times F$ equipped with the metric $g=\pi^{*}\left(g_{B}\right) \oplus(f \circ \pi)^{2} \sigma^{*}\left(g_{F}\right)$; where $\pi: M \longrightarrow B$ and $\sigma: M \longrightarrow F$ are the usual projections. Then $\left(B, g_{B}\right)$ is called the base, $\left(F, g_{F}\right)$ is the fiber and f the warping function of the warped product, $\pi^{-1}(p)=\{p\} \times F$ are the fibers and $\sigma^{-1}(q)=B \times\{q\}$ the leaves. The vectors tangent to leaves are called horizontal and those tangent to the fibers vertical, hence for all $(p, q) \in M$

$$
\begin{aligned}
T_{(p, q)}(B \times F) & =T_{(p, q)}(\{p\} \times F) \oplus T_{(p, q)}(B \times\{q\}) \\
& =T_{(p, q)}(\{p\} \times F) \oplus T_{(p, q)}(\{p\} \times F)^{\perp} \\
& =T_{(p, q)}(B \times\{q\})^{\perp} \oplus T_{(p, q)}(B \times\{q\})
\end{aligned}
$$

A vector fields X on $B \times F$ are horizontal vector if $d \pi_{(p, q)}(X)=X_{p} \quad$ and $d \sigma_{(p, q)}(X)=0 \quad$ that is $\quad X \in T_{(p, q)}(B \times\{q\})^{\perp} \quad$ and $\quad d \pi_{(p, q)}(X)=X_{p}$. A vector fields X on $B \times F$ are vertical vector if $d \pi_{(p, q)}(X)=0$ and $d \sigma_{(p, q)}(X)=X_{q} \quad$ that is $\quad X \in T_{(p, q)}(\{p\} \times F)^{\perp}$ and $d \sigma_{(p, q)}(X)=X_{p}$.

If $X \in T_{p} B$ and $q \in F$ then the horizontal lift of X to (p, q) is the unique vector X^{*} in $T_{(p, q)}(B \times F)$ such that $d \pi_{(p, q)}\left(X^{*}\right)=X_{p} \quad$ and $\quad d \sigma_{(p, q)}(X)=0$

If $X \in T_{p}(F)$ and $q \in F$ then the vertical lift of X to (p, q) is the unique vector X^{*} in $T_{(p, q)}(B \times F)$ such that $d \pi_{(p, q)}(X)=0 \quad$ and $\quad d \sigma_{(p, q)}(X)=X_{q}$

Lemma 2.1. [13] Let $\left(B^{m}, g_{B}\right)$ and $\left(F^{n}, g_{F}\right)$ be Riemannian manifolds with $f: B \longrightarrow] 0,+\infty\left[\right.$ a smooth function on B. Let X_{1}, Y_{1} be vector fields on B and X_{2}, Y_{2} vector fields on F. Let $\nabla, \nabla^{B}, \nabla^{F}$ be the Levi-Civita connections of (M, g), $\left(B, g_{B}\right)$ and $\left(F, g_{F}\right)$ respectively, then

1. $\operatorname{grad}^{M}(f \circ \pi)=\left(\operatorname{grad}^{B}(f), 0\right)$;
2. $\nabla_{\left(X_{1}, 0\right)}\left(Y_{1}, 0\right)=\left(\nabla_{X_{1}}^{B} Y_{1}, 0\right)$;
3. $\nabla_{\left(0, X_{2}\right)}\left(0, Y_{2}\right)=\left(0, \nabla_{X_{2}}^{F} Y_{2}\right)-f g^{F}\left(X_{2}, Y_{2}\right) \operatorname{grad}^{B}(f \circ \pi)$

$$
=\left(0, \nabla_{X_{2}}^{F} Y_{2}\right)-\frac{1}{f} g\left(\left(0, X_{2}\right),\left(0, Y_{2}\right)\right) \operatorname{grad}^{B}(f \circ \pi)
$$

4. $\nabla_{\left(0, X_{2}\right)}\left(Y_{1}, 0\right)=\frac{Y_{1}(f)}{f}\left(0, X_{2}\right)$
5. $\nabla_{\left(X_{1}, 0\right)}\left(0, Y_{2}\right)=\frac{X_{1}(f)}{f}\left(0, Y_{2}\right)$;
6. $\operatorname{grad}^{M}(h \circ \sigma)=\frac{1}{f^{2}}\left(0, \operatorname{grad}^{F} h\right), \quad$ for $\quad h: F \longrightarrow \mathbb{R}$.

Lemma 2.2 ([13]). Let $\left(B^{m}, g_{B}\right)$ and $\left(F^{n}, g_{F}\right)$ be Riemannian manifolds, with $f: B \longrightarrow \mathbb{R}_{+}^{*}$ a smooth function on B, X_{1}, Y_{1}, Z_{1} vector fields on B, X_{2}, Y_{2}, Z_{2} vector fields on F, ∇, ∇^{B} the Levi Civita connections of $(M, g),\left(B, g_{B}\right)$ respectively, and R, R^{B}, R^{F} the Riemannian curvature tensors on $(M, g),\left(B, g_{B}\right)$ and $\left(F, g_{F}\right)$ respectively, then

1. $R\left(\left(X_{1}, 0\right),\left(Y_{1}, 0\right)\right)\left(Z_{1}, 0\right)=\left(R^{B}\left(X_{1}, Y_{1}\right) Z_{1}, 0\right)$
2. $R\left(\left(X_{1}, 0\right),\left(Y_{1}, 0\right)\right)\left(0, Z_{2}\right)=0$
3. $R\left(\left(0, X_{2}\right),\left(0, Y_{2}\right)\right)\left(Z_{1}, 0\right)=0$
4. $R\left(\left(0, X_{2}\right),\left(Y_{1}, 0\right)\right)\left(Z_{1}, 0\right)=-\frac{H^{f}\left(Y_{1}, Z_{1}\right)}{f}\left(0, X_{2}\right)$
5. $R\left(\left(X_{1}, 0\right),\left(0, Y_{2}\right)\right)\left(0, Z_{2}\right)=-f g^{F}\left(Y_{2}, Z_{2}\right)\left(\nabla_{X_{1}}^{B} \operatorname{grad}^{B}(f), 0\right)$
6. $R\left(\left(0, X_{2}\right),\left(0, Y_{2}\right)\right)\left(0, Z_{2}\right)=\left(0, R^{F}\left(X_{2}, Y_{2}\right) Z_{2}\right)+\operatorname{grad}^{B} f(f)\left(g^{F}\left(X_{2}, Z_{2}\right)\left(0, Y_{2}\right)-\right.$

$$
\left.g^{F}\left(Y_{2}, Z_{2}\right)\left(0, X_{2}\right)\right)
$$

where $H^{f}(U, V)=U(V(f))-\left(\nabla_{U}^{B} V\right)(f)$ for $U, V \in \mathfrak{X}(F)$ is the Hessian of f.

3 Harmonic vector fields on warped products

In this section, we determine the harmonicity conditions for vector fields on the warped product $M=B \times_{f} F$ with $\left.f: B \longrightarrow\right] 0,+\infty[$.
Let $\left\{e_{i}^{\prime}\right\}_{i=1, \ldots, m}$ be an orthonormal basis of $\left(B, g_{B}\right)$ and $\left\{e_{i}^{\prime \prime}\right\}_{i=1, \ldots, n}$ an orthonormal basis of $\left(F, g_{F}\right)$. Then $\left\{e_{i}\right\}_{i=1, \ldots, m+n}$ is an orthonormal basis of (M, g) with $e_{i}=\left(e_{i}^{\prime}, 0\right)$ for $i=1, \ldots, m$ and $e_{i+m}=\frac{1}{f}\left(0, e_{i}^{\prime \prime}\right)$ for $i=1, \ldots, n$. Hence, for $i=1, \ldots, m$ and Using the lemma 2.1, We have

$$
\begin{aligned}
\nabla_{e_{i}} e_{i} & =\left(\nabla_{e_{i}^{\prime}}^{B} e_{i}^{\prime}, 0\right) \\
\nabla_{e_{i}} V & =\nabla_{\left(e_{i}^{\prime}, 0\right)}\left(V_{1}, 0\right)+\nabla_{\left(e_{i}^{\prime}, 0\right)}\left(0, V_{2}\right) \\
& =\left(\nabla_{e_{i}^{\prime}}^{B} V_{1}, 0\right)+\frac{\left(e_{i}^{\prime}, 0\right)(f)}{f}\left(0, V_{2}\right) .
\end{aligned}
$$

Moreover $\quad\left(e_{i}^{\prime}, 0\right) f=g\left(\left(\operatorname{grad}^{B} f, 0\right),\left(e_{i}^{\prime}, 0\right)\right)=g_{B}\left(\operatorname{grad}^{B} f, e_{i}^{\prime}\right)=e_{i}^{\prime}(f)$. Hence, for $i=1, \ldots, m$

$$
\nabla_{e_{i}} V=\left(\nabla_{e_{i}^{\prime}}^{B} V_{1}, 0\right)+\frac{e_{i}^{\prime}(f)}{f}\left(0, V_{2}\right)
$$

so

$$
\begin{aligned}
\nabla_{e_{i}} \nabla_{e_{i}} V & =\nabla_{\left(e_{i}^{\prime}, 0\right)}\left(\nabla_{e_{i}^{\prime}}^{B} V_{1}, 0\right)+\nabla_{\left(e_{i}^{\prime}, 0\right)}\left(\frac{\left(e_{i}^{\prime}, 0\right)(f)}{f}\left(0, V_{2}\right)\right) \\
& =\left(\nabla_{e_{i}^{\prime}}^{B} \nabla_{e_{i}^{\prime}}^{B} V_{1}, 0\right)+\frac{e_{i}^{\prime}(f)}{f} \nabla_{\left(e_{i}^{\prime}, 0\right)}\left(0, V_{2}\right)+\left(e_{i}^{\prime}, 0\right)\left(\frac{\left(e_{i}^{\prime}, 0\right) f}{f}\right)\left(0, V_{2}\right) \\
& =\left(\nabla_{e_{i}^{\prime}}^{B} \nabla_{e_{i}^{\prime}}^{B} V_{1}, 0\right)+\frac{e_{i}^{\prime}(f)^{2}}{f^{2}}\left(0, V_{2}\right)+\frac{e_{i}^{\prime} e_{i}^{\prime}(f)}{f}\left(0, V_{2}\right)-\frac{e_{i}^{\prime}(f)^{2}}{f^{2}}\left(0, V_{2}\right) \\
& =\left(\nabla_{e_{i}^{\prime}}^{B} \nabla_{e_{i}^{\prime}}^{B} V_{1}, 0\right)+\frac{e_{i}^{\prime} e_{i}^{\prime}(f)}{f}\left(0, V_{2}\right) \\
\nabla_{\nabla_{e_{i} e_{i}} V} & =\nabla_{\left(\nabla_{e_{i}^{\prime}}^{B} e_{i}^{\prime}, 0\right)}\left(V_{1}, 0\right)+\nabla^{\left(\nabla_{e_{i}^{\prime}}^{B} e_{i}^{\prime}, 0\right)}\left(0, V_{2}\right) \\
& =\left(\nabla_{\nabla_{e_{i}^{\prime}}^{B} e_{i}^{\prime}}^{B} V_{1}, 0\right)+\frac{\left(\nabla_{e_{i}^{\prime}}^{B} e_{i}^{\prime}\right)(f)}{f}\left(0, V_{2}\right)
\end{aligned}
$$

For $i=m+1, \ldots, m+n$, we have

$$
\begin{aligned}
\nabla_{e_{i}} e_{i} & =\frac{1}{f} \nabla_{\left(0, e_{i}^{\prime \prime}\right)} \frac{1}{f}\left(0, e_{i}^{\prime \prime}\right) \\
& =\frac{1}{f}\left(\frac{1}{f} \nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left(0, e_{i}^{\prime \prime}\right)+\left(0, e_{i}^{\prime \prime}\right)\left(\frac{1}{f}\right)\left(0, e_{i}^{\prime \prime}\right)\right) \\
& =\frac{1}{f^{2}}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}\right)-\frac{1}{f}\left(g r a d^{B} f, 0\right)
\end{aligned}
$$

because $\left(0, e_{i}^{\prime \prime}\right)(f)=g\left(\left(\operatorname{grad}^{B} f, 0\right),\left(0, e_{i}^{\prime \prime}\right)\right)=g_{B}\left(\operatorname{grad}^{B} f, 0\right)+f^{2} g_{F}\left(0, e_{i}^{\prime \prime}\right)=0$.

For $i=m+1, \ldots, m+n$, we compute

$$
\begin{aligned}
\nabla_{e_{i}} V & =\frac{1}{f} \nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left(V_{1}, V_{2}\right) \\
& =\frac{1}{f}\left(\nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left(V_{1}, 0\right)+\nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left(0, V_{2}\right)\right) \\
& =\frac{1}{f}\left(\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)-f g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right)\left(g r a d^{B} f, 0\right)+\frac{\left(V_{1}, 0\right)(f)}{f}\left(0, e_{i}^{\prime \prime}\right)\right) \\
& =\frac{1}{f}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)-g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right)\left(g r a d^{B} f, 0\right)+\frac{\left(V_{1}, 0\right)(f)}{f^{2}}\left(0, e_{i}^{\prime \prime}\right) \\
\nabla_{e_{i}} V & =\frac{1}{f}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)-g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right)\left(g r a d^{B} f, 0\right)+\frac{V_{1}(f)}{f^{2}}\left(0, e_{i}^{\prime \prime}\right) .
\end{aligned}
$$

therefore

$$
\begin{aligned}
\nabla_{e_{i}} \nabla_{e_{i}} V= & \frac{1}{f}\left[\nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left(\frac{1}{f}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)\right)-\nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left(g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right)\left(\operatorname{grad}^{B} f, 0\right)\right)\right. \\
& \left.+\nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left(\frac{\left(V_{1}, 0\right) f}{f^{2}}\left(0, e_{i}^{\prime \prime}\right)\right)\right]
\end{aligned}
$$

We now compute the previous terms and sum on $i=m+1, \ldots, m+n$: i.)

$$
\begin{aligned}
\nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left[\frac{1}{f}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)\right] & =\frac{1}{f} \nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)+\left(0, e_{i}^{\prime \prime}\right)\left(\frac{1}{f}\right)\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right) \\
& =\frac{1}{f} \nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right) \\
& =\frac{1}{f}\left\{\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)-f g^{F}\left(e_{i}^{\prime \prime}, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)\left(g r a d^{B} f, 0\right)\right\} \\
& =\frac{1}{f}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)-g^{F}\left(e_{i}^{\prime \prime}, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)\left(g r a d^{B} f, 0\right)
\end{aligned}
$$

ii.) $\nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left[g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right)\left(\operatorname{grad}^{B} f, 0\right)\right]$

$$
\begin{aligned}
& =g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right) \frac{\left(g r a d^{B} f, 0\right)(f)}{f}\left(0, e_{i}^{\prime \prime}\right)+\left(0, e_{i}^{\prime \prime}\right)\left(g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right)\right)\left(g r a d^{B} f, 0\right) \\
& =g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right) \frac{\left(g r a d^{B} f\right)(f)}{f}\left(0, e_{i}^{\prime \prime}\right)+e_{i}^{\prime \prime}\left(g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right)\right)\left(g r a d^{B} f, 0\right) \\
& =\frac{g r a d^{B} f(f)}{f}\left(0, V_{2}\right)+e_{i}^{\prime \prime}\left(g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right)\right)\left(g r a d^{B} f, 0\right)
\end{aligned}
$$

$$
\text { iii. } \begin{aligned}
\nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left[\frac{\left(V_{1}, 0\right)(f)}{f^{2}}\left(0, e_{i}^{\prime \prime}\right)\right]= & \frac{1}{f^{2}}\left[\nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left(V_{1}, 0\right)(f)\right]\left(0, e_{i}^{\prime \prime}\right)+ \\
& \left(0, e_{i}^{\prime \prime}\right)\left(\frac{1}{f^{2}}\left(V_{1}, 0\right)(f)\right)\left(0, e_{i}^{\prime \prime}\right) \\
= & \frac{1}{f^{2}}\left(V_{1}, 0\right)(f) \nabla_{\left(0, e_{i}^{\prime \prime}\right)}\left(0, e_{i}^{\prime \prime}\right) \\
= & \frac{1}{f^{2}} V_{1}(f)\left(\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}\right)-f\left(g r a d^{B} f, 0\right)\right) \\
= & \frac{1}{f^{2}} V_{1}(f)\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}\right)-\frac{n}{f} V_{1}(f)\left(g r a d^{B} f, 0\right)
\end{aligned}
$$

Hence, gathering all the terms, and summing on $i=m+1, \ldots, m+n$, we obtain

$$
\begin{aligned}
\nabla_{e_{i}} \nabla_{e_{i}} V= & \frac{1}{f^{2}}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)-\frac{1}{f} e_{i}^{\prime \prime}\left(g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right)\right)\left(g r a d^{B} f, 0\right)- \\
& \frac{g r a d^{B} f(f)}{f^{2}}\left(0, V_{2}\right)+\frac{1}{f^{3}} V_{1}(f)\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}\right)- \\
& n \frac{V_{1}(f)}{f^{2}}\left(g r a d^{B} f, 0\right)-\frac{1}{f} g^{F}\left(e_{i}^{\prime \prime}, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)\left(g r a d^{B} f, 0\right), \\
\nabla_{\nabla_{e_{i}} e_{i}} V= & \nabla^{\frac{1}{f^{2}}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}\right)}\left(V_{1}, 0\right)-\nabla_{\frac{1}{f}}\left(g r a d^{B} f, 0\right)\left(V_{1}, 0\right)+ \\
& \nabla^{\frac{1}{f^{2}}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}\right)}\left(0, V_{2}\right)-\nabla_{\frac{1}{f}}^{f}\left(g r a d^{B} f, 0\right)\left(0, V_{2}\right) \\
= & \frac{1}{f^{3}} V_{1}(f)\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}\right)-\frac{n}{f}\left(\nabla_{g r a d^{B} f}^{B} V_{1}, 0\right)-n \frac{g r a d^{B} f(f)}{f^{2}}\left(0, V_{2}\right) \\
& +\frac{1}{f^{2}}\left(0, \nabla_{\nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}}^{F} V_{2}\right)-\frac{1}{f} g^{F}\left(V_{2}, \nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}\right)\left(g r a d^{B} f, 0\right) .
\end{aligned}
$$

Hence, summing on the index i,

$$
\begin{aligned}
\nabla^{*} \nabla V= & \nabla_{\nabla_{e_{i}} e_{i}} V-\nabla_{e_{i}} \nabla_{e_{i}} V \\
= & \frac{1}{f^{3}} V_{1}(f)\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}\right)-\frac{n}{f}\left(\nabla_{g r a d^{B} f}^{B} V_{1}, 0\right)-n \frac{g r a d^{B} f(f)}{f^{2}}\left(0, V_{2}\right)+ \\
& \frac{1}{f^{2}}\left(0, \nabla_{\nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}}^{F} V_{2}\right)-\frac{1}{f} g^{F}\left(V_{2}, \nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}\right)\left(g r a d^{B} f, 0\right)+\left(\nabla_{\nabla_{e_{i}^{\prime}}^{B} e_{i}^{\prime}}^{B} V_{1}, 0\right)+ \\
& \frac{\left(\nabla_{e_{i}^{\prime}}^{B} e_{i}^{\prime}\right)(f)}{f}\left(0, V_{2}\right)-\left(\nabla_{e_{i}^{\prime}}^{B} \nabla_{e_{i}^{\prime}}^{B} V_{1}, 0\right)-\frac{e_{i}^{\prime} e_{i}^{\prime}(f)}{f}\left(0, V_{2}\right)-\frac{1}{f^{2}}\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)+ \\
& \frac{1}{f} e_{i}^{\prime \prime}\left(g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right)\right)\left(g r a d^{B} f, 0\right)+\frac{g r a d^{B} f(f)}{f^{2}}\left(0, V_{2}\right)-\frac{1}{f^{3}} V_{1}(f)\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} e_{i}^{\prime \prime}\right) \\
& +n \frac{V_{1}(f)}{f^{2}}\left(\operatorname{grad}^{B} f, 0\right)+\frac{1}{f} g^{F}\left(e_{i}^{\prime \prime}, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right)\left(g r a d^{B} f, 0\right)
\end{aligned}
$$

$$
\begin{aligned}
\nabla^{*} \nabla V= & \left(\nabla^{*} \nabla V_{1}-\frac{n}{f} \nabla_{g r a d^{B} f}^{B} V_{1}+\frac{2}{f} g^{F}\left(e_{i}^{\prime \prime}, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right) g r a d^{B} f+n \frac{V_{1}(f)}{f^{2}} g r a d^{B} f,\right. \\
& \left.\frac{1}{f^{2}} \nabla^{*} \nabla V_{2}-\frac{e_{i}^{\prime} e_{i}^{\prime}(f)}{f} V_{2}+\frac{\left(\nabla_{e_{i}^{\prime}}^{B} e_{i}^{\prime}\right)(f)}{f} V_{2}+(1-n) \frac{\operatorname{grad} f(f)}{f^{2}}\left(0, V_{2}\right)\right)
\end{aligned}
$$

After these calculations we deduce the following lemma.
Lemma 3.1. Let $\left(B, g_{B}\right)$ and $\left(F, g_{F}\right)$ be Riemannian manifolds and $f: B \longrightarrow \mathbb{R}_{+}^{*}$ a smooth function on B. Let $\left\{e_{i}^{\prime}\right\}_{i=1, \ldots, m}$ be an orthonormal basis of $\left(B, g_{B}\right)$ and $\left\{e_{i}^{\prime \prime}\right\}_{i=1, \ldots, n}$ an orthonormal basis of $\left(F, g_{F}\right)$. Then a vector field $V=V_{1}+V_{2}$ on $M=B \times{ }_{f} F$ is a harmonic vector field if and only if

$$
\left\{\begin{array}{l}
\nabla^{*} \nabla V_{1}-\frac{n}{f} \nabla_{g r a d}^{B}{ }_{f} V_{1}+\frac{2}{f} d i V^{F}\left(V_{2}\right) g r a d^{B} f+n \frac{V_{1}(f)}{f^{2}} \operatorname{grad}^{B} f=0 \tag{3.1}\\
\frac{1}{f^{2}} \nabla^{*} \nabla V_{2}+\frac{\Delta^{B}(f)}{f} V_{2}+(1-n) \frac{\operatorname{gradf}(f)}{f^{2}} V_{2}=0
\end{array}\right.
$$

where $\Delta^{B}(f)=-\operatorname{tr} H^{f}$.
If G is 2-dimensional Riemannian Lie group, we have
Corollary 3.2. Let G be a 2-dimensional Riemannian Lie group equipped with a left-invariant metric, $f: I \subset \mathbb{R} \longrightarrow] 0,+\infty\left[\right.$ a smooth function on $I, V_{1}=\phi(t) \partial_{t} a$ vector field on I and V_{2} a unit vector field on G. Then $V=\phi(t) \partial_{t}+V_{2}$ is a harmonic vector field on the warped product $I \times_{f} G$ if $f(t)=\sqrt{2 \kappa_{0} t^{2}+c_{1} t+c_{2}}$ on I such that

1. $I=]-\infty,-\frac{c_{2}}{c_{1}}\left[\right.$ if $\kappa_{0}=0$ and $c_{1}<0$
2. $I=]-\frac{c_{2}}{c_{1}},+\infty\left[\right.$ if $\kappa_{0}=0$ and $c_{1}>0$
3. $I=\mathbb{R}$ if $c_{1}^{2}-8 c_{2} \kappa_{0}<0$ and $\kappa_{0}>0$
4. $I=] t_{1}, t_{2}\left[\right.$ if $c_{1}^{2}-8 c_{2} \kappa_{0} \geq 0$ and $\kappa_{0}<0$
5. $I=]-\infty, t_{1}[\cup] t_{2},+\infty\left[\right.$ if $c_{1}^{2}-8 c_{2} \kappa_{0} \geq 0$ and $\kappa_{0}>0$
and ϕ is a solution on I of the differential equation

$$
\begin{equation*}
\left(E_{0}\right): x^{\prime \prime}+2 \frac{f^{\prime}}{f} x^{\prime}-2\left(\frac{f^{\prime}}{f}\right)^{2} x+2 \kappa_{1} \frac{f^{\prime}}{f}=0 \tag{3.2}
\end{equation*}
$$

where $\kappa_{0}=\left\langle\nabla^{*} \nabla V_{2}, V_{2}\right\rangle, \kappa_{1}=\sum_{i=1}^{2} g^{F}\left(e_{i}^{\prime}, \nabla_{e_{i}^{\prime}} V_{2}\right), t_{1}=\frac{-c_{1}-\sqrt{c_{1}^{2}-8 c_{2} \kappa_{0}}}{4 \kappa_{0}}$,
$t_{2}=\frac{-c_{1}+\sqrt{c_{1}^{2}-8 c_{2} \kappa_{0}}}{4 \kappa_{0}}$ with $t_{1} \leq t_{2}$ and $\left\{e_{1}, e_{2}\right\}$ an orthonormal basis on G.
Note that the $O D E\left(E_{0}\right)$ always admits solutions defined on the whole of I.
Take $\left(B, g_{B}\right)$ to be $\left(I, d t^{2}\right)$ and $V=V_{1}+V_{2}$ on $I \times_{f} F$ where $V_{1}=\phi(t) \partial_{t}$ is a vector field on I and $V_{2}=\sum_{i=1}^{n} a_{i} e_{i}$ a vector field on F, where the a_{i} are functions on F. Note
that for an orthonormal basis $\left\{e_{i}\right\}_{i=1, \ldots, n}$ of (F, g), the Levi-Civita connection ∇ of (F, g) and $\left\{\partial_{t}\right\}$ the canonical vector field on I, we have:

$$
\begin{aligned}
\nabla_{e_{i}} V_{2} & =\sum_{j=1}^{n}\left(a_{j} \nabla_{e_{i}} e_{j}+e_{i}\left(a_{j}\right) e_{j}\right) \quad \text { for } \quad i=1, \ldots, n, \\
\nabla_{e_{i}} \nabla_{e_{i}} V_{2} & =\sum_{j=1}^{n}\left(a_{j} \nabla_{e_{i}} \nabla_{e_{i}} e_{j}+e_{i} e_{i}\left(a_{j}\right) e_{j}+2 e_{i}\left(a_{j}\right) \nabla_{e_{i}} e_{j}\right) \quad \text { for } \quad i=1, \ldots, n, \\
\nabla_{\nabla_{e_{i} e_{i}} V_{2}} & =\sum_{j=1}^{n}\left(a_{j} \nabla_{\nabla_{e_{i} e_{i}} e_{j}}+\left(\nabla_{e_{i}} e_{i}\right)\left(a_{j}\right) e_{j}\right) \quad \text { for } \quad i=1, \ldots, n .
\end{aligned}
$$

We now compute the previous terms and sum on $i=1, \cdots, n$ to obtain

$$
\nabla^{*} \nabla V_{2}=\sum_{i, j=1}^{n}\left(a_{j} \nabla_{\nabla_{e_{i}} e_{i}} e_{j}+\left(\Delta a_{j}\right) e_{j}-2 e_{i}\left(a_{j}\right) \nabla_{e_{i}} e_{j}-a_{j} \nabla_{e_{i}} \nabla_{e_{i}} e_{j}\right)
$$

We also have, $g\left(e_{i}, \nabla_{e_{i}} V_{2}\right)=e_{i}\left(a_{i}\right)+\sum_{j=1}^{n}\left(a_{j} g\left(e_{i}, \nabla_{e_{i}} e_{j}\right)\right)$, and $\nabla^{*} \nabla V_{1}=-\phi^{\prime \prime}(t) \partial_{t}$,

$$
-\phi^{\prime \prime}(t) \partial_{t}, \operatorname{grad}^{B} f=f^{\prime}(t) \partial_{t}, \nabla_{g r a d^{B} f}^{B} V_{1}=f^{\prime}(t) \phi^{\prime}(t) \partial_{t} ; e_{i}^{\prime}\left(e_{i}^{\prime}(f)\right)=\partial_{t}\left(\partial_{t}(f)\right)=f^{\prime \prime}(t) .
$$

Then V is a harmonic vector field if and only if

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}(t)+n \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-n\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)- \tag{3.3}\\
2\left(\sum_{i=1}^{n}\left(e_{i}\left(a_{i}\right)+\sum_{j=1}^{n} a_{j} g\left(e_{i}, \nabla_{e_{i}} e_{j}\right)\right)\right) \frac{f^{\prime}(t)}{f(t)}=0, \\
\sum_{j=1}^{n}\left(\left(\Delta a_{j}\right) e_{j}+\sum_{i=1}^{n}\left(\left(a_{j} \nabla_{\nabla_{e_{i}} e_{i}} e_{j}-2 e_{i}\left(a_{j}\right) \nabla_{e_{i}} e_{j}-a_{j} \nabla_{e_{i}} \nabla_{e_{i}} e_{j}\right)\right)\right) \\
-\left(f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}\right) \sum_{i=1}^{n} a_{j} e_{j}=0 .
\end{array}\right.
$$

4 Harmonic vector fields on $I \times_{f} G$: G unimodular Lie group

4.1 Vector fields constructed from unit left-invariant vector fields

In this section, we assume that F is a three-dimensional connected Riemannian Lie group G equipped with a left-invariant metric. We determine harmonic vector fields on $\left(I \times_{f} G, g\right)$ with $\left.f: I \longrightarrow\right] 0 ;+\infty\left[\right.$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal basis on G. Let $V_{2}=a e_{1}+b e_{2}+c e_{3}$ such that $a^{2}+b^{2}+c^{2}=1, V_{1}=\phi(t) \partial_{t}$ a vector field on I and consider the vector field $V=V_{1}+V_{2}$ on $I \times_{f} G$.

Proposition 4.1. [11] Let G be a three-dimensional unimodular connected Riemannian Lie group, \mathfrak{g} its Lie algebra and g a left-invariant metric on G. Then there exists an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of \mathfrak{g} such that

$$
\begin{equation*}
\left[e_{2}, e_{3}\right]=\lambda_{1} e_{1}, \quad\left[e_{3}, e_{1}\right]=\lambda_{2} e_{2}, \quad\left[e_{1}, e_{2}\right]=\lambda_{3} e_{3} \tag{4.1}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are constants.
Table 1: Three-dimensional unimodular Lie groups

Signs of $\lambda_{1}, \lambda_{2}, \lambda_{3}$	Associated Lie Groups
,,+++	$S U(2)$ or $S O(3)$
,,++-	$S L(2, \mathbb{R})$ or $O(1,2)$
,,++ 0	$\mathbb{E}(2)$
$+, 0,-$	$\mathbb{E}(1,1)$
$+, 0,0$	\mathbb{H}^{3}
$0,0,0$	$\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$

Then the Levi-Civita connection ∇ is giving by:

$$
\begin{align*}
& \nabla_{e_{1}} e_{1}=0, \quad \nabla_{e_{1}} e_{2}=\mu_{1} e_{3}, \quad \nabla_{e_{1}} e_{3}=-\mu_{1} e_{2} \\
& \nabla_{e_{2}} e_{1}=-\mu_{2} e_{3}, \quad \nabla_{e_{2}} e_{2}=0, \quad \nabla_{e_{2}} e_{3}=\mu_{2} e_{1} \tag{4.2}\\
& \nabla_{e_{3}} e_{1}=\mu_{3} e_{2}, \quad \nabla_{e_{3}} e_{2}=-\mu_{3} e_{1}, \quad \nabla_{e_{3}} e_{3}=0
\end{align*}
$$

and its Riemann curvature tensor is given by

$$
\begin{align*}
R\left(e_{1}, e_{2}\right) e_{2} & =\left(\lambda_{3} \mu_{3}-\mu_{1} \mu_{2}\right) e_{1} ; R\left(e_{1}, e_{3}\right) e_{3}=\left(\lambda_{2} \mu_{2}-\mu_{1} \mu_{3}\right) e_{1} \\
R\left(e_{2}, e_{1}\right) e_{1} & =\left(\lambda_{3} \mu_{3}-\mu_{1} \mu_{2}\right) e_{2} ; R\left(e_{2}, e_{3}\right) e_{3}=\left(\lambda_{1} \mu_{1}-\mu_{2} \mu_{3}\right) e_{2} \\
R\left(e_{3}, e_{1}\right) e_{1} & =\left(\lambda_{2} \mu_{2}-\mu_{1} \mu_{3}\right) e_{3} ; R\left(e_{3}, e_{2}\right) e_{2}=\left(\lambda_{1} \mu_{1}-\mu_{2} \mu_{3}\right) e_{3} \tag{4.3}
\end{align*}
$$

and the other components are zero, where $\quad \mu_{i}=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)-\lambda_{i}, i=1,2,3$.
From this 4.2, we have

$$
\begin{gathered}
\nabla_{\nabla_{e_{i}} e_{i}} e_{j}=\nabla_{e_{i}} \nabla_{e_{i}} e_{i}=g\left(e_{i}, \nabla_{e_{i}} e_{j}\right)=0 \\
\nabla_{e_{i}} \nabla_{e_{i}} e_{j}=-\mu_{i}^{2} e_{j}, \quad i, j=1,2,3
\end{gathered}
$$

Hence, Using equation 3.3, $V=V_{1}+V_{2}$ is a harmonic vector field if and only if on $I \times{ }_{f} G$,

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=0 \tag{4.4}\\
a\left(\mu_{2}^{2}+\mu_{3}^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)=0 \\
b\left(\mu_{1}^{2}+\mu_{3}^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)=0 \\
c\left(\mu_{2}^{2}+\mu_{1}^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)=0 \\
t \in I
\end{array}\right.
$$

The first equation of (4.4) always admits a non-trivial solution. For the other equations

$$
\left\{\begin{array}{l}
a\left(\mu_{2}^{2}+\mu_{3}^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)=0 \tag{4.5}\\
b\left(\mu_{1}^{2}+\mu_{3}^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)=0 \\
c\left(\mu_{2}^{2}+\mu_{1}^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)=0 \\
t \in I
\end{array}\right.
$$

According to the classification of three-dimensional connected unimodular Riemannian Lie groups given in Table 1 where the domain I of the solutions of the nonlinear differential equation $y y^{\prime \prime}+2 y^{\prime 2}=\epsilon, \epsilon \in \mathbb{R}$ (for example an obvious solution is $\left.y(t)= \pm \sqrt{\frac{\epsilon}{2}} t\right)$, we obtain

Proposition 4.2. Let G be a three-dimensional connected unimodular Riemannian Lie group equipped with a left-invariant metric and $V=V_{1}+V_{2}$ a vector field on the warped product $\left.I \times_{f} G, f: I \longrightarrow\right] 0,+\infty\left[\right.$ with $V_{1}=\phi(t) \partial_{t}$ a vector field on I and $V_{2}=a e_{1}+b e_{2}+c e_{3} a$ unit left-invariant vector field on G. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal basis of the Lie algebra satisfying (4.1) and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ the structure constants. Then V is a harmonic vector field if and only if f is a solution on $I \subset \mathbb{R}$ of the $O D E \quad\left(E_{1}\right): x x^{\prime \prime}+2 x^{\prime 2}=\epsilon, \quad \epsilon \in \mathbb{R}, \phi$ is a solution, on I, of the $O D E$

$$
\begin{equation*}
\left(E_{0}\right): x^{\prime \prime}+3 \frac{f^{\prime}}{f} x^{\prime}-3\left(\frac{f^{\prime}}{f}\right)^{2} x=0 \tag{4.6}
\end{equation*}
$$

and one of the following cases occurs:

1. $\left.\lambda_{1}=\lambda_{2}=\lambda_{3}=0(G=\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}), f(t)=\left(3 e^{c_{1}} t+c_{2}\right)^{\frac{1}{3}}, I=\right]-\frac{c_{2}}{3 e^{c_{1}}},+\infty[$, and $V_{2}=a e_{1}+b e_{2}+c e_{3}$ for any $a, b, c \in \mathbb{R}, a^{2}+b^{2}+c^{2}=1$,
2. $\lambda_{1}>0, \lambda_{2}=\lambda_{3}=0\left(G=\mathbb{H}^{3}\right), \epsilon=2 \mu_{1}^{2}$ and $V_{2}=a e_{1}+b e_{2}+c e_{3}$ for any $a, b, c \in \mathbb{R}$, $a^{2}+b^{2}+c^{2}=1$,
3. $\lambda_{1}>0, \lambda_{2}=0, \lambda_{3}<0(G=\mathbb{E}(1,1))$,
(a) $\epsilon=\mu_{1}^{2}+\mu_{2}^{2}$ and $V_{2}=a e_{1}+c e_{3}$ for any $a, c \in \mathbb{R}, a^{2}+c^{2}=1$,
(b) $\epsilon=2 \mu_{1}^{2}$ and $V_{2}= \pm e_{2}$,
4. $\lambda_{1}>0, \lambda_{2}>0, \lambda_{3}=0(G=\mathbb{E}(2))$,
(a) $\epsilon=\mu_{1}^{2}+\mu_{3}^{2}$ and $V_{2}=a e_{1}+b e_{2}$ for any $a, b \in \mathbb{R}, a^{2}+b^{2}=1$,
(b) $\epsilon=2 \mu_{1}^{2}$ and $V_{2}= \pm e_{3}$,
5. $\lambda_{1}=\lambda_{2}>0>\lambda_{3}(G=S L(2, \mathbb{R}), O(1,2))$
(a) $\epsilon=\mu_{1}^{2}+\mu_{3}^{2}$ and $V_{2}=a e_{1}+b e_{2}$ for any $a, b \in \mathbb{R}, a^{2}+b^{2}=1$,
(b) $\epsilon=2 \mu_{1}^{2}$ and $V_{2}= \pm e_{3}$,
6. $\lambda_{1}>\lambda_{2}>0>\lambda_{3}(G=S L(2, \mathbb{R}), O(1,2)), \lambda_{1}>\lambda_{2}>\lambda_{3}(G=S U(2))$, $\epsilon=\mu_{i}^{2}+\mu_{j}^{2}$ and $V_{2}= \pm e_{k} i \neq j \neq k$,
7. $\lambda_{1}=\lambda_{2}=\lambda_{3}>0(G=S U(2), S O(3)), \epsilon=2 \mu_{1}^{2}$ and $V_{2}=a e_{1}+b e_{2}+c e_{3}$ for any $a, b, c \in \mathbb{R}, a^{2}+b^{2}+c^{2}=1$,
8. $\lambda_{1}>\lambda_{2}=\lambda_{3}(G=S U(2), S O(3))$,
(a) $\epsilon=\mu_{1}^{2}+\mu_{2}^{2}$ and $V_{2}=b e_{2}+c e_{3}$ for any $b, c \in \mathbb{R}, c^{2}+b^{2}=1$,
(b) $\epsilon=2 \mu_{2}^{2}$ and $V_{2}= \pm e_{1}$,
9. $\lambda_{1}=\lambda_{2}>\lambda_{3}>0(G=S U(2), S O(3))$,
(a) $\epsilon=\mu_{1}^{2}+\mu_{3}^{2}$ and $V_{2}=a e_{1}+b e_{2}$ for any $a, b \in \mathbb{R}, a^{2}+b^{2}=1$
(b) $\epsilon=2 \mu_{1}^{2}$ and $V_{2}= \pm e_{3}$.

Remark 4.1. Note that if f is a non-zero positive constant on \mathbb{R} and G is a threedimensional connected unimodular Lie group equipped with a left-invariant metric, then $V=V_{1}+V_{2}$ is harmonic vector field on $\mathbb{R} \times_{f} G$ if and only if ϕ is an affine function, $\mu_{j}=\mu_{i} \neq \mu_{k}$ and $V_{2}= \pm e_{k}, i, j, k \in\{1,2,3\}$ or $\mu_{1}=\mu_{2}=\mu_{3}=0$ and V_{2} any vector field on G.

4.2 Vector fields constructed from non left-invariant vector fields

In this subsection, we construct new examples of harmonic vector fields from non left-invariant vector fields on a three-dimensional unimodular Lie group.

We first consider the Lie group $G=\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$ and consider $V_{2}=a(x, y, z) \frac{\partial}{\partial x}$. Using Relation (3.3), a vector field $V=\varphi(t) \partial_{t}+V_{2}$ is a harmonic vector field on $I \times_{f}(\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R})$ if and only if

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=2 k \frac{f^{\prime}(t)}{f(t)} \\
a_{x}=k, \quad k \in \mathbb{R}, \\
f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\epsilon \\
\Delta a=\epsilon a, \quad t \in I
\end{array}\right.
$$

This implies that:
Case 1: $\epsilon>0$, then $\left\{\begin{array}{l}a(x, y, z)=\cos \left(v_{1} y+v_{2} z\right)+\sin \left(v_{1} y+v_{2} z\right), \quad v_{1}^{2}+v_{2}^{2}=\epsilon, \\ f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\epsilon, \quad t \in I \subset \mathbb{R}, \\ \phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=2 k \frac{f^{\prime}(t)}{f(t)} .\end{array}\right.$
Case 2: $\epsilon<0$, then $\left\{\begin{array}{l}a(x, y, z)=\exp \left(v_{1} y+v_{2} z\right), \quad v_{1}^{2}+v_{2}^{2}=-\epsilon, \\ f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\epsilon, \quad t \in I \subset \mathbb{R}, \\ \phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=2 k \frac{f^{\prime}(t)}{f(t)} .\end{array}\right.$

Case 3: $\epsilon=0$, then $\left\{\begin{array}{l}a(x, y, z)=k x+b(y, z) \quad b \text { is a harmonic function on } \mathbb{R}^{2}, \\ \left.f(t)=\left(3 e^{c_{1}} x+c_{2}\right)^{\frac{1}{3}} \quad \text { and } \quad I=\right]-\frac{c_{2}}{3 e^{c_{1}}},+\infty[, \\ \phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=2 k \frac{f^{\prime}(t)}{f(t)} .\end{array}\right.$
These computations lead to the construction of vector fields which are not leftinvariant but harmonic on the warped product of G and an interval I.

Proposition 4.3. The vector field $V=\varphi(t) \partial_{t}+V_{2}$ is a harmonic vector field on $I \times_{f}(\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R})$ if and only if

$$
\left\{\begin{array}{l}
f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\epsilon, \quad t \in I \subset \mathbb{R}, \quad \epsilon \neq 0 \\
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=2 \kappa \frac{f^{\prime}(t)}{f(t)}
\end{array}\right.
$$

with $a(x, y, z)=\cos \left(v_{1} y+v_{2} z\right)+\sin \left(v_{1} y+v_{2} z\right), v_{1}^{2}+v_{2}^{2}=-\epsilon$ if $\epsilon<0$ and $a(x, y, z)=$ $\exp \left(v_{1} y+v_{2} z\right), v_{1}^{2}+v_{2}^{2}=\epsilon$ if $\epsilon>0$, or

$$
\left\{\begin{array}{l}
a(x, y, z)=\kappa_{1} x+b(y, z), \\
\left.f(t)=\left(3 e^{c_{1}} t+c_{2}\right)^{\frac{1}{3}} \quad \text { and } \quad t \in I=\right]-\frac{c_{2}}{3 e^{c_{1}}},+\infty[, \\
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=2 k \frac{f^{\prime}(t)}{f(t)},
\end{array}\right.
$$

where $b(y, z)$ is a harmonic function on \mathbb{R}^{2} and $\kappa, \kappa_{1} \in \mathbb{R}$.
Secondly, we consider $G=\mathbb{H}^{3}$ the Heisenberg group of real 3×3 upper-triangular matrices of the form

$$
A=\left(\begin{array}{lll}
1 & x & y \tag{4.7}\\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)
$$

endowed with the left-invariant metric given by $d x^{2}+(d y-x d z)^{2}+(d z)^{2}$. We identify \mathbb{H}^{3} with \mathbb{R}^{3}, endowed with this metric. The left-invariant vector fields $e_{1}=\frac{\partial}{\partial x}, \quad e_{2}=\frac{\partial}{\partial y}, \quad e_{3}=\frac{\partial}{\partial z}+x \frac{\partial}{\partial y}, \quad$ constitute an orthonormal basis of the Lie algebra \mathfrak{g} of \mathbb{H}^{3} and the corresponding Levi-Civita connection is determined by

$$
\begin{align*}
\nabla_{e_{1}} e_{2} & =\nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{3} \\
\nabla_{e_{1}} e_{3} & =-\nabla_{e_{3}} e_{1}=\frac{1}{2} e_{2} \tag{4.8}\\
\nabla_{e_{2}} e_{3} & =\nabla_{e_{3}} e_{2}=\frac{1}{2} e_{1}
\end{align*}
$$

where the remaining covariant derivatives vanish.
By (4.8), we have $\mu_{1}=-\frac{1}{2}=-\mu_{2}=-\mu_{3}$. Take $V_{2}=a(x, y, z) e_{1}$, then the vector
field
$V=\varphi(t) \partial_{t}+V_{2}$ is a harmonic vector field on $I \times_{f} \mathbb{H}^{3}$ if and only if

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=2 \kappa \frac{f^{\prime}(t)}{f(t)} \\
a_{x}=\kappa, \quad \kappa \in \mathbb{R}, a_{y}=0 \\
a_{z}+x a_{y}=0 \\
f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\epsilon, \quad \epsilon \in \mathbb{R} \\
\Delta a=\left(\epsilon-\frac{1}{2}\right) a, \quad t \in I
\end{array}\right.
$$

Therefore

$$
\left\{\begin{array}{l}
a(x, y, z)=\kappa x+\kappa^{\prime} \quad \kappa, \kappa^{\prime} \in \mathbb{R} \\
f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\frac{1}{2}, \quad t \in I \subset \mathbb{R}, \\
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=2 \kappa \frac{f^{\prime}(t)}{f(t)}
\end{array}\right.
$$

and we obtain:
Proposition 4.4. Let $V_{1}=\phi(t) \partial_{t}$ on I and $V_{2}=a(x, y, z) e_{1}$ on \mathbb{H}^{3}, then $V=V_{1}+V_{2}$ is a harmonic vector field on $I \times_{f} \mathbb{H}^{3}$ if and only if

$$
\left\{\begin{array}{l}
a(x, y, z)=\kappa x+\kappa^{\prime} \quad \kappa, \kappa^{\prime} \in \mathbb{R}, \\
f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\frac{1}{2}, \quad t \in I \subset \mathbb{R} \\
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=2 \kappa \frac{f^{\prime}(t)}{f(t)}
\end{array}\right.
$$

5 Harmonic vector fields on $I \times{ }_{f} G$: G non-unimodular Lie group

5.1 Vector fields constructed from unit left-invariant vector fields

In this subsection, F is now a three-dimensional connected non-unimodular Riemannian Lie group G equipped with a left-invariant metric and we determine harmonic vector fields on $I \times{ }_{f} G$ with $\left.f: I \longrightarrow\right] 0 ;+\infty\left[\right.$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal basis on $G, V_{2}=a e_{1}+b e_{2}+c e_{3}$ such that $a^{2}+b^{2}+c^{2}=1$ and $V_{1}=\phi(t) \partial_{t}$ a vector field on I and consider the vector field $V=V_{1}+V_{2}$ on $I \times{ }_{f} G$.

Proposition 5.1. [11] Let G be three-dimensional connected Riemannian non-unimodular Lie group, \mathfrak{g} its Lie algebra and g a left-invariant metric on G. Then there exists an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of \mathfrak{g} such that

$$
\begin{equation*}
\left[e_{1}, e_{2}\right]=\alpha e_{2}+\beta e_{3}, \quad\left[e_{1}, e_{3}\right]=-\beta e_{2}+\delta e_{3}, \quad\left[e_{2}, e_{3}\right]=0 \tag{5.1}
\end{equation*}
$$

where $\alpha+\delta>0$ and $\alpha \geq \delta$ are constants.

Then the Levi-Civita connection ∇ is determined by [11]

$$
\begin{gather*}
\nabla_{e_{1}} e_{1}=0, \nabla_{e_{1}} e_{2}=\beta e_{3}, \quad \nabla_{e_{1}} e_{3}=-\beta e_{2} \\
\nabla_{e_{2}} e_{1}=-\alpha e_{2}, \quad \nabla_{e_{2}} e_{2}=\alpha e_{1}, \quad \nabla_{e_{2}} e_{3}=0 \tag{5.2}\\
\nabla_{e_{3}} e_{1}=-\delta e_{3}, \quad \nabla_{e_{3}} e_{2}=0, \quad \nabla_{e_{3}} e_{3}=\delta e_{1}
\end{gather*}
$$

and its Riemann curvature tensor is given by

$$
\begin{aligned}
R\left(e_{2}, e_{1}\right) e_{1} & =(\alpha \beta-\beta \delta) e_{3} ; R\left(e_{2}, e_{3}\right) e_{1}=0 ; R\left(e_{3}, e_{1}\right) e_{1}=(\alpha \beta-\beta \delta) e_{2}-\delta^{2} e_{3} ; \\
R\left(e_{1}, e_{2}\right) e_{2} & =-\alpha^{2} e_{1} ; R\left(e_{3}, e_{2}\right) e_{3}=\alpha \delta e_{2} ; R\left(e_{1}, e_{3}\right) e_{2}=(\alpha \beta-\beta \delta) e_{1} ; \\
\left(5 \boldsymbol{B}\left(e_{2}, e_{3}\right) e_{2}\right. & =\alpha \delta e_{3} ; R\left(e_{1}, e_{2}\right) e_{3}=(\alpha \beta-\beta \delta) e_{1} ; R\left(e_{1}, e_{3}\right) e_{3}=-\delta^{2} e_{1} ;
\end{aligned}
$$

From this 5.1, we have

$$
\begin{aligned}
& \nabla_{\nabla_{e_{1}} e_{1}} e_{j}=\nabla_{e_{2}} \nabla_{e_{2}} e_{1}=\nabla_{e_{3}} \nabla_{e_{3}} e_{1}=0, \quad \nabla_{e_{1}} \nabla_{e_{1}} e_{1}=\nabla_{e_{3}} \nabla_{e_{3}} e_{2}=\nabla_{e_{2}} \nabla_{e_{2}} e_{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& \nabla_{e_{1}} \nabla_{e_{1}} e_{2}=-\beta^{2} e_{2}, \quad \nabla_{e_{1}} \nabla_{e_{1}} e_{3}=-\beta^{2} e_{3}, \quad \nabla_{e_{2}} \nabla_{e_{2}} e_{1}=-\alpha^{2} e_{1}, \quad \nabla_{e_{2}} \nabla_{e_{2}} e_{2}=-\alpha^{2} e_{2}, \\
& \nabla_{e_{3}} \nabla_{e_{3}} e_{1}=-\delta^{2} e_{1}, \quad \nabla_{e_{3}} \nabla_{e_{3}} e_{3}=-\delta^{2} e_{3}, \quad g\left(e_{i}, \nabla_{e_{i}} e_{i}\right)=g\left(e_{1}, \nabla_{e_{1}} e_{i}\right)=0, \\
& g\left(e_{3}, \nabla_{e_{3}} e_{2}\right)=g\left(e_{2}, \nabla_{e_{2}} e_{3}\right)=0, \quad g\left(e_{2}, \nabla_{e_{2}} e_{1}\right)=-\alpha, \quad g\left(e_{3}, \nabla_{e_{3}} e_{1}\right)=-\delta .
\end{aligned}
$$

Hence $V=V_{1}+V_{2}$ is a harmonic vector field on $I \times_{f} G$ if and only if

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3 \frac{f^{\prime}(t)^{2}}{f(t)^{2}} \phi(t)=-2 a(\delta+\alpha) \frac{f^{\prime}(t)}{f(t)} \tag{5.4}\\
a\left(\alpha^{2}+\delta^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)=0 \\
b\left(\alpha^{2}+\beta^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)-\beta(\alpha+\delta) c=0 \\
c\left(\delta^{2}+\beta^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)+\beta(\alpha+\delta) b=0 \\
\quad t \in I
\end{array}\right.
$$

The first equation of (5.4) has a solution and the remaining system becomes:

$$
\left\{\begin{array}{l}
a\left(\alpha^{2}+\delta^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)=0 \\
b\left(\alpha^{2}+\beta^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)-\beta(\alpha+\delta) c=0 \\
c\left(\delta^{2}+\beta^{2}-f(t) f^{\prime \prime}(t)-2 f^{\prime}(t)^{2}\right)+\beta(\alpha+\delta) b=0 \\
\quad t \in I
\end{array}\right.
$$

Using the proposition 5.1, we obtain,
Proposition 5.2. Let G be a three-dimensional connected Riemannian non-unimodular Lie group equipped with a left-invariant metric and $V=V_{1}+V_{2}$ a vector field on the warped product $\left.I \times_{f} G, f: I \longrightarrow\right] 0,+\infty\left[\right.$ with $V_{1}=\phi(t) \partial_{t}$ a vector field on I and V_{2} a unit left-invariant vector field on G. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal basis of the Lie algebra satisfying equation(5.1) and α, β, δ the structure constants. Then V is a
harmonic vector field if and only if f satisfies, on $I \subset \mathbb{R}$, the ordinary differential equation $\left(E_{1}\right): x x^{\prime \prime}+2 x^{\prime 2}=\epsilon, \quad \epsilon \in \mathbb{R}, \phi$ is a solution, on I, of the equation

$$
\begin{equation*}
\left(E_{a}\right): x^{\prime \prime}+3 \frac{f^{\prime}}{f} x^{\prime}-3\left(\frac{f^{\prime}}{f}\right)^{2} x=-2 a(\delta+\alpha) \frac{f^{\prime}}{f} \tag{5.5}
\end{equation*}
$$

and V_{2} is determined by one of the following conditions:

1. $\alpha=\delta>0$
(a) $\beta=0, \epsilon=2 \alpha^{2}$ and $V_{2}= \pm e_{1}$,
(b) $\beta=0, \epsilon=2 \alpha^{2}$ and $V_{2}= \pm e_{2}$ or $V_{2}= \pm e_{3}$,
(c) $\beta=0, \epsilon=\alpha^{2}$ and $V_{2}=b e_{2}+c e_{3}, b^{2}+c^{2}=1, b \neq 0, c \neq 0$,
2. $\alpha>\delta>0$ or $\alpha>0>\delta$
(a) $\epsilon=\alpha^{2}+\delta^{2}, V_{2}=a e_{1}+b e_{2}+c e_{3}, a \neq 0, a^{2}+b^{2}+c^{2}=1$ and

$$
\left\{\begin{array}{l}
b\left(\beta^{2}-\delta^{2}\right)=\beta(\alpha+\delta) c \\
c\left(\beta^{2}-\alpha^{2}\right)=-\beta(\alpha+\delta) b
\end{array}\right.
$$

(b) $\beta=0, \epsilon=\delta^{2}, V_{2}= \pm e_{3}$,
(c) $\beta=0, \epsilon=\alpha^{2}, V_{2}= \pm e_{2}$,
(d) $\beta=b c(\alpha-\delta), \epsilon=\beta^{2}+b^{2} \alpha^{2}+c^{2} \delta^{2}, V_{2}=b e_{2}+c e_{3}, c \neq 0, b \neq 0, b^{2}+c^{2}=1$.
3. $\alpha>\delta=0$
(a) $\beta=0$, in this case $\left.f(t)=\left(3 e^{c_{1}} t+c_{2}\right)^{\frac{1}{3}}, I=\right]-\frac{c_{2}}{3 e^{c_{1}}},+\infty\left[\right.$ and $V_{2}= \pm e_{3}$,
(b) $\beta=0, \epsilon=\alpha^{2}$ and $V_{2}= \pm e_{2}$,
(c) $\beta=b c \alpha, \epsilon=\beta^{2}+b^{2} \alpha^{2}$ and $V_{2}=b e_{2}+c e_{3}, b \neq 0, c \neq 0, b^{2}+c^{2}=1$,
(d) $\epsilon=\alpha^{2}$ and $V_{2}= \pm e_{1}$,
(e) $\beta=0, \epsilon=\alpha^{2}$ and $V_{2}=a e_{1}+b e_{2}, a \neq 0, a^{2}+b^{2}=1$.

Remark 5.1. Note that if f is a non-zero positive constant on \mathbb{R} and G is a threedimensional connected Riemannian non-unimodular Lie group equipped with a leftinvariant metric, then V is harmonic vector field on $\mathbb{R} \times{ }_{f} G$ if and only if ϕ is an affine function on $\mathbb{R}, \beta=\delta=0, V_{2}=b e_{2}+c e_{3}$ and $\left\{\begin{array}{l}b\left(\beta^{2}-\delta^{2}\right)=\beta(\alpha+\delta) c, \\ c\left(\beta^{2}-\alpha^{2}\right)=-\beta(\alpha+\delta) b .\end{array}\right.$

5.2 Vector fields constructed from non left-invariant vector fields

In this subsection, we give examples of harmonic vector fields on $I \times_{f} G$ constructed from non left-invariant vector fields on the three-dimensional non-unimodular Lie group G

Consider F to be $\left(\mathbb{R} \times H^{2}, g\right)$ where $H^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ denotes the Poincaré half-plane with Gaussian curvature equal to $-\alpha(\alpha>0)$ and g the leftinvariant metric given by

$$
g=\frac{1}{\alpha y^{2}}\left(d x^{2}+d y^{2}\right)+d z^{2}
$$

The left-invariant vector fields $e_{1}=y \sqrt{\alpha} \frac{\partial}{\partial y}, e_{2}=y \sqrt{\alpha} \frac{\partial}{\partial x}, e_{3}=\frac{\partial}{\partial z}$, constitute an orthonormal basis of the Lie algebra \mathfrak{g} of $\mathbb{R} \times H^{2}$ and $\left[e_{3}, e_{1}\right]=0,\left[e_{3}, e_{2}\right]=0$, $\left[e_{1}, e_{2}\right]=\sqrt{\alpha} e_{2}$.The corresponding Levi-Civita connection is determined by

$$
\nabla_{e_{2}} e_{1}=-\sqrt{\alpha} e_{2}, \quad \nabla_{e_{2}} e_{2}=\sqrt{\alpha} e_{1}
$$

where the remaining covariant derivatives vanish. Take $V_{2}=b(y) e_{2}+c(y) e_{3}$ and use (3.3) to see that $V=\varphi(t) \partial_{t}+V_{2}$ is a harmonic vector field on $I \times_{f}\left(\mathbb{R} \times H^{2}\right)$ if and only if

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=0 \\
\Delta b=\left(f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}-\alpha\right) b \\
\Delta c=\left(f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}\right) c \\
t \in I
\end{array}\right.
$$

This is equivalently to

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=0 \\
\Delta b=\left(f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}-\alpha\right) b \\
\Delta c=\left(f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}\right) c \\
f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\epsilon \\
t \in I
\end{array}\right.
$$

Hence

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=0 \\
y^{2} b^{\prime \prime}(y)=(\epsilon-\alpha) b(y) \\
y^{2} c^{\prime \prime}(y)=\alpha c(y) \\
f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\epsilon \\
t \in I
\end{array}\right.
$$

and we have
and

$$
\left\{\begin{array}{l}
b(y)=y^{\frac{1}{2}}\left(\kappa_{1}+\kappa_{2} \ln (y)\right) \text { if } 1+4(\epsilon-\alpha)=0 \tag{5.7}\\
b(y)=\kappa_{1} y^{\frac{1}{2}+\frac{1}{2} \sqrt{1+4(\epsilon-\alpha)}+\kappa_{2} y \frac{1}{2}-\frac{1}{2} \sqrt{1+4(\epsilon-\alpha)} \quad \text { if } 1+4(\epsilon-\alpha)>0} \\
b(y)=y^{\frac{1}{2}}\left(\kappa_{1} \cos (y \sqrt{-1-4(\epsilon-\alpha)})+\kappa_{2} \sin (y \sqrt{-1-4(\epsilon-\alpha)})\right) \text { if } 4(\epsilon-\alpha)<-1
\end{array}\right.
$$

with $\kappa_{1}, \kappa_{2} \in \mathbb{R}$. This system of equations lead to new families of harmonic vector fields on the warped product $I \times_{f}\left(\mathbb{R} \times H^{2}\right)$, which are non left-invariant.

Proposition 5.3. Let $V_{1}=\phi(t) \partial_{t}$ be a vector field on I and $V_{2}=b(y) e_{2}+c(y) e_{3}$ be vector fields on $\left(\mathbb{R} \times H^{2}, g\right)$ where $H^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ denotes the Poincaré half-plane with Gaussian curvature equal to $-\alpha(\alpha>0)$. Then $V=V_{1}+V_{2}$ is a harmonic vector field on $I \times_{f}\left(\mathbb{R} \times H^{2}\right)$ if and only if

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=0, \quad t \in I \\
f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\epsilon, \epsilon \in \mathbb{R}
\end{array}\right.
$$

and $V_{2}=b(y) e_{2}+c(y) e_{3}$ with b, c defined by combining Equations (5.6) and (5.7).

6 Harmonic vectors fields which are harmonic maps on warped product $I \times_{f} G$

In this section, we determine the horizontal part of the tension field on the warped product $B \times_{f} F$ (cf 2.3) and study the existence of vector fields on $I \times_{f} G$ which are harmonic maps, where G is a three-dimensional connected Riemannian Lie group equipped with a left-invariant metric. To calculate $S(V)$ where $V=V_{1}+V_{2}$, we write

$$
S(V)=S_{1}(V)+S_{2}(V)
$$

where

$$
S_{1}(V)=\sum_{i=1}^{m} R\left(\nabla_{e_{i}} V, V\right) e_{i} \quad \text { and } \quad S_{2}(V)=\sum_{i=m+1}^{m+n} R\left(\nabla_{e_{i}} V, V\right) e_{i}
$$

and $\left\{e_{i}\right\}_{i}$ are define on section 3 Then, using the lemma 2.2

$$
\begin{aligned}
& S_{1}(V)=\sum_{i=1}^{m} R\left(\nabla_{\left(e_{i}^{\prime}, 0\right)} V,\left(V_{1}, V_{2}\right)\right)\left(e_{i}^{\prime}, 0\right) \\
& =\sum_{i=1}^{m} R\left(\left(\nabla_{e_{i}^{\prime}}^{B} V_{1}, 0\right),\left(V_{1}, 0\right)\right)\left(e_{i}^{\prime}, 0\right)+R\left(\left(\nabla_{e_{i}^{\prime}}^{B} V_{1}, 0\right),\left(0, V_{2}\right)\right)\left(e_{i}^{\prime}, 0\right)+ \\
& \frac{e_{i}^{\prime}(f)}{f} R\left(\left(0, V_{2}\right),\left(V_{1}, 0\right)\right)\left(e_{i}^{\prime}, 0\right)+\frac{e_{i}^{\prime}(f)}{f} R\left(\left(0, V_{2}\right),\left(0, V_{2}\right)\right)\left(e_{i}^{\prime}, 0\right) \\
& =\sum_{i=1}^{m}\left(R^{B}\left(\nabla_{e_{i}^{\prime}}^{B} V_{1}, e_{i}^{\prime}\right) V_{1}, 0\right)-\frac{e_{i}^{\prime}(f)}{f^{2}} H^{f}\left(V_{1}, e_{i}^{\prime}\right)\left(0, V_{2}\right)+ \\
& \frac{1}{f} H^{f}\left(\nabla_{e_{i}^{\prime}}^{B} V_{1}, e_{i}^{\prime}\right)\left(0, V_{2}\right) \\
& S_{2}(V)=\sum_{i=1}^{n} \frac{1}{f} R\left(\nabla_{\left(0, e_{i}^{\prime \prime}\right)} V, V\right)\left(0, e_{i}^{\prime \prime}\right) \\
& =\sum_{i=1}^{n} \frac{1}{f^{2}} R\left(\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right),\left(V_{1}, 0\right)\right)\left(0, e_{i}^{\prime \prime}\right)+\frac{1}{f^{2}} R\left(\left(0, \nabla_{e_{i}^{\prime \prime}}^{F} V_{2}\right),\left(0, V_{2}\right)\right)\left(0, e_{i}^{\prime \prime}\right)- \\
& \frac{1}{f} g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right) R\left((\text { gradf }, 0),\left(V_{1}, 0\right)\right)\left(0, e_{i}^{\prime \prime}\right)- \\
& \frac{1}{f} g^{F}\left(V_{2}, e_{i}^{\prime \prime}\right) R\left((g r a d f, 0),\left(0, V_{2}\right)\right)\left(0, e_{i}^{\prime \prime}\right) \\
& +\frac{V_{1}(f)}{f^{3}} R\left(\left(0, e_{i}^{\prime \prime}\right),\left(0, V_{2}\right)\right)\left(0, e_{i}^{\prime \prime}\right)+\frac{V_{1}(f)}{f^{3}} R\left(\left(0, e_{i}^{\prime \prime}\right),\left(V_{1}, 0\right)\right)\left(0, e_{i}^{\prime \prime}\right) \\
& S_{2}(V)=\sum_{i=1}^{n}\left(\frac{1}{f^{2}}\left(0, R^{F}\left(\nabla_{e_{i}^{\prime \prime}} V_{2}, V_{2}\right) e_{i}^{\prime \prime}\right)+\frac{V_{1}(f)}{f^{3}}\left(0, R^{F}\left(e_{i}^{\prime \prime}, V_{2}\right) e_{i}^{\prime \prime}\right)\right)+ \\
& \left\|V_{2}\right\|^{2}\left(\nabla_{g r a d f}^{B} g r a d f, 0\right)+\frac{\operatorname{gradf}(f)}{f^{2}}\left(\operatorname{div}\left(V_{2}\right)\left(0, V_{2}\right)-\left(0, \nabla_{V_{2}}^{F} V_{2}\right)\right)+ \\
& n \frac{V_{1}(f)}{f^{2}}\left(\nabla_{V_{1}}^{B} g r a d f, 0\right)+\frac{1}{f} \operatorname{div}\left(V_{2}\right)\left(\nabla_{V_{1}}^{B} g r a d f, 0\right)+ \\
& \frac{V_{1}(f)}{f^{3}} \operatorname{gradf}(f)(n-1)\left(0, V_{2}\right) \\
& =\frac{1}{f^{2}}\left(0, S\left(V_{2}\right)\right)+\frac{g r a d f(f)}{f^{2}}\left(\operatorname{div}\left(V_{2}\right)\left(0, V_{2}\right)-\left(0, \nabla_{V_{2}}^{F} V_{2}\right)\right)+n \frac{V_{1}(f)}{f^{2}}\left(\nabla_{V_{1}}^{B} g r a d f, 0\right) \\
& +\frac{V_{1}(f)}{f^{3}} \sum_{i=1}^{n}\left(0, R^{F}\left(e_{i}^{\prime \prime}, V_{2}\right) e_{i}^{\prime \prime}\right)+\left\|V_{2}\right\|^{2}\left(\nabla_{g r a d f}^{B} \operatorname{gradf}, 0\right)+\frac{1}{f} \operatorname{div}\left(V_{2}\right)\left(\nabla_{V_{1}}^{B} \operatorname{grad} f, 0\right) \\
& +\frac{V_{1}(f)}{f^{3}} \operatorname{gradf}(f)(n-1)\left(0, V_{2}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
S(V)= & S_{1}(V)+S_{2}(V) \\
= & \left(\left(S\left(V_{1}\right), 0\right)-\sum_{i=1}^{m}\left(\frac{e_{i}^{\prime}(f)}{f^{2}} H^{f}\left(V_{1}, e_{i}^{\prime}\right)-\frac{1}{f} H^{f}\left(\nabla_{e_{i}^{\prime}}^{B} V_{1}, e_{i}^{\prime}\right)\right)\left(0, V_{2}\right)+\right. \\
& n \frac{V_{1}(f)}{f^{2}}\left(\nabla_{V_{1}}^{B} g r a d f, 0\right)+\frac{1}{f^{2}}\left(0, S\left(V_{2}\right)\right)+\frac{g r a d f(f)}{f^{2}}\left(\operatorname{div}\left(V_{2}\right)\left(0, V_{2}\right)-\left(0, \nabla_{V_{2}}^{F} V_{2}\right)\right)+ \\
& \frac{V_{1}(f)}{f^{3}} g r a d f(f)(n-1)\left(0, V_{2}\right)+\frac{V_{1}(f)}{f^{3}} \sum_{i=1}^{n}\left(0, R^{F}\left(e_{i}^{\prime \prime}, V_{2}\right) e_{i}^{\prime \prime}\right)+ \\
& \left.\left\|V_{2}\right\|^{2}\left(\nabla_{g r a d f}^{B} g r a d f, 0\right)+\frac{1}{f} \operatorname{div}\left(V_{2}\right)\left(\nabla_{V_{1}}^{B} g r a d f, 0\right)\right) \\
= & \left(S\left(V_{1}\right)+n \frac{V_{1}(f)}{f^{2}} \nabla_{V_{1}}^{B} g r a d f+\left\|V_{2}\right\|^{2} \nabla_{g r a d f}^{B} g r a d f+\frac{1}{f} \operatorname{div}\left(V_{2}\right) \nabla_{V_{1}}^{B} g r a d f ; \frac{1}{f^{2}} S\left(V_{2}\right)\right. \\
& -\sum_{i=1}^{m}\left(\frac{e_{i}^{\prime}(f)}{f^{2}} H^{f}\left(V_{1}, e_{i}^{\prime}\right)-\frac{1}{f} H^{f}\left(\nabla_{e_{i}^{\prime}}^{B} V_{1}, e_{i}^{\prime}\right)\right) V_{2}+\frac{g r a d f(f)}{f^{2}}\left(\operatorname{div}\left(V_{2}\right) V_{2}-\nabla_{V_{2}}^{F} V_{2}\right)+ \\
& \left.\frac{V_{1}(f)}{f^{3}} \sum_{i=1}^{n} R^{F}\left(e_{i}^{\prime \prime}, V_{2}\right) e_{i}^{\prime \prime}+\frac{V_{1}(f)}{f^{3}} \operatorname{gradf}(f)(n-1) V_{2}\right) .
\end{aligned}
$$

Take $B=I \subset \mathbb{R}, V_{1}=\phi(t) \partial_{t}$ on I and V_{2} a vector field on (F, g), then

$$
\begin{aligned}
S(V)= & \left(n \frac{\phi^{2} f^{\prime} f^{\prime \prime}}{f^{2}} \partial_{t}+\left\|V_{2}\right\|^{2} f^{\prime} f^{\prime \prime} \partial_{t}+\frac{1}{f} \operatorname{div}\left(V_{2}\right) \phi f^{\prime \prime} \partial_{t} ; \frac{1}{f^{2}} S\left(V_{2}\right)-\frac{f^{\prime} \phi f^{\prime \prime}}{f^{2}} V_{2}+\frac{\phi^{\prime} f^{\prime \prime}}{f} V_{2}+\right. \\
& \left.\frac{f^{\prime 2}}{f^{2}} \operatorname{div}\left(V_{2}\right) V_{2}-\frac{f^{\prime 2}}{f^{2}} \nabla_{V_{2}} V_{2}+\frac{\phi f^{\prime 3}}{f^{3}}(n-1) V_{2}+\frac{\phi f^{\prime}}{f^{3}} \sum_{i=1}^{n} R\left(e_{i}^{\prime \prime}, V_{2}\right) e_{i}^{\prime \prime}\right) .
\end{aligned}
$$

Remark that if f is a non-zero positive constant on \mathbb{R}, then a harmonic vector field $V=V_{1}+V_{2}$ on the warped product $\mathbb{R} \times_{f} F$ is a harmonic map if and only if V_{2} is a harmonic map on F.
We suppose that G is three dimensional connected unimodular Riemannian Lie group equipped with a left-invariant metric. We have

Proposition 6.1. Let G be a three-dimensional connected Riemannian unimodular Lie group equipped with a left invariant metric and $V=V_{1}+V_{2}$ a harmonic vector field on the warped product $\left.I \times_{f} G, I \subset \mathbb{R}, f: I \longrightarrow\right] 0,+\infty\left[\right.$ with $V_{1}=\phi(t) \partial_{t}$ a vector field on I and $V_{2}=a e_{1}+b e_{2}+c e_{3}$ a unit left-invariant vector field on G. Then V is harmonic map on $I \times_{f} G$ if and only if one of the following cases occurs:

1. $G=\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}: \lambda_{1}=\lambda_{2}=\lambda_{3}=0, f(t)=\beta>0, I=\mathbb{R}, V_{2}=a e_{1}+b e_{2}+c e_{3}$ for any $a, b, c \in \mathbb{R}$ and $\phi(t)=\gamma_{1} t+\gamma_{2}, \gamma_{1}, \gamma_{2} \in \mathbb{R}$.
2. $\lambda_{1}=\lambda_{2}=\lambda_{3}>0(G=S U(3)$ or $S O(3)), f(t)=\eta \frac{\lambda_{1}}{2} t+\beta(\eta= \pm 1)$,
$\beta \in \mathbb{R}, I=]-\frac{2 \beta}{\lambda_{1}},+\infty[$ for $\eta=1, I=]-\infty, \frac{2 \beta}{\lambda_{1}}[$ for $\eta=-1$,

$$
V_{2}=a e_{1}+b e_{2}+c e_{3} \text { and } \phi(t)=c_{1}\left(\eta \frac{\lambda_{1}}{2} t+\beta\right)+\frac{c_{2}}{\left(\eta \frac{\lambda_{1}}{2} t+\beta\right)^{3}}, c_{1}, c_{2} \in \mathbb{R}
$$

Proof. Combining Proposition 4.1 and relation 4.3, we get

$$
\begin{gathered}
\nabla_{V_{2}} V_{2}=b c\left(\mu_{2}-\mu_{3}\right) e_{1}+a c\left(\mu_{3}-\mu_{1}\right) e_{2}+a b\left(\mu_{1}-\mu_{2}\right) e_{3} \\
S\left(V_{2}\right)=A_{1} b c e_{1}+A_{2} a c e_{2}+A_{3} a b e_{3} \quad \text { and } \quad \operatorname{div}\left(V_{2}\right)=0 \\
\sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=a\left(\mu_{1} \mu_{3}-\lambda_{2} \mu_{2}+\mu_{1} \mu_{2}-\lambda_{3} \mu_{3}\right) e_{1}+b\left(\mu_{1} \mu_{2}-\lambda_{3} \mu_{3}+\mu_{2} \mu_{3}-\lambda_{1} \mu_{1}\right) e_{2}+ \\
c\left(\mu_{2} \mu_{3}-\lambda_{1} \mu_{1}+\mu_{1} \mu_{3}-\lambda_{2} \mu_{2}\right) e_{3}
\end{gathered}
$$

where $A_{1}=\mu_{2}^{2}\left(\mu_{3}-\mu_{1}\right)+\mu_{3}^{2}\left(\mu_{1}-\mu_{2}\right), A_{2}=\mu_{1}^{2}\left(\mu_{2}-\mu_{3}\right)+\mu_{3}^{2}\left(\mu_{1}-\mu_{2}\right), A_{3}=$ $\mu_{1}^{2}\left(\mu_{2}-\mu_{3}\right)+\mu_{2}^{2}\left(\mu_{3}-\mu_{1}\right)$. Hence a harmonic vector field $V=V_{1}+V_{2}$ on $I \times_{f} G$ where G : unimodular Lie group is a harmonic map if and only if

$$
\left\{\begin{array}{l}
f^{\prime}(t) f^{\prime \prime}(t)\left(3 \phi(t)^{2}+f(t)^{2}\right)=0 \\
S\left(V_{2}\right)-f^{\prime}(t) \phi(t) f^{\prime \prime}(t) V_{2}+\phi^{\prime}(t) f(t) f^{\prime \prime}(t) V_{2}-f^{\prime}(t)^{2} \nabla_{V_{2}} V_{2}+ \\
2 \frac{\phi(t) f^{\prime}(t)^{3}}{f(t)} V_{2}+\frac{\phi(t) f^{\prime}(t)}{f(t)} \sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=0 \\
t \in I
\end{array}\right.
$$

This is equivalent to

$$
\left\{\begin{array}{l}
\forall t \in I, f^{\prime \prime}(t)=0 \tag{6.1}\\
S\left(V_{2}\right)-f^{\prime}(t)^{2} \nabla_{V_{2}} V_{2}+2 \frac{\phi(t) f^{\prime}(t)^{3}}{f(t)} V_{2}+\frac{\phi(t) f^{\prime}(t)}{f(t)} \sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=0
\end{array}\right.
$$

because of $\forall t \in I, f(t)>0$ and $f^{\prime}(t) f^{\prime \prime}(t)=0$ we have $f^{\prime \prime}(t)=0$.
We will now discuss case by case according to the classification of three-dimensional connected unimodular Lie groups given in Table 1 and combine the result of proposition 4.2, we have

- $G=\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$: In this case, $S\left(V_{2}\right)=\nabla_{V_{2}} V_{2}=R\left(e_{i}, V_{2}\right) e_{i}=0$ and we obtain the first case of Proposition.
- $G=\mathbb{H}^{3}:$ In this case we have $S\left(V_{2}\right)=-\frac{1}{4} a \lambda_{1}^{3}\left(c e_{2}-b e_{3}\right), \nabla_{V_{2}} V_{2}=a \lambda_{1}\left(c e_{2}-b e_{3}\right)$, $\sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=-\frac{1}{2} \lambda_{1}^{2}\left(a e_{1}-b e_{2}-c e_{3}\right)$. Using System 6.1 and case 2 of Proposition 4.2, we have

$$
\left\{\begin{array}{l}
\forall t \in I, f^{\prime}(t)=\frac{1}{4} \lambda_{1}^{2} \\
-\frac{1}{4} \lambda_{1}^{3} a\left(c e_{2}-b e_{3}\right)-\frac{1}{4} \lambda_{1}^{3} a\left(c e_{2}-b e_{3}\right)+ \\
\frac{f^{\prime}(t)}{f(t)} \phi(t)\left(\frac{1}{4} \lambda_{1}^{2}\left(a e_{1}+b e_{2}+c e_{3}\right)-\frac{1}{2} \lambda_{1}^{2}\left(a e_{1}-b e_{2}-c e_{3}\right)\right)=0
\end{array}\right.
$$

this is equivalent to $a=0, \lambda_{1}=0$ that is not possible. we obtain that a harmonic vector field on $I \times_{f} G$ cannot a harmonic map.

- $G=\mathbb{E}(1,1)$:
* $b=0, f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\mu_{3}^{2}+\mu_{2}^{2}$: We have $S\left(V_{2}\right)=-2 \mu_{3}^{3} a c e_{2}$, $\nabla_{V_{2}} V_{2}=2 \mu_{3} a c e_{2}$ and

$$
\begin{aligned}
& \sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=a\left(-\mu_{3}^{2}-\mu_{2} \mu_{3}-\lambda_{3} \mu_{3}\right) e_{1}+c\left(-\mu_{3}^{2}+\mu_{2} \mu_{3}+\lambda_{1} \mu_{3}\right) e_{3} . \text { Then } \\
& \left\{\begin{array}{l}
\forall t \in I, 2 f^{\prime}(t)^{2}=\mu_{3}^{2}+\mu_{2}^{2} \\
\frac{f^{\prime}(t)}{f(t)} \phi(t)\left(\mu_{3}^{2}+\mu_{2}^{2}\left(a e_{1}+c e_{3}\right)+a\left(-\mu_{3}^{2}-\mu_{2} \mu_{3}-\lambda_{3} \mu_{3}\right) e_{1}+\right. \\
\left.c\left(-\mu_{3}^{2}+\mu_{2} \mu_{3}+\lambda_{1} \mu_{3}\right) e_{3}\right)-2 \mu_{3}^{3} a c e_{2}-\frac{1}{2}\left(\mu_{3}^{2}+\mu_{2}^{2}\right)\left(2 \mu_{3} a c e_{2}\right)=0 .
\end{array}\right.
\end{aligned}
$$

this is equivalently to $a=c=0$ (not possible because $a^{2}+c^{2}=1$).

* $c=a=0, \epsilon=2 \mu_{1}^{2}$, in this subcase we obtain that a harmonic vector field on $I \times_{f} G$ cannot a harmonic map.
- $G=\mathbb{E}(2), G=S L(2, \mathbb{R}), O(1,2)$ are similarly to that case $G=\mathbb{E}(1,1)$ and we obtain that a harmonic vector field on $I \times{ }_{f} G$ cannot a harmonic map.
- $G=S U(3), S O(3)$
* $\lambda_{1}=\lambda_{2}=\lambda_{3}>0$: in this subcase $S\left(V_{2}\right)=\nabla_{V_{2}} V_{2}=0$ and
$\sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=-2 \mu V_{2}$. We have
$f^{\prime}(t)^{2}=\mu^{2}=\frac{1}{4} \lambda_{1}^{2}$ and a harmonic vector field is harmonic map
* For other cases, Similarly to the cases $G=\mathbb{E}(2)$ and the cases $G=S L(2, \mathbb{R}), O(1,2)$, we obtain that a harmonic vector field on $I \times_{f} G$ cannot be a harmonic map.

We now suppose that G is three dimensional connected Riemannian non-unimodular Lie group equipped with a left-invariant metric. We have

Proposition 6.2. Let G be a three-dimensional connected Riemannian non-unimodular Lie group equipped with a left-invariant metric and $V=V_{1}+V_{2}$ a harmonic vector field on the warped product $\left.I \times_{f} G, I \subset \mathbb{R}, f: I \longrightarrow\right] 0,+\infty\left[\right.$ with $V_{1}=\phi(t) \partial_{t}$ a vector field on I and $V_{2}=a e_{1}+b e_{2}+c e_{3}$ a unit left-invariant vector field on G. Then V is a harmonic map on $I \times_{f} G$ if and only if

1. $\alpha=\delta>0=\beta, V_{2}=a e_{1}$, and

$$
\left\{\begin{array}{l}
\forall t \in I, f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=2 \alpha^{2} \\
f^{\prime}(t) f^{\prime \prime}(t)\left(3 \phi(t)^{2}+f(t)^{2}\right)=2 a \alpha f(t) f^{\prime \prime}(t) \phi(t) \\
-2 \alpha^{3}-a f^{\prime}(t) \phi(t) f^{\prime \prime}(t)+a \phi^{\prime}(t) f(t) f^{\prime \prime}(t)-2 \alpha f^{\prime}(t)^{2}+ \\
2 a \frac{\phi(t) f^{\prime}(t)}{f(t)}\left(2 f^{\prime}(t)^{2}+\alpha^{2}\right)=0 \\
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=-4 a \alpha \frac{f^{\prime}(t)}{f(t)} .
\end{array}\right.
$$

2. $\alpha>0, \beta=\delta=0, f(t)=\mu>0, I=\mathbb{R}, V_{2}= \pm e_{3}$ and $\phi(t)=\gamma_{1} t+\gamma_{2}$ with $\mu, \gamma_{1}, \gamma_{2} \in \mathbb{R}$.
3. $\alpha>\delta=0, V_{2}=a e_{1}, a= \pm 1$ and

$$
\left\{\begin{array}{l}
f^{\prime}(t) f^{\prime \prime}(t)\left(3 \phi(t)^{2}+f(t)^{2}\right)=a \alpha f(t) f^{\prime \prime}(t) \phi(t) \tag{6.2}\\
-\alpha^{3}-f^{\prime}(t) \phi(t) f^{\prime \prime}(t) a+\phi^{\prime}(t) f(t) f^{\prime \prime}(t) a- \\
\alpha f^{\prime}(t)^{2}+a \frac{\phi(t) f^{\prime}(t)}{f(t)}\left(2 f^{\prime}(t)^{2}+\alpha^{2}\right)=0 \\
f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\alpha^{2} \\
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=-2 a \alpha \frac{f^{\prime}(t)}{f(t)} \\
t \in I
\end{array}\right.
$$

4. $\alpha>0>\delta$ or $\alpha>\delta>0$,

$$
\left\{\begin{array}{l}
-\alpha^{3} b^{2}-\delta^{3} c^{2}+\alpha\left(\alpha^{2}-\delta^{2}\right) b^{2} c^{2}-\frac{1}{2}\left(b^{2} \alpha+c^{2} \delta\right)\left(b^{2} \alpha^{2}+\right. \\
\left.c^{2} \delta^{2}+b^{2} c^{2}(\alpha-\delta)^{2}\right)=0 \\
b^{2} \alpha^{2}+c^{2} \delta^{2}+b^{2} c^{2}(\alpha-\delta)^{2}+\alpha(\alpha+\delta)+c^{2}(\delta-\alpha)=0 \\
\alpha+\delta+(\alpha-\delta)\left(c^{2}-b^{2}\right)=0 \\
\epsilon=\beta^{2}+b^{2} \alpha^{2}+c^{2} \delta^{2}, b \neq 0, c \neq 0
\end{array}\right.
$$

$$
\left.V_{2}=b e_{2}+c e_{3}, f(t)=\mu \kappa t+\eta(\mu= \pm 1), \eta \in \mathbb{R} \text { and } I=\right]-\frac{\eta}{\kappa},+\infty[\text { for } \mu=1
$$

$$
I=]-\infty, \frac{\eta}{\kappa}[\text { for } \mu=-1
$$

$$
\text { and } \phi(t)=c_{1}(\mu \kappa t+\eta)+\frac{c_{2}}{(\mu \kappa t+\eta)^{3}}, c_{1}, c_{2} \in \mathbb{R}, \kappa=\sqrt{\frac{\epsilon}{2}}
$$

5. $\alpha>\delta>0$ or $\alpha>0>\delta, V_{2}=a e_{1}+b e_{2}+c e_{3}, a \neq 0$ and

$$
\begin{aligned}
& (6.3) \\
& \left\{\begin{array}{l}
b\left(\beta^{2}-\delta^{2}\right)=\beta(\alpha+\delta) c \\
c\left(\beta^{2}-\alpha^{2}\right)=-\beta(\alpha+\delta) b, \\
f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)=\alpha^{2}+\delta^{2}, \\
f^{\prime \prime}(t)\left(3 f^{\prime}(t) \phi^{2}(t)+f^{2}(t) f^{\prime}(t)-a(\alpha+\delta) f(t) \phi(t)\right)=0, \\
-\alpha^{3}\left(a^{2}+b^{2}\right)-\delta^{3}\left(a^{2}+c^{2}\right)+\beta b c\left(\alpha^{2}-\delta^{2}\right)-a f^{\prime}(t) f^{\prime \prime}(t) \phi(t)+a f(t) f^{\prime \prime}(t) \phi^{\prime}(t)- \\
a^{2} f^{\prime}(t)^{2}(\alpha+\delta)-f^{\prime}(t)^{2}\left(b^{2} \alpha+c^{2} \delta\right)+a \frac{\phi(t) f^{\prime}(t)}{f(t)}\left(2 f^{\prime}(t)^{2}+\alpha^{2}+\delta^{2}\right)=0, \\
a\left(\alpha^{2} c \beta-b \alpha \delta^{2}+\alpha \beta^{2} b-\delta \beta^{2} b\right)-b f^{\prime}(t) \phi(t) f^{\prime \prime}(t)+f(t) \phi^{\prime}(t) f^{\prime \prime}(t) b-a b f^{\prime}(t)^{2}(\alpha+\delta)+ \\
a f^{\prime}(t)^{2}(c \beta+b \alpha)+\frac{\phi(t) f^{\prime}(t)}{f(t)}\left(2 b f^{\prime}(t)^{2}+b \alpha(\alpha+\delta)+c \beta(\delta-\alpha)\right)=0 \\
a\left(-\beta \delta^{2} b-\alpha^{2} \delta c-\beta^{2}(\alpha-\delta) c\right)-c f^{\prime}(t) \phi(t) f^{\prime \prime}(t)+f(t) \phi^{\prime}(t) f^{\prime \prime}(t) c- \\
a c f^{\prime}(t)^{2}(\alpha+\delta)+a f^{\prime}(t)^{2}(c \delta+b \beta)+\frac{\phi(t) f^{\prime}(t)}{f(t)}\left(2 f^{\prime}(t)^{2}+c \delta(\alpha+\delta)+b \beta(\delta-\alpha)\right)=0 \\
\phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=-2 a(\alpha+\delta) \frac{f^{\prime}(t)}{f(t)}, t \in I .
\end{array}\right.
\end{aligned}
$$

Proof. Combining Proposition 5.1 and System 5.3, we get $\operatorname{div}\left(V_{2}\right)=-a(\delta+\alpha)$,

$$
\begin{gathered}
S\left(V_{2}\right)=\left[-\alpha^{3}\left(a^{2}+b^{2}\right)-\delta^{3}\left(a^{2}+c^{2}\right)+\beta\left(\alpha^{2}-\delta^{2}\right) b c\right] e_{1}+a\left[\alpha^{2} \beta c-\alpha \delta^{2} b+\beta^{2}(\alpha-\delta) b\right] e_{2}+ \\
a\left[-\beta \delta^{2} b-\alpha^{2} \delta c-\beta^{2}(\alpha-\delta) c\right] e_{3} \\
\nabla_{V_{2}} V_{2}=\left(b^{2} \alpha+c^{2} \delta\right) e_{1}+(-a c \beta-a b \alpha) e_{2}+(a b \beta-a c \delta) e_{3}
\end{gathered}
$$

and
$\sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=a\left(\alpha^{2}+\delta^{2}\right) e_{1}+(b \alpha(\alpha+\delta)+c \beta(\delta-\alpha)) e_{2}+(c \delta(\alpha+\delta)+b \beta(\delta-\alpha)) e_{3}$.
Hence a harmonic vector field $V=V_{1}+V_{2}$ on $I \times_{f} G$ where G is a non-unimodular Lie group is a harmonic map if and only if

$$
\left\{\begin{array}{l}
f^{\prime}(t) f^{\prime \prime}(t)\left(3 \phi(t)^{2}+f(t)^{2}\right)+f(t) f^{\prime \prime}(t) \phi(t) \operatorname{div}\left(V_{2}\right)=0 \tag{6.4}\\
S\left(V_{2}\right)-f^{\prime}(t) \phi(t) f^{\prime \prime}(t) V_{2}+\phi^{\prime}(t) f(t) f^{\prime \prime}(t) V_{2}-f^{\prime}(t)^{2} \nabla_{V_{2}} V_{2}+f^{\prime}(t)^{2} \operatorname{div}\left(V_{2}\right) V_{2}+ \\
\frac{\phi(t) f^{\prime}(t)}{f(t)}\left(2 f^{\prime}(t)^{2} V_{2}+\sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}\right)=0 \\
t \in I
\end{array}\right.
$$

We will discuss case by case as in Proposition 5.2.

- $\alpha=\delta>0$,
* $\beta=0, \epsilon=2 \alpha^{2}, b=c=0, f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\epsilon$, we have
$\operatorname{div}\left(V_{2}\right)=-2 \alpha a, S\left(V_{2}\right)=-2 \alpha^{3} e_{1}, \nabla_{V_{2}} V_{2}=0, \sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=2 a \alpha^{2} e_{1}$,
then a vector field V is harmonic map if and only if
$\left\{\begin{array}{l}\forall t \in I, f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=2 \alpha^{2} \\ f^{\prime}(t) f^{\prime \prime}(t)\left(3 \phi(t)^{2}+f(t)^{2}\right)=2 a \alpha f(t) f^{\prime \prime}(t) \phi(t) \\ -2 \alpha^{3}-a f^{\prime}(t) \phi(t) f^{\prime \prime}(t)+a \phi^{\prime}(t) f(t) f^{\prime \prime}(t)-2 \alpha f^{\prime}(t)^{2}+ \\ 2 a \frac{\phi(t) f^{\prime}(t)}{f(t)}\left(2 f^{\prime}(t)^{2}+\alpha^{2}\right)=0 \\ \phi^{\prime \prime}(t)+3 \frac{f^{\prime}(t)}{f(t)} \phi^{\prime}(t)-3\left(\frac{f^{\prime}(t)}{f(t)}\right)^{2} \phi(t)=-4 a \alpha \frac{f^{\prime}(t)}{f(t)} .\end{array}\right.$
$* \beta=0, \epsilon=2 \alpha^{2}, a=0$, we have $\operatorname{div}\left(V_{2}\right)=0, S\left(V_{2}\right)-\alpha^{3} e_{1}$,
$\nabla_{V_{2}} V_{2}=\alpha e_{1}, \sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=2 \alpha^{2}\left(b e_{2}+c e_{3}\right)$. From System 6.4 and
$f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\epsilon$, we have $\forall t \in I, f^{\prime}(t)^{2}=\alpha^{2}$ and
$\left\{\begin{array}{l}-\alpha^{3} e_{1}-f^{\prime}(t) \phi(t) f^{\prime \prime}(t)\left(b e_{2}+c e_{3}\right)+\phi^{\prime}(t) f(t) f^{\prime \prime}(t)\left(b e_{2}+c e_{3}\right)-\alpha^{3} e_{1}+ \\ 2 \alpha^{2} \frac{\phi(t) f^{\prime}(t)}{f(t)}\left(b e_{2}+c e_{3}\right)=0, \\ t \in I .\end{array}\right.$
This is not possible and we obtain that a harmonic vector field cannot be a harmonic map.
* $\beta=0, \epsilon=\alpha^{2}, a=0$ as in the previous subcase, we obtain that a harmonic vector field cannot be a harmonic map.
- $\alpha>0, \delta=0$
$* \beta=\epsilon=0, a=b=0$, we have $\operatorname{div}\left(V_{2}\right)=\nabla_{V_{2}} V_{2}=\sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=0$.
From System 6.4 and $f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=0$, we obtain $\forall t \in I=\mathbb{R}, f^{\prime}(t)=0$ and a harmonic vector field on $I \times_{f} G$ is harmonic map in this subcase
* For the subcases $(b)-(c)$ there is no solution and we obtain that a harmonic vector field on $I \times{ }_{f} G$ cannot be a harmonic map
$* b=c=0, f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\alpha^{2}$. We have
$\operatorname{div}\left(V_{2}\right)=-a \alpha, S\left(V_{2}\right)=-\alpha^{3} e_{1}, \sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=a \alpha^{2} e_{1}, \nabla_{V_{2}} V_{2}=0$ and we
obtain the System 6.2
* The last subcase of this case implies $b=0$, that is the same result of previous subcase.
- $\alpha>\delta>0$ or $\alpha>0>\delta$
*For the subcase that $a \neq 0, f(t) f^{\prime \prime}(t)+2 f^{\prime}(t)^{2}=\alpha^{2}+\delta^{2}$, we obtain Equation 6.3
* $\beta=0, \epsilon=\alpha^{2}, a=c=0$: From this a harmonic vector field cannot a harmonic map
* $\beta=b c \alpha, \epsilon=b^{2} \alpha^{2}\left(1+c^{2}\right), a=0$, in this case $S\left(V_{2}\right)=\left[-\alpha^{3} b^{2}-\delta^{3} c^{2}+\beta\left(\alpha^{2}-\right.\right.$

$$
\begin{aligned}
& \left.\left.\delta^{2}\right) b c\right] e_{1}, \\
& \operatorname{div}\left(V_{2}\right)=0, \nabla_{V_{2}} V_{2}=\left(b^{2} \alpha+c^{2} \delta\right) e_{1}, \sum_{i=1}^{3} R\left(e_{i}, V_{2}\right) e_{i}=(b \alpha(\alpha+\delta)+\beta(\delta-\alpha)) e_{2}+ \\
& (c \delta(\alpha+\delta)+b \beta(\delta-\alpha)) e_{3} \text { and we have } \\
& \left\{\begin{array}{l}
\forall t \in I, 2 f^{\prime}(t)^{2}=\beta^{2}+b^{2} \alpha^{2}+c^{2} \delta^{2} \\
-\alpha^{3} b^{2}-\delta^{3} c^{2}+\beta\left(\alpha^{2}-\delta^{2}\right) b c-\frac{1}{2}\left(b^{2} \alpha+c^{2} \delta\right)\left(b^{2} \alpha^{2}+c^{2} \delta^{2}+b^{2} c^{2}(\alpha-\delta)^{2}\right)=0 \\
\frac{\phi(t) f^{\prime}(t)}{f(t)}\left(\left(b^{2} \alpha^{2}+c^{2} \delta^{2}+b^{2} c^{2}(\alpha-\delta)^{2}\right) b+b \alpha(\alpha+\delta)+c \beta(\delta-\alpha)\right)=0 \\
\frac{\phi(t) f^{\prime}(t)}{f(t)}\left(\left(b^{2} \alpha^{2}+c^{2} \delta^{2}+b^{2} c^{2}(\alpha-\delta)^{2}\right) c+c \delta(\alpha+\delta)+b \beta(\delta-\alpha)\right)=0
\end{array}\right.
\end{aligned}
$$

this is equivalent to

$$
\left\{\begin{array}{l}
\forall t \in I, 2 f^{\prime}(t)^{2}=\beta^{2}+b^{2} \alpha^{2}+c^{2} \delta^{2} \\
-\alpha^{3} b^{2}-\delta^{3} c^{2}+\alpha\left(\alpha^{2}-\delta^{2}\right) b^{2} c^{2}-\frac{1}{2}\left(b^{2} \alpha+c^{2} \delta\right)\left(b^{2} \alpha^{2}+c^{2} \delta^{2}+b^{2} c^{2}(\alpha-\delta)^{2}\right)=0 \\
b^{2} \alpha^{2}+c^{2} \delta^{2}+b^{2} c^{2}(\alpha-\delta)^{2}+\alpha(\alpha+\delta)+c^{2}(\delta-\alpha)=0 \\
\alpha+\delta+(\alpha-\delta)\left(c^{2}-b^{2}\right)=0
\end{array}\right.
$$

and we obtain (4) of the Proposition.

Using the examples of Propositions 5.1, 4.4 and 5.3 for a non left-invariant vector fields on Lie groups G, we obtain.

Proposition 6.3. A harmonic vector field $V=\phi(t) \partial_{t}+a(x, y, z) \frac{\partial}{\partial x}$ on $I \times_{f}(\mathbb{R} \oplus$ $\mathbb{R} \oplus \mathbb{R}$) is a harmonic map if and only if V_{2} is constant on $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, ϕ is an affine function, and f is a positive function on I and $I=\mathbb{R}$.

Proposition 6.4. A harmonic vector field $V=\phi(t) \partial_{t}+a(x, y, z) e_{1}$ on $I \times{ }_{f} \mathbb{H}^{3}$ cannot be a harmonic map.

Proposition 6.5. A harmonic vector field $V=\phi(t) \partial_{t}+b(y) e_{2}+c(y) e_{3}$ on $I \times_{f}(\mathbb{R} \times$ H^{2}) cannot be a harmonic map.

References

[1] P. Baird and J. C. Wood, Harmonic Morphisms Between Riemannian Manifolds, London Math. Soc. Monogr. No. 29, Oxford University Press, 2003.
[2] E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427-448.
[3] G. Calvaruso, Harmonicity properties of invariant vector fields on threedimensional Lorentzian Lie groups, Geom. and Phys. 61 (2011) 498-515.
[4] S. Dragomir and D. Perrone, Harmonic Vector Fields: Variational Principles and Differential Geometry, Elsevier, 2011.
[5] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1) (1964), 109-160.
[6] O. Gil-Medrano, Relationship between volume and energy ofvector fields, Differential Geom. Appl. 15 (2001), 137-152.
[7] O. Gil-Medrano, J. C. González-Dávila and L. Vanhecke, Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds, Houston J. Math. 27 (2) (2001), 377-409.
[8] S. D. Han and J. W. Yim, Unit vector fields on spheres which are harmonic maps, Math. Z. 227 (1998), 83-92.
[9] T. Ishihara,Harmonic sections of tangent bundles, J. Math. Tokushima Univ. 13 (1979), 23-27.
[10] M. Markellos and H. Urakawa, The bienergy of unit vector fields, Ann. Glob. Anal. Geom., 46 (2014), 431-457.
[11] J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), 293-329.
[12] O. Nouhaud, Applications harmoniques d'une variété riemannienne dans son fibré tangent, C. R. Acad. Sci. Paris 284 (1977), 815-818.
[13] B. O'Neill,Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, 1983.
[14] G. Wiegmink, Total bending of vector fields on Riemannian manifolds, Math. Ann. 303 (1995), 325-344.
[15] C. M. Wood, The Gauss section of a Riemannian immersion, J. London Math. Soc. 33 (1986), 157-168.
[16] C. M. Wood, On the energy of a unit vector field, Geom. Dedicata 64 (1997), 319-330.

Authors' addresses:
Ferdinand Hountondji Koudjo
Institut de Mathematiques et de Sciences Physiques, Porto-Novo, Benin.
E-mail: ferdinand.koudjo@imsp-uac.org
Eric Loubeau,
Univ. Brest, CNRS UMR 6205, LMBA, F-29238 Brest, France.
E-mail: Eric.Loubeau@univ-brest.fr
Leonard Todjihounde,
Institut de Mathematiques et de Sciences Physiques, Porto-Novo, Benin.
E-mail:leonardt@imsp-uac.org

