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Abstract. We give an easy to test sufficient condition to see if a
tensor is concise, assuming that the tensor is given by a (not necessarily
minimal) rank 1 decomposition. If the test fails, we discuss some useful
consequences.
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1 Introduction

Fix an integer k ≥ 2 and k finite-dimensional vector spaces V1, . . . , Vk over the field
K, Vi ̸= 0 for all i. Set ni := dimVi − 1. An element T ∈ V1 ⊗ · · · ⊗ Vk is called a
tensor of format (n1 + 1)× · · · × (nk + 1). T is said to be concise if the are no linear
subspaces Wi ⊆ Vi, 1 ≤ i ≤ k, such that T ∈ W1 ⊗ · · · ⊗Wk and Wi ̸= Vi for at least
one index i. A rank 1 tensor is a tensor A = v1 ⊗ · · · ⊗ vk with vi ∈ Vi \ {0}. For any
tensor T ̸= 0 a rank 1 decomposition of T is an equality

(1.1) T =

m∑
i=1

Ti

with Ti a rank 1 tensor. We do not assume that m is minimal among all rank 1 tensor
decompositions of T , because in this case by concision ([3, Proposition 3.2.1.1]) the
minimal Segre of T is just described by the m points of the multiprojective space
(Remark 1.1).

This is not an “ if and only if ” criterion, but it is very easy to do the test if the
tensor is given as a sum of rank 1 tensors.

For any set A ⊂ PN let ⟨A⟩ denote its linear span. To state our result we recall
the equivalence between the space of all tensors with format (n1 +1)× · · · × (nk +1)
and the projective space PN in which a certain Segre variety lives.
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Consider the multiprojective space Y := Pn1 × · · · × Pnk and let ν : Y → PN ,
N = −1 + (n1 + 1)× · · · (nk + 1) denote the Segre embedding of Y ([3, §4.3.5]) with
PN = P(V1 ⊗ · · · ⊗ Vk)

∨. The elements of ν(Y ) correspond to the rank 1 tensors
with format (n1 + 1)× · · · × (nk + 1) up to a non-zero multiplicative constant. More
explicitly, choosing a system of coordinates xi0, . . . , xini

of the vector space Vi, if
A = v1 ⊗ · · · vk with vi = (ai0, . . . , aini), then the point [T ] ∈ ν(Y ) corresponds to
the point (b1, . . . , bk) ∈ Y in which that i-th component bi has (ai0 : · · · : aini) as its
homogeneous coordinates. Thus if in (1.1) no two of the addenda Ti are proportional,
they correspond to a set S ⊂ Y such that #S = m and [T ] ∈ ⟨ν(S)⟩, where ⟨ ⟩ denote
the linear span. The tensors T ′ such that [T ′] ∈ ⟨ν(S)⟩ are all tensors T ′ =

∑m
i=1 ciTi

with ci ∈ K and T ′ ̸= 0. We cannot drop one of the points of S and get T ′ if and
only if the tensors T1, . . . , Tm are linearly independent (i.e. the set ν(S) ⊂ PN is
linearly independent) and ci ̸= 0 for all i. In the following we assume that we have a
representation (1.1) with T1, . . . , Tm linearly independent. The test (if it satisfied) says
that every T ′ =

∑m
i=1 ciTi with ci ̸= 0 for all i is concise. Note that (assuming ν(S)

linearly independent) T ′ =
∑m

i=1 ciTi with ci ̸= 0 for all i if and only if [T ′] ∈ ⟨ν(S)⟩
and [T ′] /∈ ⟨ν(S′)⟩ for any S′ ⊊ S. In this case we say that ν(S) irredundantly spans
[T ′].

To state our result we introduce the following notation. For any i = 1, . . . , k
set Yi :=

∏
h̸=i Pnh and let ηi : Y → Yi denote the surjection which to each p =

(p1, . . . , pk) ∈ Y delete the i-th component of p. Since k ≥ 2, Yi is a multiprojective
space with k − 1 factors. Let νi denote the Segre embedding of Yi.

Theorem 1.1. Let T ∈ V1 ⊗ · · · ⊗ Vk be a tensor with a rank 1 decomposition corre-
sponding to a finite set S ⊂ Y . Assume that Y is the minimal multiprojective space
containing S and that ν(S) irredundantly spans [T ], i.e. there is no S′ ⊊ S such that
[T ] ∈ ⟨S⟩. Assume that for all i = 1, . . . , k the following conditions hold:

1. ηi|S is injective;

2. νi(ηi(Si)) is linearly independent.

Then T is concise.

The proof of the sufficient condition is just a few lines, due to previous work, but
if we have the finite set S it is quick to check the criterion for S and, if it does not
fail, we get the conciseness for all tensors U ̸= 0, with [U ] irredundantly spanned by
S, i.e. such that [U ] ∈ ⟨ν(S)⟩ and [U ] /∈ ⟨S′⟩ for any S′ ⊊ S.

Remark 1.1. The assumption that Y is the minimal multiprojective space containing
S is obviously a necessary condition for the conciseness of T . It is easy to test
this condition, because

∏k
i=1⟨πi(S)⟩ is the minimal multiprojective subspace of Y

containing S. Thus Y is the minimal multiprojective space containing S if and only
if ⟨πi(S)⟩ = Pni for all i.

At the end of this short note we give 3 observations on the information we get
about the tensor T if the test fails (Remarks 2.1, 2.2 and 2.3). In particular we observe
that if condition (1) of Theorem 1.1 fails for some i, say for x indices i, then T has
tensor rank at most m− x < m (Remark 2.2).
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2 The proof and further remarks

For any i ∈ {1, . . . , k} let ϵi denote the multiindex (a1, . . . , ak) ∈ Nk such that aj = 0
for all j ̸= i and ai = 1. Thus OY (ϵi) ∼= π∗

i (OPni (1)).

Proof of Theorem 1.1: Assume that T is not concise, i.e. assume the existence of a
multiprojective space Y ′ ⊊ Y such that q := [T ] ∈ ν(Y ′). By concision there is
A ⊂ Y ′ such that #A is the tensor rank of T and q ∈ ⟨ν(A)⟩. Set B := A ∪ S.
Since Y is the minimal multiprojective space containing S, A ̸= S. Since Y ′ is a
multiprojective subspace of Y , each πi(Y

′) is a linear subspace of Pni . Since Y ′ ⊊ Y ,
there is i ∈ {1, . . . , k} such that πi(Y

′) is a proper linear subspace of Pni . LetM ⊂ Pni

be a hyperplane containing πi(Y
′). Set H := π−1

i (M). Note that H ∈ |OY (ϵi)| and
that A ⊂ H. Since Y is the minimal multiprojective space containing S, S ⊈ H.
Thus B ̸= B ∩H. Note that B \B ∩H = S \ S ∩H. The contradiction comes from
[1, Lemma 5.1] or [2, Lemmas 2.4 or 2.5]. □

Remark 2.1. Take a tensor T irredundantly spanned by the set ν(S) for some finite
set S ⊂ Y . Assume that the test of Theorem 1.1 fails and call E ⊆ {1, . . . , k} the
set of all i ∈ {1, . . . , k} such that one of the two conditions in Theorem 1.1 is not

satisfied. Assume E ̸= f� , but also assume E ̸= {1, . . . , k}. Let Y ′ ⊆ Y be the
minimal multiprojective space such that T ∈ ⟨ν(Y ′)⟩, i.e. let ν(Y ′) be the concise
Segre of T . Fix i ∈ {1, . . . , k} \ E. The proof of Theorem 1.1 gives πi(Y

′) = Pni .

Remark 2.2. Take a tensor T irredundantly spanned by the set ν(S) for some
finite set S ⊂ Y . Assume that condition (1) the test of Theorem 1.1 fails and call
E ⊆ {1, . . . , k} the set of all i ∈ {1, . . . , k} such that (1) fails. Set x := #E. By
assumption 1 ≤ x ≤ k.

Claim: T has tensor rank at most m− x.
Proof of the claim: To prove the claim it is sufficient to find a set A ⊂ Y

such that #A = m− x and T ∈ ⟨ν(A)⟩. Fix i ∈ E and take u, v ∈ S such that u ̸= v
and ηi(u) = ηi(v). Set B := S \ {u, v}. Write u = (u1, . . . , uk) and v = (v1, . . . , vk).
Since u ̸= v and ηi(u) = ηi(v), uj = vj for all j ̸= i and ui ̸= vi. Let L ⊆ Pni

denote the line spanned by {ui, vi}. Let Y ′ ⊆ Y be the multiprojective space such
that πj(Y

′) = {uj} for all j ̸= i and πi(Y
′) = L. Note that ν(Y ′) is the line spanned

by ν(u) and ν(v). Since {ν(u), ν(v)} ⊂ ν(Y ′) T is contained in the linear span of
ν(B) and ν(Y ′). Since ν(Y ′) is the line, there is o ∈ Y ′ such that T ∈ ⟨ν(B) ∪ {o}⟩.
Since #(B ∪ {o}) ≤ #B + 1 = m − 1, the tensor rank of T is at most m − 1. If
x = 1, then the claim is proved. Now assume x ≥ 2 and take j ∈ E \ {i}. Note that
condition (1) of Theorem 1.1 fails for B and hence it fails for B ∪ {o}. We use j as
we used i and conclude the proof of the claim by induction on x.

Remark 2.3. Assume that the test fails for S and fix p ∈ S. Set S′ := S \{p}. Since
S irredundantly spans [T ], there is a unique tensor U such that ν(S′) irredundantly
spans [U ] and [T ] ∈ ⟨{[U ], ν(p)}⟩. Let Y ′ ⊆ Y be the multiprojective subspace of Y
with ν(Y ′) the concise Segre of U . If the test works for S′, then Y ′ is the minimal
multiprojective subspace of Y containing S′ and hence it is easily determined (Remark
1.1). Write Y ′ = Pm1 × · · · × Pmk in which we allow the case mh = 0 for some h.
Thus 0 ≤ mh ≤ nh for all h. Let Y ′′ = Ps1 × · · · × Psk with 0 ≤ sh ≤ nh for all
h be the multiprojective space with ν(Y ′′) the concise Segre of T . Take A ⊂ Y ′
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evincing the tensor rank of U . Let W ⊆ Y be the minimal multiprojective subspace
containing A ∪ {p}. Take B ⊂ Y ′′ evincing the tensor rank of T . By concision ([3,
Proposition 3.2.1.1]) Y ′ is the minimal multiprojective space containing A and Y ′′ is
the minimal multiprojective space containing B. Write W = Pw1 ×· · ·×Pwk for some
0 ≤ wh ≤ nk. Since [T ] ∈ ⟨ν(A ∪ {p})⟩, it is easy to see that sh ≤ min{nh,mh + 1}
for all h. Since [U ] ∈ ⟨{ν(B ∪ {p)}), we get wh ≥ mh − 1 and sh ≥ mh − 1 for all h.
Instead of deleting one point of S we may delete several points, but the informations
we would obtain quickly decrease.
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