An easy sufficient test to prove
that a tensor is concise

Edoardo Ballico

Abstract. We give an easy to test sufficient condition to see if a
tensor is concise, assuming that the tensor is given by a (not necessarily
minimal) rank 1 decomposition. If the test fails, we discuss some useful
consequences.
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1 Introduction

Fix an integer k > 2 and k finite-dimensional vector spaces V7,...,V, over the field
K, V;#0for all i. Set n; :=dimV; —1. An element T € V] ® --- ® V}, is called a
tensor of format (ny +1) X --- X (ng + 1). T is said to be concise if the are no linear
subspaces W; C V;, 1 <i <k, such that T € W1 ® --- ®@ Wy and W; # V; for at least
one index i. A rank 1 tensor is a tensor A = v1 ® - - - ® vy, with v; € V;\ {0}. For any
tensor 7' # 0 a rank 1 decomposition of T' is an equality

(1.1) T=> T

with T; a rank 1 tensor. We do not assume that m is minimal among all rank 1 tensor
decompositions of T, because in this case by concision ([3, Proposition 3.2.1.1]) the
minimal Segre of T is just described by the m points of the multiprojective space
(Remark 1.1).

“

This is not an “ if and only if ” criterion, but it is very easy to do the test if the
tensor is given as a sum of rank 1 tensors.

For any set A C PV let (A) denote its linear span. To state our result we recall
the equivalence between the space of all tensors with format (nq +1) x -+ x (ng +1)
and the projective space PV in which a certain Segre variety lives.
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Consider the multiprojective space Y := P™ x --- x P and let v : ¥ — PV,
N=-1+4(ny+1)x---(ng + 1) denote the Segre embedding of Y ([3, §4.3.5]) with
PY = P(V; ® --- ® Vi)V. The elements of v(Y) correspond to the rank 1 tensors
with format (nq 4+ 1) X -+ X (ng + 1) up to a non-zero multiplicative constant. More
explicitly, choosing a system of coordinates z;g,..., %, of the vector space V;, if
A=wv ®- v with v; = (a0, ..., 0in,), then the point [T] € v(Y) corresponds to
the point (by,...,b;) € Y in which that i-th component b; has (a;o : -+ : @;n,) as its
homogeneous coordinates. Thus if in (1.1) no two of the addenda T; are proportional,
they correspond to a set S C Y such that #S = m and [T] € (v(S5)), where { ) denote
the linear span. The tensors T” such that [T”] € (v(S)) are all tensors T" = Y"1 | ¢;T;
with ¢; € K and T" # 0. We cannot drop one of the points of S and get T’ if and
only if the tensors T},...,T,, are linearly independent (i.e. the set v(S) C PV is
linearly independent) and ¢; # 0 for all 7. In the following we assume that we have a
representation (1.1) with 77y, .. ., T, linearly independent. The test (if it satisfied) says
that every 7" = Y"1, ¢;T; with ¢; # 0 for all 4 is concise. Note that (assuming v/(S)
linearly independent) 77 = Y | ¢;T; with ¢; # 0 for all ¢ if and only if [T7] € (v(S))
and [T"] ¢ (v(S")) for any S’ C S. In this case we say that v(S) irredundantly spans
7).

To state our result we introduce the following notation. For any ¢ = 1,... )k
set Y; = Hh# P™ and let n; : Y — Y; denote the surjection which to each p =
(p1,...,pr) €Y delete the i-th component of p. Since k > 2, Y; is a multiprojective
space with k — 1 factors. Let v; denote the Segre embedding of Y;.

Theorem 1.1. Let T € Vi ® --- ® Vi, be a tensor with a rank 1 decomposition corre-
sponding to a finite set S C Y. Assume that 'Y is the minimal multiprojective space
containing S and that v(S) irredundantly spans [T, i.e. there is no S’ C S such that
[T] € (S). Assume that for alli=1,...,k the following conditions hold:

1. mys is injective;
2. v;(n:(S;)) is linearly independent.
Then T is concise.

The proof of the sufficient condition is just a few lines, due to previous work, but
if we have the finite set S it is quick to check the criterion for S and, if it does not
fail, we get the conciseness for all tensors U # 0, with [U] irredundantly spanned by
S, i.e. such that [U] € (¢(S)) and [U] ¢ (S’) for any S’ C S.

Remark 1.1. The assumption that Y is the minimal multiprojective space containing
S is obviously a necessary condition for the conciseness of T. It is easy to test
this condition, because Hfﬂ(m(S)) is the minimal multiprojective subspace of Y

containing S. Thus Y is the minimal multiprojective space containing S if and only
if (m;(S)) =P™ for all i.

At the end of this short note we give 3 observations on the information we get
about the tensor T if the test fails (Remarks 2.1, 2.2 and 2.3). In particular we observe
that if condition (1) of Theorem 1.1 fails for some i, say for = indices ¢, then T has
tensor rank at most m — x < m (Remark 2.2).
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2 The proof and further remarks

For any i € {1,...,k} let ¢; denote the multiindex (ay,...,a;) € N¥ such that a; = 0
for all j # ¢ and a; = 1. Thus Oy (¢;) = 7} (Opn; (1)).

Proof of Theorem 1.1: Assume that T is not concise, i.e. assume the existence of a
multiprojective space Y’ C Y such that ¢ := [T] € v(Y’). By concision there is
A C Y’ such that #A is the tensor rank of T" and ¢ € (v(A)). Set B := AU S.
Since Y is the minimal multiprojective space containing S, A # S. Since Y’ is a
multiprojective subspace of Y, each 7;(Y”) is a linear subspace of P™. Since Y’/ C Y,
thereisd € {1,..., k} such that m;(Y”) is a proper linear subspace of P". Let M C P
be a hyperplane containing m;(Y”). Set H := 7, '(M). Note that H € |Oy(¢;)| and
that A C H. Since Y is the minimal multiprojective space containing S, S ¢ H.
Thus B # BN H. Note that B\ BN H =5\ SN H. The contradiction comes from
[1, Lemma 5.1] or [2, Lemmas 2.4 or 2.5]. O

Remark 2.1. Take a tensor T irredundantly spanned by the set v(S) for some finite
set S C Y. Assume that the test of Theorem 1.1 fails and call E C {1,...,k} the
set of all ¢ € {1,...,k} such that one of the two conditions in Theorem 1.1 is not
satisfied. Assume E # &, but also assume E # {1,...,k}. Let Y’ C Y be the
minimal multiprojective space such that 7' € (v(Y")), i.e. let v(Y’) be the concise
Segre of T. Fix i € {1,...,k}\ E. The proof of Theorem 1.1 gives m;(Y"') = P™.

Remark 2.2. Take a tensor T irredundantly spanned by the set v(S) for some
finite set S C Y. Assume that condition (1) the test of Theorem 1.1 fails and call
E C {1,...,k} the set of all i € {1,...,k} such that (1) fails. Set z := #E. By
assumption 1 < x < k.

Claim: T has tensor rank at most m — x.

Proof of the claim: To prove the claim it is sufficient to find a set A C Y
such that #4 =m —xz and T € (v(A)). Fix i € E and take u,v € S such that u # v
and 7;(u) = n;(v). Set B := S\ {u,v}. Write u = (u,...,ur) and v = (v1, ..., V).
Since u # v and n;(u) = n;(v), u; = v; for all j # ¢ and w; # v;. Let L C P™
denote the line spanned by {u;,v;}. Let Y/ C Y be the multiprojective space such
that 7m;(Y") = {u;} for all j # ¢ and m;(Y’) = L. Note that v(Y”) is the line spanned
by v(u) and v(v). Since {v(u),v(v)} C v(Y’) T is contained in the linear span of
v(B) and v(Y’). Since v(Y”) is the line, there is 0 € Y’ such that T € (v(B) U {o}).
Since #(B U {o}) < #B +1 = m — 1, the tensor rank of T is at most m — 1. If
x = 1, then the claim is proved. Now assume = > 2 and take j € E \ {i}. Note that
condition (1) of Theorem 1.1 fails for B and hence it fails for B U {o}. We use j as
we used ¢ and conclude the proof of the claim by induction on z.

Remark 2.3. Assume that the test fails for S and fix p € S. Set S := S\ {p}. Since
S irredundantly spans [T, there is a unique tensor U such that v(S’) irredundantly
spans [U] and [T] € ({[U],v(p)}). Let Y’ C Y be the multiprojective subspace of YV’
with v(Y”) the concise Segre of U. If the test works for S’, then Y’ is the minimal
multiprojective subspace of Y containing S” and hence it is easily determined (Remark
1.1). Write Y/ = P™ x ... x P™* in which we allow the case mj = 0 for some h.
Thus 0 < my, < ny, for all h. Let Y = PSt x ... x P%% with 0 < s, < ny, for all
h be the multiprojective space with v(Y") the concise Segre of T. Take A C Y’
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evincing the tensor rank of U. Let W C Y be the minimal multiprojective subspace
containing AU {p}. Take B C Y evincing the tensor rank of T'. By concision ([3,
Proposition 3.2.1.1]) Y’ is the minimal multiprojective space containing A and Y is
the minimal multiprojective space containing B. Write W = P%! x - .. x P** for some
0 < wp, < nyg. Since [T] € (V(AU{p})), it is easy to see that sp < min{np,my + 1}
for all h. Since [U] € {v(BU{p)}), we get wy, > my, — 1 and s;, > my, — 1 for all h.
Instead of deleting one point of S we may delete several points, but the informations
we would obtain quickly decrease.
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