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Abstract. The objective of the present research article is to investigate
the characteristics of weakly symmetric and weakly concircular symmetric
almost Kenmotsu (k, i, v)-spaces admitting conformal Ricci solitons. In
addition, we also discuss some results based on almost pseudo Ricci sym-
metric and weakly cyclic Z symmetric almost Kenmotsu (&, p, v)-spaces.
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1 Introduction

In 1982, Hamilton [12] popularized the concept of Ricci flow principle and proved
its existence. The Ricci flow is the evolution equation for the Riemannian manifold
metrics given by

(1.1) 579 =25,

where the Riemannian metric g and the Ricci tensor S. A self-similar approach to
the Ricci flow [12], [34] is called Ricci soliton [11], if it only moves through a single
family of diffeomorphism and scaling parameters. The equation, Ricci soliton is given
by

(1.2) Lvg+2S+22g =0,

where £, V, and ) indicates a Lie derivative, a complete vector field, and a real scalar,
respectively, on a Riemannian manifold. A Ricci soliton is also said to be expanding,
shrinking, steady, and as A is positive, negative and zero. A Ricci soliton reduced to
Einstein equation with V=0. It has become much more necessary to solve the long-
standing Poincar é conjecture posed in 1904 when Grigory Perelman implemented
solitons to Ricci.

The notion of conformal Ricci flow was developed by Fischer [10], an alteration of
the classical Ricci flow equation that rearranges the unit volume restriction of that
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equation to a scalar curvature constraint. In terms of equation, the conformal Ricci
flow on a smooth connected n-manifold M [10] is defined as:

(1.3) % +2 (S + %) =-pg, r(g)=-1,
where p is a non-dynamic field (time dependent scalar field), r(g) is a n-dimensional
multiple scalar curvature. It is similar to the Navier-Stokes fluid dynamics equations
and because of this similarity the time-dependent scalar area p is called a conformal
pressure and because of the actual physical pressure in fluid mechanics that serves
to preserve the fluid’s incompressibility, the conformal pressure acts as a Lagrange
multiplier to deform the metric flow conformally so as to maintain the scalar cur-
vature constraint. The equilibrium points of the conformal Ricci flow equations are
Einstein metrics with Einstein constant —%. Thus the conformal pressure p at a point
of equilibrium is zero and positive otherwise.

In 2015, Basu and Bhattacharyya [2] established the theory of conformal Ricci soliton
and equation defined as

(1.4) Lvg+2S+ 22— (p )| g=0,

2

+ 2n+1
where A is a constant . This equation is the generalized form of the Ricci soliton
equation, and the conformal Ricci flow equation is also satisfied. Pigola et al. [25]
initially introduced the concept of almost Ricci soliton. In addition, Sharma [28] also
did an excellent job in nearly Ricci soliton.

A (M", g) Riemannian manifold is almost a Ricci soliton [4], if a complete vector field
X exists and a smooth soliton function A : M™ — R satisfying R;; + % (X + X)) +
Agi; = 0, where X;; + X;; and R;; hold for the Lie derivative (£xg) and the Ricci
tensor in local coordinates respectively. If A > 0, A = 0 or A < 0; A conformal Ricci
soliton is said to be almost conformal to Ricci soliton if it satisfies (1.4), it will be
expanding, steady or shrinking, respectively.

In their articles [32] and [33], Tamassy and Binh respectively proposed the con-
cept of weakly symmetrical manifolds and and weakly Ricci symmetric manifolds.
There after many geometers studied these conditions on different manifolds [7], [22],
[27], [39], [29]. The notion of weakly concircular symmetric manifold was introduced
by Shaikh and Hui [26]. Recently, several authors investigated these condition on
Kenmotsu manifolds [13], Trans-Sasakian manifolds [13],[24], Lorentzian concircular
structure manifolds [21], generalized Sasakian space forms [31], (e)-trans Sasakian
manifolds [15], etc.

Recently, Mantica and Molinari [17] introduced weakly Z symmetric manifolds which
generalize the term of weakly Ricci symmetric manifolds. Also De et al. [8] have
proposed the idea that of weakly cyclic Z symmetric manifolds. Such a manifold is
denoted by (WCZS),,.

In 1972, Kenmotsu [14] introduced and studied well-known manifold called as Ken-
motsu manifolds. The characteristics of Kenmotsu manifolds were examined by sev-
eral writers such as [1], [36], [37], and others. Koufogiorgos el al. [16] introduced in
the notion of (k, u, v)-contact metric manifold defined as follow:

(1.5) R(X,Y )¢ =n(Y)(kI 4+ ph +voh)X —n(X) (kI + ph + vph)Y,
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for some smooth functions &, and v on M. Ozturk et al. [23] studied almost a-
cosymplectic (k, i, v)-space under different conditions (like n-parallelism) and gave
an example in dimension three. These almost Kenmotsu manifolds whose almost
Kenmotsu structures (p, &, 1, g) satisfy the condition

(1.6) R(EX)Y = k(g(Y,X)¢—n(X)Y) + pu(g(hY, X)§ —n(Y)hX)
+v(g(phY, X)§ — n(Y)phX),

for k,pu,v € R, (M?* 1), where R,,(M?"*1) be the subring of the ring of smooth
functions f on M?" 1 for which df An =0 [5], [16].

A non-flat differentiable manifold M?2"*! is called weakly symmetric if there exist
a vector field P and 1-forms «, 3,7, (not simultaneously zero) on M?2"*! such that

(1.7) (VXxR)(Y,2)W = a(X)R(Y,Z)W + B(Y)R(X, Z)W
+v(Z)R(Y, X)W + §(W)R(Y, Z) X
+g(R(Y, Z)W, X )P,

holds for all vector fields X,Y,Z, W € x(M?"*1). A weakly symmetric manifold
(M?"+1 g) is said to be pseudo-symmetric if f=y=6=1a and a(X)=g(X, P), locally
symmetric if a=f=y=90=0 and P=0. A weakly symmetric manifold is said to be
proper if at least one of the 1-forms a, 3,7, d is not zero or P # 0.

A differentiable manifold M?2"+! is called weakly Ricci-symmetric if there exists
1-forms €, o, p on M?"+! such that the condition

(18)  (VxS)(V.2) = =(X)S(Y. Z) + a(Y)S(X, Z) + p(Z)S(X,Y),

holds for all vector fields X,Y, Z, W € x(M?*"*1). If e=o=p, then M?"*1 is called
pseudo Ricci-symmetric [6].
In view of (1.7), if M?"*! is weakly symmetric, we have

(1.9)  (VxS)(Z,W) = a(X)S(Z,W)+ B(R(X,Z)W)+~(Z)S(X,W)
+(W)S(X, Z) + p(R(X, W) Z),
where the 1-form p is defined by p(X)=g(X, P) for all X € y(M?"+1).

A transformation of an n-dimensional Riemannian manifold M, which transforms
every geodesic circle of M into a geodesic circle, is called a concircular transformation.
A concircular transformation is always a conformal transformation. Here geodesic cir-
cle means a curve in M whose first curvature is constant and whose second curvature
is identically zero. A concircular curvature tensor of (2n + 1)-dimensional almost
Kenmotsu (k, i, v)-space is given by[38]

(1.10) C(X,Y,Z,U) = R(X,Y,ZU)
T
—— (Y, 2)g(X,U) — g(X, Z)g(Y,U
@+ 1) [9(Y, Z2)9(X,U) — 9(X, Z)g(Y,U)]
If {e; :i=1,2,3,--- ,(2n+ 1)} is an orthonormal basis of the tangent space at each
point of the manifold and we define

2n+1

(1.11) C(X,U)= Y C(X,eie;,U).
i=1
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In fact of (1.10) and (1.11), we get

(1.12) C(Y,2)=8(Y,Z) -

Y, 7).
1Y 2)
In a Riemannian or a semi-Riemannian manifold (M", g), (n > 2), a (0, 2) symmetric
tensor is a generalized Z tensor if

(1.13) Z(X,Y)=S(X,Y) +mg(X,Y),

where 7 is an arbitrary scalar function. The tensor Z was introduced in [18] and used
in [19] and [20]. The classical Z-tensor is obtained with the choice If 7=-T, where
is the scalar curvature. Hereafter we refer to the generalized Z-tensor simply as the
Z-tensor. In particular, if the Z-tensor of a Riemannian manifold vanishes, then the
manifold is Einstein. The scalar Z is obtained by (1.13) as follows

(1.14) Z=r+nm,

where the scalar curvature T:Z?zl €:5(ei,ei), g(ei, e;)=¢;,e;,==+1 and {e;} is an or-
thonormal basis of the tangent space at each point of the manifold. In a recent
paper [17], the authors introduced weakly 7z symmetric manifolds which is denoted
by (WZS),. A Riemannian or a semi-Riemannian manifold is said to be weakly Z
symmetric, denoted by (W ZS),, if the generalized Z tensor satisfies the condition

(1.15) (VxZ)(U,V) = A(X)Z(U,V) + B(U)Z(X,V) + D(V)Z(U, X),

where A, B and D are 1-forms not simultaneously zero. If 7=0, we recover from (1.15)
a (WRS),, and as a particular case pseudo Ricci symmetric manifolds (PRS),, [6].

If m=-T (classical Z tensor) and A is replaced by 24 and B and D are replaced by A,
then Z(U, V)="1P(U,V), where P(U,V) is the projective Ricci tensor considered
by Chaki and Saha [6] and obtained by a contraction of the projective curvature
tensor [9].

A non-flat Riemannian or a semi-Riemannian manifold (M™, g),(n > 2) is called
weakly cyclic Z symmetric if the generalized Z tensor is non-zero and satisfies the

condition

(1.16) (VxZ)U, V) + (VuZ)(V,X) + (Vv Z)(X,U)
= A(U)Z(U,V)+BU)Z(V,X)+ D(V)Z(X,U),

where Z is the generalized Z tensor and it is denoted by (WCZS),[8].

2 Almost Kenmotsu (k, y1, v)-space

Let (M2 ., €, 1, g) be a (2n+1)-dimensional almost contact Riemannian manifold,
where ¢ is a (1,1) tensor field, £ is the structure vector field, n is a 1-form and g is
Riemannian metric. Thus the almost contact structure (¢, &, 7, g) satisfies

(2.1) nE) =1, o€ =0, nop =0,

(2.2) ¢X =X +n(X)E,  nX)=g(X,9),
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and

(2.3) g X, pY) =g(X,Y) —n(X)n(Y),

for any vector fields X,Y on M?"*+1. The 2-form ¥ on M?"*! defined by ¥(X,Y) =
g(p X,Y), is called the fundamental 2-form of the almost contact metric manifold
M?7+1 Almost contact metric manifolds such that dn=0 and d¥=2n A ¥ are almost
Kenmotsu manifolds. Finally, a normal almost Kenmotsu manifold is called Kenmotsu
manifold. An almost Kenmotsu manifold is a nice example of an almost contact man-
ifold which is neither K-contact nor Sasakian manifolds. We recall some fundamental
curvature properties of almost Kenmotsu manifolds which satisfy (1.5),(1.6) and the
following properties

(2.4) (Vx@)Y =g(eX + hX,Y){ —n(Y)(eX + hX),
(2.5) Vxé=—p*X — phX,

(2.6) S(X,€) = 2nkn(X),

(2.7) Q¢ = 2nk(,

(2.8) 1 = —kg? + ph + vph,

(2.9) lp — @l = 2uhe + 2vh,

(2.10) h? = (k+1)¢* k < —1,

(2.11) Veh = —pph + (v — 2)h.

where @ is the Ricci operator, that is, g(QX,Y)=S(X,Y), r is the scalar curvature
of M?"*+1 and I, h are the operators defined by I(X)=R(X,£)¢ and hz%ﬁg ©, where
£ is the Lie derivative operator.

3 Conformal Ricci soliton on almost Kenmotsu
(’%7 K, V)_Space

Now, we recall the notion of conformal Ricci soliton on almost Kenmotsu (k, y, v)-
space. Then from (2.5), we have

(31)  S(La)(X,Y) = g(X,¥) ~ S{o(ehX,Y) + glehY, X)} — n(X)n(¥),

In view of (1.4) and (3.1), we get

(32)  S(X,Y) = [—1+{/\—(p+2n+1

)} a1 + om0

%{g(@hx, Y) + g(phY, X)},
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which yields

(53) 5006 = 3= 0 52 ] 00 + gaten)
(3.4 s ={r -+ 55}

(35) x = -1+ 3= 0+ 5o b X e+ onx,
(3.6) r=-2n+1)4+ 2n+1)(A —p),

At this glance, keeping in mind (3.6), we have

Proposition 3.1. A conformal Ricci soliton (g,&,\) on almost Kenmotsu (k, u,v)-
space is always expanding if r > 0.

Corollary 3.2. At an equilibrium stage if almost Kenmotsu (k, u, v)-space admitting
conformal Ricci soliton (g, &, A) then soliton is expanding, shrinking or steady according
asr>2(n+1),r <2(n+1),0or r=2(n+ 1) respectively.

4 Weakly symmetric almost Kenmotsu (k, 4, v)-space
admitting conformal Ricci soliton (g,¢&, \)

In this section, we light the impact of conformal Ricci soliton (g,&, A\) on weakly

symmetric almost Kenmotsu (k, p, v)-space. So we have

Theorem 4.1. If a weakly symmetric almost Kenmotsu (k, u, v)-space admitting con-
formal Ricci soliton (g,&, \) then, either the sum of 1-form is zero everywhere or the
soliton is expanding.

Proof. Let M?"*! is a weakly symmetric almost Kenmotsu (k, i1, v)-space. Then
substituting W=¢ in (1.9), we have

(4.1) (Vx8)(Z,§) = a(X)S5(Z,6) + BR(X, 2)¢)
+7(2)5(X, &) +0(§)S(X, Z) + p(R(X, £)Z).
In view of (1.5), (3.2) and (3.3), equation (4.1) reduces to

42 (OxS)(28 = {A- 0+ 32 el + jalXn(eh2)

+r0(2)B(X) + un(2)B(hX) + vn(Z)B(phX)
—rB(Z)n(X) — pn(X)B(hZ) —vn(X)B(phZ)

+ {A (p+3 } n(X)v(Z) + %V(Z)n(th)
- }g )+ n(Xm(Z)5(€)
+50() {9(oh X, Z) + g(eh, X)} + p(R(X,€)2)
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Taking covariant differentiation of the Ricci tensor S along the vector field X, we
have

By the use of (2.5) and (3.3) above equation takes the form

2
2n+1

(43) (VxS)(2.6) = {A—<p+ )}[g<vxz,f>+g<z,vxs>1

5 0(VxPMZ,E) + a(@(Txh)Z,) + aloh(Vx Z). )

g(ohZ, VxE)} + {A Y )} GV Z,)

2n+1

—%g((phVXZ, € —S(Z2,X)+ {/\ -+ 2n2+ 1)}

“n(Z)n(X) + 50(phZ, n(X) + 5(Z,phX).

Comparing the right hand sides of (4.2) and (4.3), we obtain

a0 A=t 52 fa@at0 + aneh2) + kn2)5(x)
+un(Z)B(hX) +vn(Z)B(phX) = kB(Z)n(X) — un(X)F(hZ)
—nX)BehZ) + {A~ 0+ 5.5 biXn(2)

2n +

1
#3@nen) {3 0+ 5.5 Lo, 20800 + 020300

300 {9(phX, 7) + g(phZ, X)) + p(R(X,€)7)

:{)\—(p—i-

) (95 2.6) + (2.9 x€)

+%{9(Vx90)h2, §) +9(p(Vxh)Z,§) + g(ph(Vx Z),8) + g(phZ,V x§)}

+{A—(p+ )}g(VXZﬁ)—;g(thxZ,E)—S(ZvX)

2n+1

A= 04 22D 2000 + 50(ehZ.90(X) + 52603,

Setting X=7=¢ in (4.4) and on simplification, we yield
=+ 5 Ha© +2@ + 500 =o.

2n+1
This implies that either A = (p—&—%fﬁ), or a(&)+v(£)+3(£)=0. Since the vanishing the
sum of 1-form a4~ 4§ over the vector field ¢ necessary in order that M2"*! be a con-
formal Ricci soliton on weakly symmetric almost Kenmotsu (k, u, v)-space. Now we

can easily show that, as similar to the previous calculation, { A — (p + TQH) [a(X)+

¥(X) +6(X)] = 0, holds for arbitrary vector field X on M?"*! which prove the The-
orem 4.1. ]
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Ozturk et al. [23] proved that on an almost Kenmotsu (k, u,v)-space of dimension
n > 5, the function &, u, v only vary in the direction of &, i.e., X (k)=X(u)=X (v)=0
for every vector field X orthogonal to €. Due to this fact and Theorem 4.1, we have
the following corollaries.

Corollary 4.2. Let M?"*! be an almost Kenmotsu (k, ji,v)-space of dimension n >
5, the function k,u,v only vary in the direction of £, i.e., X (k)=X(u)=X(v)=0 for
every vector field X orthogonal to &, then there does not exists weakly symmetric

almost Kenmotsu (K, u,v)-space M*"*1 (k < —1), if a + v + & is not everywhere
zero.

Corollary 4.3. Let M*"*! be an almost Kenmotsu (k,u,v)—space of dimension
n > 5, the function k, u, v only vary in the direction of £, i. e., X(k)=X(u)=X(v)=0
for every vector field X orthogonal to &, then there exist no weakly symmetric confor-
mal Ricci soliton almost Kenmotsu (k, p, v)-space M*" 1 (k < —1), if the soliton is
expanding in nature.

Aktan et al. [1] proved that the Ricci tensor S on weakly symmetric almost Kenmotsu
(k, pt, v)-spaces has the form

(45) S(X,Z) = i{27”LX(,‘{)77(Z)—|—27mg(Z,fo)—S(Z,fo)

5(¢)
—2nka(X) = B(r)N(Z)X — kn(Z)B(X) — B(p)n(Z)hX
—un( )B(RX) — Bv)n(Z)phX —vn(Z)B(phX)
+B(k)N(X)Z + kn(X)B(Z) + B(p)n(X)hZ
+un(X)B(hZ) + B(v)n(X)phZ + vn(X)B(phZ)
—2nky(Z2)n(X) + p(k)(9(X, Z)§ —n(2)X) + K(9(X, Z)
xp(§) —n(Z)p(X)) + p(p)(9(hZ, X)§ —n(Z)(hX))
+u(g(hZ, X)p(§) = n(Z)p(hX)) + p(v)(g(phZ, X)§

)}

—n(Z2)(phX)) + v(9(phZ, X)p(§) — n(Z)p(phX)

provided 8(¢) # 0. We suppose that £ is a (0,2) type symmetric parallel tensor field
on an almost Kenmotsu (k, p1, v)-space M?"*1 (k < —1), such that

(4.6) h(X,Z) = (Le9)(X, Z) +25(X, Z).
Setting X=7=¢ in (4.6) and then using (2.5) and (4.5), we observe that
(4.7) h(€€) = % {&(r) = w{al(E) +7(9)}}-

If (9,&,)\) be a conformal Ricci soliton on almost Kenmotsu (s, u, v)-space. Then
from (3.2), we get

(48) he, &) = 2{A (+ zni 1)}-

In view of (4.7) and (4.8), we yields

1 2 2n
(49) A= 1 (p i (%H)) - 5 (R0 +7(9) — €0
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Thus, we can state the following:

Theorem 4.4. If the tensor field £¢g + 2S of type (0,2) on a weakly symmetric
almost Kenmotsu (k, 1, v)-space M?"*1 (k < —1), with (&) # 0 is parallel, then
the conformal Ricci soliton (g,&,\) is shrinking, steady or expanding according as
E(k) >0,8(8) >0, £(k) = k{a(&) + (&)} or &(k) =0,0(€) < O respectively.

5 Weakly Ricci symmetric almost Kenmotsu (x, j, v/)-
space admitting conformal Ricci soliton (g,¢&, \)

This section deals with the conformal Ricci soliton (g, &, \) on weakly Ricci symmetric
almost Kenmotsu (k, i, v)-space and we conclude the results.

Theorem 5.1. Let (g,£, A) be a conformal Ricci soliton on a weakly Ricci symmetric
almost Kenmotsu (k, p, v)-space, then the sum of 1-forms is zero, i.e., € + o + p=0
everywhere provided that the conformal Ricci soliton is to be either shrinking or ex-
panding.

Proof. Let M?"*1 is a weakly Ricci symmetric almost Kenmotsu (k, u, v)-space.
Putting Z=¢ in (1.8) and by use of (3.3), we have

61 (VxSE = A= o+ g )}Y) + 3u(ohY)
o)A = o+ 5 (X))

+5(ehX)} + pl€)S(X, V).

Also replacing Z with Y in (4.3) and comparing the right hand sides of the equation
(4.3) and (5.1), we obtain

2
2n+1

2
2n+1
+5(ehX)} + p(©)S(X,Y)

(5:2) [e(X){A=(p+

DY)+ GnehY )]+ (A~ (p+ 5o n(X)]

~ (A= 0t ) VYO oV V9]

2n+1

50T xPRY, ) + g(o(Vxh)Y.€) +g(ph(VxY),) + g(ohY, VxE))

—|—{)\—(p+

1) JITXY6) = JalehV.6) - 57 )

n {A o+ >} DY )In(X) + Lg(ohY, € n(X) + S(¥, ohX).

2n +1 2

Taking X=Y=¢ in (5.2) and using (2.1) and (3.4), we get

(53) 2= (4 327 JE© + 0@ + 91 =0,
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Again putting X=¢ in (5.1), we have
2

(54) D=+ 5o (VIY) = =0 (@{—{A— (p+ 3o 1Y)+ Yan(oh¥)}.
Replacing Y with X, we yield

(5:5) A=+ 5o (X(X) = —o(O{—{A— o+ 5 X) + (e )}
If we take Y = ¢ in (5.2), we obtain

(5:6) A= (p+ 5——)}e(X(X) = (O —(A— (p+ 5 1(X) + Yor(oh X))}
and

(5:7) A=+ 3 (XIX) = =pl&1— A= (p+ 5P + (e )}

Taking the summation of (5.5), (5.6) and (5.7), using (5.3), gives

2
2n+1

fA-(+ )In(X){o(X) +e(X) + p(X)} =0,

for all X € x(M?nT1).

So either A=(p + %H) or 0(X)+e(X)+ p(X) = 0. In general n(X) # 0 on almost
Kenmotsu manifolds, thus the Theorem 5.1 is proved. ]

In view of Theorem 5.1 and the results of Ozturk et al. [23], we state the corollary.

Corollary 5.2. Let M be an almost Kenmotsu (k, u,v)-space of dimension greater
than or equal to 5, the function k, u, v only vary in the direction of £, i.e., X (k)=X(u)
=X (v)=0 for every vector field X orthogonal to &, then there does not exist conformal
Ricci soliton on weakly Ricci symmetric almost Kenmotsu (k, i, v)-space M*" 1 (k <
—1), if the sum of the 1—forms, i.e., € + o + p, is not everywhere zero.

It is also observed that [1] the Ricci tensor S of a weakly Ricci symmetric almost
Kenmotsu (k, i, v)-space has the from

L

p(§)
—2nke(X)n(Y) — 2nko (Y )n(X)},

(5.8) S(X,Y) = {2nX (k)n(Y) 4 2nkg(Y,Vx&) — S(Y, Vx§)

provided p(§) # 0. Again let hisa (0,2)-type symmetric parallel tensor field on an
almost Kenmotsu (k, u, v)-space M>?"*1 (k < —1), such that

(5.9) h(X,Y) = (£:9)(X,Y) 4+ 25(X,Y).

Taking X=Y=¢ and using (3.1) and (5.8), equation(5.9) takes the form

(5.10) h(68) = —= {&(k) — K{e(©) +a(€)}} -

4n
p(§)
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In view of (4.8) and (5.10), we get

1 2 2n
610 A= (0t ) - o O + () - ).

Thus, we can state the following:

Theorem 5.3. If the tensor field £:9+2S of type (0,2) on a weakly Ricci symmetric
almost Kenmotsu (k, i, v)-space M1 (k < —1), with p(¢) # 0 is parallel, then
conformal Ricci soliton (g,&, A) is shrinking, steady and expanding according as &(k) >

0,p(€) > 05 £(k) = k{a(€) +7(€)} and E(k) = 0, p(€) < 0 respectively.

6 Weakly concircular symmetric almost Kenmotsu
(k, pu, v)-space admitting conformal Ricci soliton

(9,€, )

A Riemannian manifold (M™,g), (n > 2) is called weakly concircular symmetric
manifold [23] if its concircular curvature tensor C' of type (0, 4) is not identically zero
and satisfies

+H(Z)C(Y, X, U V)+ EV)C(Y,Z,X,V)
+D(V)C(Y, Z,U, X).

In a weakly concircular symmetric manifold, it is also known that B=H and D=F
[23]. Then

(62) (VxO)Y,Z,U,V) = AX)C(Y,Z,UV)+B(Y)C(X,ZUV)
+B(2)C(Y, X,U,V) + D(V)C(Y, Z, X, V)
holds for all vector fields X,Y, Z,U,V € x(M?"*1).

Theorem 6.1. In a weakly concircular symmetric almost Kenmotsu (k, p, v)-space
admitting conformal Ricci soliton (g,&, ), then the relation (6.5) holds.

Proof. We suppose that almost Kenmotsu (k, i, v)-space admitting conformal Ricci
soliton (g,&, A) is weakly concircular symmetric then its satisfies (6.2) . For fix
Y=V=e; in (6.2) and taking summation over i, 1 <i < 2n + 1, we get

63) (VxS)(ZU)- mgw, v)
= AX)S(ZU) - G5 9(Z D]+ BESX.U) ~ Gl sg(X.U)
+D(U)[8(Z, X) — (QTZDg(z X)] + B(R(X, Z2)U) + D(R(X,U)Z)

_m[(B(X) + D(X))g(Z,U) — g(X,U)B(Z) — g(X, Z)D(U)].
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On substituting X=Z=U=¢ in (6.3) and using (3.4) and (4.3), we obtain

2 —dr(§)

(6.4) \—(p+ m)][fl(é“) +B(§) + D(§)] = @nt+1)

which is equivalent to

—dr(§)

(6.5) A +B(&) + D) = @nt+1)(A—p) -2

This complete the prove. O
Also, we have the following result

Corollary 6.2. If a weakly concircular symmetric almost Kenmotsu (k, u,v)-space
admitting conformal Ricci soliton (g,&,)\), then either the sum of the 1-forms A,B
and D is zero everywhere over the filed £, or the soliton is always expanding provided
the scalar curvature v of the manifold is constant.

If we equated any two of the vector fields X,Z and U to &, using (3.3),(4.3), then
from (6.3), one can easily obtain

(6.6) D) = DEWD).
(6.7) B(2) = Be)n(2),
68) AX)=[- ) A()(X) dr(X)

— + .
2n+1)(A—p)—2 2n+1)(A—p)—2
Thus, we state the following theorem:

Theorem 6.3. In a weakly concircular symmetric almost Kenmotsu (k, i, v)-space
admitting conformal Ricci soliton (g,&, \) the associated 1-forms are given by (6.6),(6.7)
and(6.8) respectively.

7 Weakly concircular Ricci almost Kenmotsu (k, p, v)-
space admitting conformal Ricci soliton (g,¢&, \)

Right now, we light up weakly concircular Ricci almost Kenmotsu (k, p, v)-space
admitting conformal Ricci soliton (g,&, A). Now, we recall the following.

Definition 7.1. A Riemannian manifold (M™, g),(n > 2) is said to be weakly con-
circular Ricci symmetric manifold if its concircular Ricci curvature C of type (0, 2) is
not identically zero and satisfies the condition [10]:

(7.1) (VxO)Y, 2Z) = AX)C(Y, Z)+ B(Y)C(X, Z)+ D(Z2)C(X,Y),

holds for all vector fields X,Y, Z € x(M?"+1).
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Theorem 7.1. If a weakly concircular Ricci symmetric almost Kenmotsu (K, u,v)-
space admitting conformal Ricci soliton (g,&, \),then the relation (7.1) holds.

Proof. In view of (1.12) and (7.1), we obtain

dr(X)

(7.2) (VxS)(Y,Z) - mg(K Z)

=AX)[S(Y,Z) - mg(iﬂ Z)|+B(Y)[S(XZ) - mg(Xa Z)]

+D(Z)[S(X,Y) - mg(va)L
On substituting X=Y=Z=¢ in (7.2) and using (3.3) and (4.3), we get

2 ~—dr(§)

(7.3 A= 0+ gy ) + BO + D) = on .
which implies that
(7.4 A(©) + B(©) + D(©) = o——orl®)

@n+ D —p) -2

Again, we equated any two of the vector fields XY and Z to &, using (3.3),(4.3), then
from equation (7.2), one can obtain

(7.5) D(Z) = D(Em(2),
(7.6) BY) = BEn(Y).
0 A =) s+ 2T

2n+1)(A—p)—2
Adding (7.5),(7.6),(7.7), and using (7.4), we have

dr(X)

A + B + D(X) = i

d

This completes the proof of the Theorem 7.1. Also as per this sequel, we have the
following corollary

Corollary 7.2. If a weakly concircular Ricci symmetric almost Kenmotsu (k, p,v)-
space admitting conformal Ricci soliton (g,§,\) the sum of the 1-forms A,B and D
s zero everywhere if and only if the scalar curvature r of the manifold is constant.

The notion of a special weakly Ricci symmetric manifold was introduced and studied
by Singh and Quddus [30]. An n-dimensional Riemannian manifold (M, g) is called
a special weakly concircular Ricci symmetric manifold (SWRS),, if

(7.8) (VxO)Y, 2Z2) = 2e(X)C(Y, Z) +e(Y)C(X, Z) + (2)C(X,Y),

where ¢ is a 1-form and is defined by e(X)=g(X, p), where p is the associated vector
field. Keeping in mind we recall
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Theorem 7.3. If a special weakly concircular Ricci symmetric almost Kenmotsu
(K, l, v)-space with conformal Ricci soliton (g,&, \) admits cyclic Ricci tensor then
the associated 1-form A must vanishes, provided A # (p + (27172“) + m)

Proof.Let the manifold M?"*! satisfies (7.8). Then taking cyclic sum of (7.8), we get

(7.9) (VxCO)U, V) + (VuC)(X, V) + (Vv C)(U, X)
' = 4[AX)C(U, V) + AU)C(X, V) + A(V)C(U, X)]

If M?"*! admits a cyclic Ricci tensor. Then (7.9) reduces to

(7.10) AX)CU,V)+AU)C(X,V)+ A(V)C(U,X) =0.
Setting U=V=¢ in (7.10), we have

(7.11) A—(+ m)[A(X) + 24(n(X)] =0,

this implies that either A = (p + (%27“) + (27;7—%1))7 or A(X) +2A(&)n(X)=0.
Now, if A # (p+ ﬁ + m), then

(7.12) AX)+24(6n(X) =0

Again taking X=¢ in (7.12), we obtain that A(¢) = 0. With reference to this and
(7.12), we yield A(X)=0, VX. The proof is completed.

Theorem 7.4. A special weakly concircular Ricci symmetric almost Kenmotsu (k, p, v)-
space can not be an Einstein manifolds if the scalar curvature r of the manifold is
constant.

Proof. As we known that for Einstein manifold, we have S(Y,Z)=7¢(Y,Z), and
(VxS)(Y,Z)=0. Thus for (SWCRS) almost Kenmotsu (k, u, v)-space, we get

dr(X) _ r
(7.13) —mg(ya Z) = 2A(X)a- m]g(y’ Z)
+AY)|a — W]Q(Xa Z)
+A(Z) [ — W]Q(Xa Y),

On substituting X=Y=7Z=¢ in (7.13), we get

(7.14) 4AE)[r — 2n+ 1)a] = dr(§),

which implies that if r is constant then 7(p)=0, that is A(Y)=0, VY. This completes
the proof of the theorem 7.4.

Corollary 7.5. A special weakly concircular Ricci symmetric almost Kenmotsu (k, p, v)-
space admits cyclic Ricci tensor, can not be an Einstein manifolds if the scalar cur-
vature r of the manifold is constant.

Corollary 7.6. In a special weakly concircular Ricci symmetric an Einstein almost
Kenmotsu (k, u,v)-space the 1-form A is given by A(§):Wji7%, provided T #
(2n 4+ 1)a.
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8 Almost pseudo Ricci symmetric almost Kenmotsu
(K’) Hs V)_Space

Chaki and Kawaguchi [13] introduced the concept of almost pseudo Ricci symmetric

manifolds as an extended class of pseudo symmetric manifolds. A Riemannian mani-

fold (M, g) is called an almost pseudo Ricci symmetric manifold (APRS),, if its Ricci
tensor S of type (0,2) is not identically zero and satisfying the following condition:

8.1) (VxS)Y,2)=[AX)+BX)|SY,2)+ AY)S(X,2)+ A(Z2)S(X,Y),
where A and B are two non-zero 1-forms defined by A(X)=g¢(X, p1), B(X)=g(X, p2).

Theorem 8.1. There is no almost pseudo Ricci symmetric almost Kenmotsu (k, i, v)-
space admitting cyclic Ricci tensor, unless 3A+B vanishes everywhere on M?"+1,

Proof.Let M?"*! is almost pseudo Ricci symmetric almost Kenmotsu (k, p, v)-space.
Then from (8.1), taking cyclic sum we have

(VxS)Y,2)+ (VyS)(X,Z2)+ (VzS)(X,Y)
=[BA(X)+ B(X)]S(Y,Z) + [BA(Y) + B(Y)]S(X, Z) + [3A(Z) + B(Z)]S(X,Y)
Let M?"*! admits a cyclic Ricci tensor, then
[BA(X) 4+ B(X)]S(Y,Z) + [3A(Y) + B(Y)]S(X,Z) 4+ [3A(Z) + B(Z)]S(X,Y) =0
Replacing X=Y=7=¢ in above we conclude that

(8.2) 2nk[3n(p1) +n(p2)] = 0,
which implies that 3n(p1) + n(p2)=0, thus we get 3A(X) + B(X)=0. O O

Corollary 8.2. A conformal Ricci soliton on almost pseudo Ricci symmetric almost
Kenmotsu (k, u, v)-space admitting cyclic Ricci tensor, is always expanding, provided
3A+ B #0 on M?"T1,

9 Weakly Z symmetric almost Kenmotsu (k, u, v)-
space admitting conformal Ricci soliton (g,&, \)

In this section, we need to demonstrate some results for weakly Z symmetric almost
Kenmotsu (k, i, v)-space with conformal Ricci soliton (g,£,A) . Thus we prove the
following result

Theorem 9.1. If a (WZ5S)s,,1 almost Kenmotsu (k, u, v)-space admitting conformal
Ricci soliton (g,&, A) then the relation (9.3) holds.

Proof. Let M2tV is a (W ZS)an41 almost Kenmotsu (k, 1, v)-space. Then substitut-
ing V=¢ in (1.15), and using (1.13), we have
+B(U)[S(X,§) + mg(X, §)]
+D(E)[SU, X) + mg(U, X)],
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Putting X=U=¢ in (9.1) and keeping in mind (3.4) and (4.3), we obtain

92) A= 0+ ) + 7IIA(E) + B(E) + D] = ),

which implies that

(93) A+ B + DO = G T

This complete the desired result. |

We have the following corollary

Corollary 9.2. If a (WZS)ani1 almost Kenmotsu (k, ju, v)-space admitting confor-
mal Ricci soliton (g,&, X) the sum of the 1-forms A,B and D is zero everywhere over
the filed & if and only if the function 7 is constant.

Corollary 9.3. If a (WZS)2n+1 almost Kenmotsu (k, p, v)-space admitting confor-
mal Ricci soliton (g,&,\) then soliton is expanding, shrinking and steady according
as

i) (p+ (2,?7“)) >,
’LZ) (p+ (2n72+1)) < and
iii) (p+ ﬁ) = 7, respectively.

Theorem 9.4. If a (WCZS)nH almost Kenmotsu (k, p, v)-space admitting confor-
mal Ricci soliton (g,&,\) then either the sum of 1-form is zero everywhere over the
vector filed & or A = (p+ @TQH)) — .

Proof. Let M2+ is a (WCZS)2n11 almost Kenmotsu (, u1, v)-space admitting con-
formal Ricci soliton (g,&,A) then from (1.13) and (1.15), we have
)

(9.4) A)[S(U, V) + mg(U, V)] + B(U)[S(V,
+rg(V, X))+ D(V)[S(X. U) +mg(X, U)} =

Putting X=U=V=¢ in (9.4) and keeping in mind (3.4), we yield

2

) + 7] [A(E) + B(§) + D(&)] = 0,
which implies that either A = (p + (27127“)) — ¢, or A(§) + B(§) + D(£)=0. This
completes the proof. O

Corollary 9.5. In a (WCZS)a, 11 almost Kenmotsu (k, 1, v)-space admitting con-
formal Ricci soliton (g,&, \) then soliton is expanding, shrinking or steady according
as

Z) (p+ (2n2+1)) > T,
it). (p+ (2n2_~_1)) <7 or

iii). (p+ g2ry) = 1,
provided the sum of 1-form is not zero everywhere over the vector filed €.
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10 Example of almost Kenmotsu (x, i, v)-space
admitting conformal Ricci soliton (g,&, \)

Let us assume a 3- dimensional manifold M = {(z,y,2) € R®: 2 >0,y > 0,z > 0},
where (x,v,2) are the Cartesian coordinates in R3. We define three vector fields on
M such as [16]

0 0

9 =0 0 Lyl o4
ax7 v2_aya

4 0
_ _ _tgp 9 9 9
u v P fy8x+w3y+e 0z’
are linearly independent at each point of M, where f = f(y,z) < 0 for all (y,2) is a
solution of the partial differential equation

(10.1) 2y + fo=—ze 7,
and the function ¢ = ¥(z, vy, z) solves the system of partial differential equations

s COR AN A0 )

(10.2) = = o

zx2 2 Tz

We define a Riemannian metric g on M such that g(v;,v;) = §;; for ¢,5 = 1,2,3. We
easily obtain

4ef

(10.3) [1}1,’02] = 07 [Ul,’Ug] = ?Ug,

[vg, v3] = 201 + <2126f/z - %ef/z — éeffy ¢fy> + fyvg

Let 7 be the 1-from defined as g(Z,v1) = n(Z) for all Z € x(M) and ¢ be the tesnor
field of type (1,1) defined by pv1 = 0, pvs = v3, and vz = —vy. Using the linearity
of ¢, dn, and g, we easily find that n(vy) = 1, dn(U, Z) = g(¢U, Z), and g(oU, pZ) =
g(U,Z) —n(U)n(Z) for all vector fields U, Z on M. Hence (M,n,& = v1,9,9) is
contact metric manifolds. Let V be the Levi-Civita connection to g and R be the
Riemannian curvature tensor of g.

Setting £ = vy, X = vy and ¢X = vz and using Koszul’s formula

29(VEF,G) = Eq(F,G)+ Fg(G,E) — Gg(E, F)
—|—g([E,F],G) —g([F,G],E) +g([G,E],F)

and also from equation (10.1) and (10.2), we compute the following values

2¢’ 2¢’ 1
Ve = <‘E - 1) v Vexe= (l - 7) vs VexeX =3 fyv,
2¢f
VeX = — {1+ 5 ) @X, VepX = 1+— X, Ve£=0,
! .
Vex X = — fJ¢X+(2i—1>g, VxX = (_%ef/M%ef/? —el fy + Wy) ,
z

(L Svgr A, ¥h 2¢
VX{pX—(2Z€ 5 € e fy X+ zx2+1 £.

Tz 2
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From the definition of the tensor field h and using relations from (10.3) we turn up
hé =0 and

1 1 2¢f
(10.4) hX = S(£c0)X = S([6,9X] - ¢lé, X]) = 5 X.

zx?

Similarly, we find that

2¢f
hoX = -2 X.
zZxr

Setting now x = 1 — (4e2f)/(222*), u = 2(1 + 2¢f)/(22?), and v = —2. Now using

X

the last two relation, we easily obtain the non-vanishing components of Riemannian
curvature and Ricci tensor

4 2¢/\?
R(X,&)¢ = —Eefch + <1 + Zm2> X

2
ReX, 06 = —efox - (1+25) (25 -1)

zx?

and ool
S(6,€) = (1 + Z;)

Adopting equation (3.4), we obtain

A= (pe 2 V(142
—\P 2n+1 zx?

Thus, any conformal Ricci soliton (g,&,\) on almost Kenmotsu (k, u, v)-space is ex-
panding.

References

[1] N. Aktan, S. Balkan and M. Yildirim, On weak symmetries of almost Kenmotsu
(k, 1, v)-spaces, Hacettepe J. Math. & Statistic 42 (4) (2013), 447-453.

[2] N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold,
Global Journal of Advanced Research on Classical and Modern Geometries, 4
(1) (2015), 5-21.

[3] D.E. Blair, Contact manifolds in Riemannian geometry, Lect. Notes Math. 509
(1976).

[4] X. Cao, Compact Gradient Shrinking Ricci solitons with positive curvature oper-
ator, J. Geom. Anal. 17 (3) (2007), 425-433.

[5] A. Carriazo and V. Martin-Molina, Almost cosymplectic and almost Kenmotsu
(k, 1, v )-paces, Mediterranean Journal of Mathematics, 10 (3) (2013), 1551-1571.

[6] M.C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar J. Phys. 15 (1988),
526-531.

[7] U.C. De and G.C. Ghosh, Some global properties of weakly Ricci symmetric man-
ifolds, Soochow Journal of Mathematics, 31 (1) (2005), 83-93.



On almost Kenmotsu (k, p, v)-spaces 273

8]
[9]

[10]

[19]

[20]

U.C. De, C.A. Mantica and Y.J. Suh, On weakly cyclic Z symmetric manifolds,
Acta. Math. Hungar. 146 (2015), 153-167.

L.P. Eisenhart, Riemannian Geometry, Princeton University Press Princeton,
N.J. (1949).

A.E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav. 21
(3) (2004), S171-S218.

R.S. Hamilton, The Ricci flow on the surfaces, Mathematics and general relativity
(Santa Cruz, CA, 1986), Contemp. Mathe. 71, American Math. Soc. (1988), 237-
262.

R.S. Hamilton, Three Manifold with positive Ricci curvature, J. Differential
Geom. 17 (2) (1982), 255-306.

S.K. Hui, On weak concircular symmetries of Kenmotsu manifolds, Acta Univer-
sitatis Apulensis, 26 (2011), 129-136.

K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math.
J. 24 (2) (1972), 93-103.

S. Kishor and A. Singh, On weakly concircular symmetries of three-dimensional
(e)-trans-Sasakian manifolds, International Journal of Mathematics And its Ap-
plications, 3 (4) (2015), 65-73.

T. Koufogiorgos, M. Markellos and V.J. Papantoiou, The harmonicity of the Reeb
vector field on a contact metric 3-manifolds, Pacific J. Math. 234 (2) (2008), 325-
344.

C.A. Mantica and L.G. Molinari, Weakly Z symmetric manifolds, Acta Math.
Hungar. 135 (1-2) (2012), 80-96.

C. A. Mantica and Y. J. Suh, Pseudo Z-symmetric Riemannian manifolds with
harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9, 1 (2012),
1250004, 21 pp.

C. A. Mantica and Y. J. Suh, Pseudo Z-symmetric space-times, J. Math. Phys.
55 (2014), no. 4, 042502, 12 pp.

C. A. Mantica and Y. J. Suh,Pseudo Z-symmetric space-times with divergence-
free Weyl tensor and pp-waves, Int. J. Geom. Methods Mod. Phys. 13 (2016),
10.2,1650015,34 pp.

D. Narain and S. Yadav, On weak concircular symmetries of Lorentzian concir-
cular structure manifolds, CUBO A Mathematical Journal, 15 (2) (2013), 33-42.
C. Ozgur, On weakly symmetric Kenmotsu manifolds, Differential Geometry-
Dynamical Systems, 8 (2006), 204-209.

H. Ozturk and N. Aktan and C. Murathan, Alomst a-cosymplectic spaces, arXiv:
1007.0527v1.

D.A. Patil and C.S. Bagewadi, On weakly concircular symmetries of three-
dimensional trans-Sasakian manifolds, International Journal of Pure and Applied
Mathematics, 86 (5) (2013), 799-810.

S. Pigola, M. Rigoli, M. Rimoldi and A.G. Setti, Ricci almost solitons, arXiv:
1003.2945v1 (2010).

A.A. Shaikh and S.K. Hui, On weakly concircular symmetric manifolds, Ann. Sti
.Ale Univ. Al. T .CUZA Din Tasi,LV,f. 55 (1), 2009, 167-186.

A.A. Shaikh and S.K. Hui, On weak symmetries of trans-Sasakian manifolds,
Proceedings of the Estonian Academy of Sciences, 58 (4) (2009), 213-223.



274

[28]

29]

[30]
[31]
32]

[33]

[36]
[37]
(38]

[39]

S. K. Yadav and M. D. Siddiqi

R. Sharma, Almost Ricci solitons and K -contact geometry, Monatsh Math. 175
(4) (2014), 621-628.

M. D. Siddiqi, S. A. Siddqui, Conformal Ricci soliton and Geometrical structure
in a perfect fluid spacetime, Int. J. Geom. Methods Mod. Phys (2020) 2050083
(18 pages) https://doi.org/10.1142/S0219887820500838.

H. Singh, and Q. Khan, On special weakly symmetric Riemannian manifolds,
Publ. Math. Debrecen.3,58 (2001), 523-536.

Venkatesha and B. Sumangala, On weakly concircular symmetries of a generalized
Sasakian space form, Mathematica Aeterna, 4 (8) (2014), 949-958.

L. Tamassy and T.Q. Binh, On weak symmetries of Finstein and Sasakian man-
ifolds, Tensor, N.S. 53 (1993), 140-148.

L. Tamassy and T.Q. Binh, On weakly symmetric and weakly projective symmet-
ric Rimannian manifolds, Coll. Math. Soc. J. Bolyai, 50 (1989), 663-670.

P. Topping, Lecture on the Ricci Flow, Cambridge University Press (2006).
S.K. Yadav, Ricci solitons on Para-Kdhler manifolds, Extracta Mathematikae,
34 (2) (2019), 269-284.

S.K. Yadav, S.K. Chaubey and D.L. Suthar, Certain results on almost Kenmotsu
(K, 1, v)-spaces, Konuralp J. Math. 6 (1), (2018), 128-133.

S.K. Yadav and D.L. Suthar, On Kenmotsu manifold satisfying certain condition,
J. Tensor Soc. 3 (2009), 19-26.

K. Yano, Concircular geometry I. Concircular transformations, Proc. Imp. Acad.
Tokyo, 16 (1940), 195-200.

A.Yildiz and B.E. Acet, On weak symmetries of (k, p)-contact metric manifolds,
Dumlupinar Univesitesi Fen Bilimleri Enstitusu Dergisi (2009), 41-46.

Authors’ addresses:

Sunil Kumar Yadav

Department of Mathematics, Poornima College of Engineering,
Sitapura, Jaipur-302020, Rajasthan, India.

E-mail: prof_skyl6@yahoo.com

Mohd Danish Siddiqi

Department of Mathematics, Faculty of Sciences,

Jazan University, 82715, Jazan, Kingdom of Saudi Arabia.
E-mail: msiddiqi@jazanu.edu.sa



