On a type of quarter-symmetric non-metric ξ-connection on 3-dimensional quasi-Sasakian manifolds

Ajit Barman and Uday Chand De

Abstract. The object of the present paper is to study a type of quarter-symmetric non-metric ξ-connection on a 3-dimensional non-cosymplectic quasi-Sasakian manifold. We investigate the curvature tensor and the Ricci tensor of a 3-dimensional quasi-Sasakian manifold with respect to the quarter-symmetric non-metric ξ-connection. We characterize ξ-projectively flat and ϕ-projectively flat 3-dimensional quasi-Sasakian manifolds with constant structure function admitting the quarter-symmetric non-metric ξ-connection. Also we study second order parallel tensor and Ricci semi-symmetric 3-dimensional quasi-Sasakian manifolds with constant structure function with respect to the quarter-symmetric non-metric ξ-connection. Finally, we give an example to verify our result.

Key words: 3-dimensional quasi-Sasakian manifold; quarter-symmetric non-metric ξ-connection; projective curvature tensor; ξ-projectively flat; ϕ-projectively flat; Ricci semi-symmetric; η-Einstein manifold.

1 Introduction

On a 3-dimensional quasi-Sasakian manifold, the structure function β was defined by Olszak [21] and with the help of this function he has obtained necessary and sufficient conditions for the manifold to be conformally flat [22]. Next he has proved that if the manifold is additionally conformally flat with $\beta = \text{constant}$, then (a) the manifold is locally a product of \mathbb{R} and a 2-dimensional Kählerian space of constant Gauss curvature (the cosymplectic case), or, (b) the manifold is of constant positive curvature (the non-cosymplectic case, here the quasi-Sasakian structure is homothetic to a Sasakian structure). An example of a 3-dimensional quasi-Sasakian structure being conformally flat with non-constant structure function is also described in [22].

In 1924, Friedmann and Schouten [13] introduced the idea of semi-symmetric connection on a differentiable manifold. A linear connection ∇ on a differentiable
manifold \(M \) is said to be a semi-symmetric connection if the torsion tensor \(T \) of the connection \(\nabla \) satisfies

\[
T(X, Y) = u(Y)X - u(X)Y,
\]

where \(u \) is a 1-form, \(\chi(M) \) is the set of all differentiable vector fields on \(M \), for all vector fields \(X, Y \in \chi(M) \).

In 1932, Hayden [15] introduced the idea of semi-symmetric metric connection on a Riemannian manifold \((M, g)\). A semi-symmetric connection \(\nabla \) is said to be a semi-symmetric metric connection if

\[
(1.2) \quad \nabla g = 0.
\]

A relation between a semi-symmetric metric connection \(\nabla \) and the Levi-Civita connection \(\nabla \) of \((M, g)\) is given by Yano [26]:

\[
\nabla_X Y = \nabla_X Y + u(Y)X - g(X, Y)\rho_1,
\]

where \(u(X) = g(X, \rho_1) \).

The study of semi-symmetric metric connections were further developed by Amur and Pujar [1], Binh [9], De [10], Singh et al. [24], Ozgur et al. [18, 19], Ozen, Uysal Demirbag [20], Zhao ([27, 28]) and many others. After a long gap the study of a semi-symmetric connection \(\nabla \) satisfying

\[
(1.3) \quad \nabla g \neq 0.
\]

was initiated by Prvanović [23] with the name of pseudo-metric semi-symmetric connection and was just followed by Andonie [2].

A semi-symmetric connection \(\nabla \) is said to be a semi-symmetric non-metric connection if it satisfies the condition \((1.3)\).

In 1975, Golab [14] defined and studied quarter-symmetric connections in differentiable manifolds with affine connections. A linear connection \(\overline{\nabla} \) on a Riemannian manifold \(M \) is called a quarter-symmetric connection [14] if its torsion tensor \(T \) satisfies

\[
T(X, Y) = \eta(Y)\phi X - \eta(X)\phi Y,
\]

where \(\eta \) is a 1-form and \(\phi \) is a \((1,1)\)-tensor field. In particular, if \(\phi X = X \), then the quarter-symmetric connection reduces to the semi-symmetric connection [13]. Thus the notion of quarter-symmetric connection generalizes the notion of semi-symmetric connection.

A quarter-symmetric connection \(\overline{\nabla} \) is said to be a quarter-symmetric metric connection if \(\overline{\nabla} g = 0 \). If moreover, a quarter-symmetric connection \(\overline{\nabla} \) satisfies the condition \((\overline{\nabla}_X g)(Y, Z) \neq 0;\) for all \(X, Y, Z \in \chi(M) \), then \(\overline{\nabla} \) is said to be a quarter-symmetric non-metric connection.

The quarter-symmetric non-metric connections have been studied by Mishra and Pandey [16], Singh and Pandey [25], De and Mondal [12], Barman [4], [3], [5], Mondal and De [17] and many others.

In this paper we study 3-dimensional quasi-Sasakian manifolds with respect to a type of quarter-symmetric non-metric \(\xi \)-connection.

The paper is organized as follows:

After introduction, in section 2, we give a brief account of the 3-dimensional quasi-Sasakian manifolds. In section 3, we define a type of quarter-symmetric non-metric \(\xi \)-connection on 3-dimensional quasi-Sasakian manifolds. Section 4 is devoted to establish the relation between the curvature tensors with respect to a type of quarter-symmetric non-metric \(\xi \)-connection and the Levi-Civita connection. Next we study
the projective curvature tensor with respect to the type of quarter-symmetric non-metric ξ-connection. Among others we characterize ϕ-projectively flat 3-dimensional quasi-Sasakian manifolds with constant structure function admitting a type of quarter-symmetric non-metric ξ-connection. Also we study a second order parallel tensor on a Ricci semi-symmetric 3-dimensional quasi-Sasakian manifolds with constant structure function with respect to a type of quarter-symmetric non-metric ξ-connection. Finally, we give an example to verify our result.

2 Preliminaries

Let M be a $(2n + 1)$-dimensional connected differentiable manifold endowed with an almost contact metric structure (ϕ, ξ, η, g), where ϕ is a tensor field of type $(1, 1)$, ξ is a vector field, η is a 1-form and g is the Riemannian metric on M such that ([6], [7])

\begin{align}
\phi^2 X &= -X + \eta(X)\xi, \\
g(\phi X, \phi Y) &= g(X, Y) - \eta(X)\eta(Y), \\
\phi \xi &= 0, \quad \eta(\phi X) = 0, \quad \eta(X) = g(X, \xi), \quad \eta(\xi) = 1.
\end{align}

Let Φ be the fundamental 2-form defined by

\begin{equation}
\Phi(X, Y) = g(X, \phi Y) = -g(\phi X, Y).
\end{equation}

M is said to be quasi-Sasakian if the almost contact structure (ϕ, η, ξ, g) is normal and the fundamental 2-form Φ is closed ($d\Phi = 0$), which was first introduced by Blair [8]. The normality condition gives that the induced almost contact structure of $M \otimes \mathbb{R}$ is integrable or equivalently, the torsion tensor field $N = [\phi, \phi] + 2 \xi \otimes d\eta$ vanishes identically on M. The rank of the quasi-Sasakian structure is always odd [8], it is equal to 1 if the structure is cosymplectic and it is equal to $2n + 1$ if the structure is Sasakian.

An almost contact metric manifold M is a 3-dimensional quasi-Sasakian manifold if and only if [21]

\begin{equation}
\nabla_X \xi = -\beta \phi X, \quad X \in \chi(M),
\end{equation}

for a certain function β on M, such that $\xi \beta = 0$, ∇ being the operator of covariant differentiation with respect to the Levi-Civita connection of M. Clearly such a quasi-Sasakian manifold is cosymplectic if and only if $\beta = 0$. From the equation (2.5) we obtain [21]

\begin{equation}
(\nabla_X \phi)(Y) = \beta(g(X, Y)\xi - \eta(Y)X),
\end{equation}
\begin{equation}
(\nabla_X \eta)(Y) = g(\nabla_X \xi, Y) = -\beta g(\phi X, Y) = \beta g(X, \phi Y).
\end{equation}

Let M be a 3-dimensional quasi-Sasakian manifold. The Ricci tensor S of M is given by [22]
On a type of quarter-symmetric non-metric ξ-connection

$$S(Y, Z) = \left(\frac{r}{2} - \beta^2\right)g(Y, Z) + (3\beta^2 - \frac{r}{2})\eta(Y)\eta(Z) - \eta(Y)d\beta(\phi Z) - \eta(Z)d\beta(\phi Y),$$

(2.8)

where r is the scalar curvature of M.

In a 3-dimensional Riemannian manifold we always have

$$R(X, Y)Z = g(Y, Z)QX - g(X, Z)QY + S(Y, Z)X - S(X, Z)Y - \frac{r}{2}(g(Y, Z)X - g(X, Z)Y),$$

where Q is the Ricci operator, i.e., $g(QX, Y) = S(X, Y)$. Now as a consequence of (2.8), we get for the Ricci operator Q

$$QY = \left(\frac{r}{2} - \beta^2\right)Y + (3\beta^2 - \frac{r}{2})\eta(Y)\xi + \eta(Y)(\phi grad\beta) - d\beta(\phi Y)\xi,$$

where the gradient of a function f is related to the exterior derivative df by the formula $df(X) = g(\text{grad} f, X)$.

Also from (2.8) it follows that

$$S(\phi Y, \phi Z) = S(Y, Z) - 2\beta^2 \eta(Y)\eta(Z).$$

(2.9)

3 Quarter-symmetric non-metric ξ-connection on 3-dimensional quasi-Sasakian manifolds

This section deals with the quarter-symmetric non-metric ξ-connection on 3-dimensional non-cosymplectic quasi-Sasakian manifold. Let (M, g) be a quasi-Sasakian manifold with the Levi-Civita connection ∇ and we define a linear connection $\bar{\nabla}$ on M by

$$\bar{\nabla} X Y = \nabla X Y + (\beta - 1)\eta(X)\phi Y + \beta\eta(Y)\phi X,$$

(3.1)

where β is a certain function on M.

Using (3.1), the torsion tensor T of the connection $\bar{\nabla}$ is given by

$$T(X, Y) = \bar{\nabla} X Y - \bar{\nabla} Y X - [X, Y] = \eta(Y)\phi X - \eta(X)\phi Y,$$

(3.2)

Thus the linear connection $\bar{\nabla}$ is a quarter-symmetric connection. So the equation (3.1) with the help of (2.4) turns into

$$(\bar{\nabla} X g)(Y, Z) = \bar{\nabla} X g(Y, Z) - g(\bar{\nabla} X Y, Z) - g(Y, \bar{\nabla} X Z) = -\beta \eta(Y)g(\phi X, Z) - \beta \eta(Z)g(Y, \phi X) \neq 0.$$

(3.3)

The linear connection $\bar{\nabla}$ satisfying (3.2) and (3.3) is called a quarter-symmetric non-metric connection on 3-dimensional non-cosymplectic quasi-Sasakian manifold.
By making use of (2.3), (2.5) and (3.1), it is obvious that

\[(3.4) \quad \nabla_X \xi = \nabla_X \xi + (\beta - 1)\eta(X)\phi \xi + \beta \eta(\xi)\phi X = 0.\]

The linear connection \(\nabla\) defined by (3.1) satisfying (3.2), (3.3) and (3.4) is the quarter-symmetric non-metric \(\xi\)-connection on 3-dimensional quasi-Sasakian manifold.

Conversely, we show that a linear connection \(\nabla\) defined on \(M\) satisfying (3.2), (3.3) and (3.4) is given by (3.1). Let \(H\) be a tensor field of type \((1,2)\) and

\[(3.5) \quad \nabla_X Y = \nabla_X Y + H(X,Y).\]

Then we conclude that

\[(3.6) \quad T(X,Y) = H(X,Y) - H(Y,X).\]

Further using (3.5), it follows that

\[(3.7) \quad (\nabla_X g)(Y,Z) = \nabla_X g(Y,Z) - g(\nabla_X Y, Z) - g(Y, \nabla_X Z) = -g(H(X,Y), Z) - g(Y, H(X,Z)).\]

In view of (3.3) and (3.7) yields

\[(3.8) \quad g(H(X,Y), Z) + g(Y, H(X,Z)) = \beta \eta(Y)g(\phi X, Z) + \beta \eta(Z)g(Y, \phi X).\]

Also using (3.8) and (3.6), we derive that

\[g(T(X,Y), Z) + g(T(Z,X), Y) + g(T(Z,Y), X) = 2g(H(X,Y), Z) + 2\beta \eta(X)g(Y, \phi Z) + 2\beta \eta(Y)g(X, \phi Z).\]

The above equation yields

\[(3.9) \quad g(H(X,Y), Z) = \frac{1}{2}[g(T(X,Y), Z) + g(T(Z,X), Y) + g(T(Z,Y), X)] - 2\beta \eta(X)g(Y, \phi Z) - 2\beta \eta(Y)g(X, \phi Z).\]

Let \(T'\) be a tensor field of type \((1,2)\) given by

\[(3.10) \quad g(T'(X,Y), Z) = g(T(Z,X), Y).\]

Adding (2.4), (3.2) and (3.10), we obtain

\[(3.11) \quad T'(X,Y) = -\eta(X)\phi Y - g(\phi X, Y')\xi.\]
From (3.9) we have, by using (3.10) and (3.11):

\[g(H(X, Y), Z) = \frac{1}{2} [g(T(X, Y), Z) + g(T'(X, Y), Z) + g(T'(Y, X), Z)] \]

\[-2\beta \eta(X)g(Y, \phi Z) - 2\beta \eta(Y)g(X, \phi Z) = (\beta - 1)\eta(X)g(\phi Y, Z) \]

(3.12) \[+ \beta \eta(Y)g(\phi X, Z). \]

Now contracting \(Z \) in (3.12) and using (2.4), implies that

(3.13) \[H(X, Y) = (\beta - 1)\eta(X)\phi Y + \beta \eta(Y)\phi X. \]

Combining (3.5) and (3.13), it follows that

\[\bar{\nabla}_X Y = \nabla_X Y + (\beta - 1)\eta(X)\phi Y + \beta \eta(Y)\phi X. \]

Now, we are in a position to state the following theorem:

Theorem 3.1. On a 3-dimensional non-cosymplectic quasi-Sasakian manifold with structure function \(\beta \) there exists a unique linear connection \(\bar{\nabla} \), satisfies (3.2), (3.3) and (3.4).

If \(\beta = 0 \) in the equation (3.1), then we get

\[\bar{\nabla}_X Y = \nabla_X Y - \eta(X)\phi Y. \]

Hence, \(\bar{\nabla} \) defines a quarter-symmetric metric connection. Such a case has been studied by De and Mandal [11].

4 Curvature tensor of 3-dimensional quasi-Sasakian manifolds admitting quarter-symmetric non-metric \(\xi \)-connection

In this section, we obtain the expressions of the curvature tensor and Ricci tensor of \(M \) with respect to the quarter-symmetric non-metric \(\xi \)-connection on a 3-dimensional non-cosymplectic quasi-Sasakian manifold defined by (3.1).

Analogous to the definition of the curvature tensor of \(M \) with respect to the Levi-Civita connection \(\nabla \), we define the curvature tensor \(\bar{R} \) of \(M \) with respect to the quarter-symmetric non-metric \(\xi \)-connection \(\bar{\nabla} \) by

\[\bar{R}(X, Y)Z = \bar{\nabla}_X \bar{\nabla}_Y Z - \bar{\nabla}_Y \bar{\nabla}_X Z - \bar{\nabla}_{[X,Y]} Z, \]

(4.1) where \(X, Y, Z \in \chi(M) \).
Using (2.3) and (3.1) in (4.1), we obtain

\[
\bar{R}(X,Y)Z = R(X,Y)Z - (\beta - 1)\eta(X)(\nabla_Y \phi)(Z) + (\beta - 1)\eta(Y)(\nabla_X \phi)(Z) \\
- \beta(\nabla_Y \eta)(Z)\phi X + \beta(\nabla_X \eta)(Z)\phi Y - (\beta - 1)(\nabla_Y \eta)(X)\phi Z \\
+ (\beta - 1)(\nabla_X \eta)(Y)\phi Z - \beta\eta(Z)(\nabla_Y \phi)(X) + \beta\eta(Z)(\nabla_X \phi)(Y) \\
- \beta(\beta - 1)\eta(X)\eta(Z)Y + \beta(\beta - 1)\eta(Y)\eta(Z)X + (X(\beta - 1))\eta(Y)\phi Z \\
+ (X\beta)\eta(Z)\phi Y - (Y(\beta - 1))\eta(X)\phi Z - (Y\beta)\eta(Z)\phi X.
\]

(4.2)

By making use of (2.3), (2.6) and (2.7) in (4.2), we have

\[
\bar{R}(X,Y)Z = R(X,Y)Z + \beta^2 g(\phi Y, Z)\phi X - \beta^2 g(\phi X, Z)\phi Y \\
+ 2\beta(\beta - 1)g(\phi Y, X)\phi Z + \beta(\beta - 1)\eta(Y)g(X, Z)\xi \\
- \beta(\beta - 1)\eta(X)g(Y, Z)\xi - \beta^2\eta(Y)\eta(Z)X \\
+ \beta^2\eta(X)\eta(Z)Y + (X(\beta - 1))\eta(Y)\phi Z \\
+ (X\beta)\eta(Z)\phi Y - (Y(\beta - 1))\eta(X)\phi Z - (Y\beta)\eta(Z)\phi X.
\]

(4.3)

So the equation (4.3) turns into

\[
\bar{R}(X,Y)Z = -\bar{R}(Y,X)Z.
\]

Moreover in view of (4.3) it follows that

\[
R(X,Y)Z + \bar{R}(Y,Z)X + \bar{R}(Z,X)Y = 0.
\]

Let \(\{e_1, e_2, e_3\} \) be a local orthonormal basis of the tangent space at a point of the manifold \(M \). Then by putting \(X = U = e_i \) in (4.3) and taking summation over \(i \), \(1 \leq i \leq 3 \) and also using (2.3), we get

\[
\bar{S}(Y,Z) = S(Y,Z) + \beta(2\beta - 1)g(Y, Z) - \beta(4\beta - 1)\eta(Y)\eta(Z) \\
+ (\phi Z)(\beta)\eta(Y) + (\phi Y)(\beta)\eta(Z),
\]

(4.4)

where \(\bar{S} \) and \(S \) denote the Ricci tensor of \(M \) with respect to \(\bar{\nabla} \) and \(\nabla \) respectively.

Again contracting \(Y \) and \(Z \) in the above equation (4.4) we have

\[
\bar{r} = r - 2\beta + 2\beta^2.
\]

(4.5)

Summing up all of the above equations we can state the following proposition:

Proposition 4.1. In a 3-dimensional quasi-Sasakian manifold \(M \) admitting the quarter-symmetric non-metric \(\xi \)-connection \(\bar{\nabla} \):

(i) The curvature tensor \(\bar{\bar{R}} \) is given by

\[
\bar{\bar{R}}(X,Y)Z = R(X,Y)Z + \beta^2 g(\phi Y, Z)\phi X - \beta^2 g(\phi X, Z)\phi Y + 2\beta(\beta - 1)g(\phi Y, X)\phi Z \\
+ \beta(\beta - 1)\eta(Y)g(Y, Z)\xi - \beta(\beta - 1)\eta(X)g(Y, Z)\xi - \beta^2\eta(Y)\eta(Z)X + \beta^2\eta(X)\eta(Z)Y \\
+ (X(\beta - 1))\eta(Y)\phi Z + (X\beta)\eta(Z)\phi Y - (Y(\beta - 1))\eta(X)\phi Z - (Y\beta)\eta(Z)\phi X,
\]
(ii) The Ricci tensor \bar{S} is given by
$$\bar{S}(Y, Z) = S(Y, Z) + \beta(2\beta - 1)g(Y, Z) - \beta(4\beta - 1)\eta(Y)\eta(Z) + (\phi Z)(\beta)\eta(Y) + (\phi Y)(\beta)\eta(Z),$$

(iii) $\bar{R}(X, Y)Z = -\bar{R}(Y, X)Z$,

(iv) $\bar{R}(X, Y)Z + \bar{R}(Y, Z)X + \bar{R}(Z, X)Y = 0$,

(v) $\bar{r} = r - 2\beta + 2\beta^2$.

Moreover, if the structure function β is constant, then we conclude the following:

Corollary 4.2. In a 3-dimensional non-cosymplectic quasi-Sasakian manifold M with constant structure function admitting the quarter-symmetric non-metric ξ-connection $\bar{\nabla}$:

(i) The curvature tensor \bar{R} is given by
$$\bar{R}(X, Y)Z = R(X, Y)Z + \beta^2g(\phi Y, Z)\phi X - \beta^2g(\phi X, Z)\phi Y + 2\beta(\beta - 1)g(\phi Y, X)\phi Z + \beta(\beta - 1)\eta(Y)g(X, Z)\xi - \beta(\beta - 1)\eta(X)g(Y, Z)\xi - \beta^2\eta(Y)\eta(Z)X + \beta^2\eta(X)\eta(Z)Y,$$

(ii) The Ricci tensor \bar{S} is given by
$$\bar{S}(Y, Z) = S(Y, Z) + \beta(2\beta - 1)g(Y, Z) - \beta(4\beta - 1)\eta(Y)\eta(Z),$$

(iii) $\bar{R}(X, Y)Z = -\bar{R}(Y, X)Z$,

(iv) $\bar{R}(X, Y)Z + \bar{R}(Y, Z)X + \bar{R}(Z, X)Y = 0$,

(v) $g(\bar{R}(X, Y)Z, U) = -g(\bar{R}(X, Y)U, Z)$,

(vi) $\bar{r} = r - 2\beta + 2\beta^2$.

5 Projective curvature tensor on 3-dimensional non-cosymplectic quasi-Sasakian manifolds with respect to the quarter-symmetric non-metric ξ-connection ∇

In this section we characterize ξ-projectively flat and ϕ-projectively flat 3-dimensional non-cosymplectic quasi-Sasakian manifold with respect to the quarter-symmetric non-metric ξ-connection ∇.

After the conformal curvature tensor, the projective curvature tensor is an important tensor from the differential geometric point of view. Let M be a $(2n + 1)$-dimensional Riemannian manifold. If there exists a one-to-one correspondence between each coordinate neighbourhood of M and a domain in the Euclidean space such that any geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For $n \geq 1$, M is locally projectively flat if and only if the well-known projective curvature tensor P
vanishes. The projective curvature tensor is defined by \[\text{(5.1)} \]
\[P(X, Y)Z = R(X, Y)Z - \frac{1}{2n}[S(Y, Z)X - S(X, Z)Y], \]
where \(S \) is the Ricci tensor of \(M \).

Let \(M \) be an almost contact metric manifold equipped with an almost contact metric structure \((\phi, \xi, \eta, g)\). At each point \(p \in M \), we decompose the tangent space \(T_pM \) into direct sum \(T_pM = \phi(T_pM) \oplus \{\xi_p\} \), where \(\{\xi_p\} \) is the 1-dimensional linear subspace of \(T_pM \) generated by \(\{\xi_p\} \). Thus the conformal curvature tensor \(C \) is a map
\[C : T_pM \times T_pM \times T_pM \longrightarrow \phi(T_pM) \oplus \{\xi_p\}, \quad p \in M. \]

It may be natural to consider the following particular cases:

1. \((1) \quad C : T_pM \times T_pM \times T_pM \longrightarrow \{\xi_p\} \), i.e., the projection of the image of \(C \) in \(\phi(T_pM) \) is zero.

2. \((2) \quad C : T_pM \times T_pM \times T_pM \longrightarrow \phi(T_pM) \), i.e., the projection of the image of \(C \) in \(\{\xi_p\} \) is zero. This condition is equivalent to
\[\text{(5.2)} \quad C(X, Y)\xi = 0. \]

3. \((3) \quad C : \phi(T_pM) \times \phi(T_pM) \times \phi(T_pM) \longrightarrow \{\xi_p\} \), i.e., when \(C \) is restricted to \(\phi(T_pM) \times \phi(T_pM) \times \phi(T_pM) \), the projection of the image of \(C \) in \(\phi(T_pM) \) is zero. This condition is equivalent to
\[\text{(5.3)} \quad \phi^2C(\phi X, \phi Y)\phi Z = 0. \]

A \(K \)-contact manifold satisfying \((5.2) \) and \((5.3) \) are called \(\xi \)-conformally flat and \(\phi \)-conformally flat respectively. A \(K \)-contact manifold satisfying the cases \((1), (2) \) and \((3) \) are considered in [29], [30] and [31] respectively.

In an analogous way we define projective curvature tensor \(\tilde{P} \) on 3-dimension non-cosymplectic quasi-Sasakian manifold with respect to a special type of quarter-symmetric non-metric \(\xi \)-connection \(\tilde{\nabla} \), by
\[\text{(5.4)} \quad \tilde{P}(X, Y)Z = \tilde{R}(X, Y)Z - \frac{1}{2}[\tilde{S}(Y, Z)X - \tilde{S}(X, Z)Y]. \]

Definition 5.1. A 3-dimension quasi-Sasakian manifold \(M \) with respect to the quarter-symmetric non-metric \(\xi \)-connection \(\tilde{\nabla} \) is said to be \(\xi \)-projectively flat if the condition \(\tilde{P}(X, Y)\xi = 0 \) holds.

So using \((4.3), (4.4) \) and \((2.3) \) the equation \((5.4) \) becomes
\[\text{(5.5)} \quad \tilde{P}(X, Y)Z = P(X, Y)Z - \beta(\beta - 1)\eta(Y)(Z)g(Y, Z)X + \beta(\beta - 1)\eta(Y)g(X, Z)\xi + \beta^2\eta(Y)g(X, Z)\phi X - \beta^2\eta(Y)\phi X - 2\beta(\beta - 1)g(\phi X, Y)\phi Z + \beta^2\eta(Y)\eta(Z)X - \beta(2\beta - 1)g(Y, Z)X - \beta(2\beta - 1)g(X, Z)Y + \beta(4\beta - 1)\eta(X)\eta(Z)Y - \beta(4\beta - 1)\eta(Y)\eta(Z)X, \]
where \(P(X,Y)Z = R(X,Y)Z - \frac{1}{2}[S(Y,Z)X - S(X,Z)Y] \) is the projective curvature tensor with respect to the Levi-Civita connection on a 3–dimensional quasi-Sasakian manifold.

Putting \(Z = \xi \) in equation (5.5) and using (2.3), we conclude that

\[
P(X,Y)\xi = \bar{P}(X,Y)\xi.
\]

Thus, we can state the following theorem:

Theorem 5.1. A 3–dimensional non-cosymplectic quasi-Sasakian manifold \(M \) with constant structure function admitting the quarter-symmetric non-metric \(\xi \)-connection \(\bar{\nabla} \) is \(\xi \)-projectively flat if and only if the Levi-Civita connection \(\nabla \) is so.

Definition 5.2. A 3–dimensional quasi-Sasakian manifold \(M \) with respect to the quarter-symmetric non-metric \(\xi \)-connection \(\bar{\nabla} \) is said to be \(\phi \)-projectively flat if it satisfies the condition

\[
g(\bar{P}(\phi X, \phi Y)\phi Z, \phi U) = 0.
\]

From (5.4), it follows that

\[
\bar{P}(X,Y,Z,U) = \bar{R}(X,Y,Z,U) - \frac{1}{2}[\bar{S}(Y,Z)g(X,U) - \bar{S}(X,Z)g(Y,U)],
\]

where \(\bar{P}(X,Y,Z,U) = g(\bar{P}(X,Y)Z,U), \) for \(X, Y, Z, U \in \chi(M). \)

Putting \(X = \phi X, Y = \phi Y, Z = \phi Z \) and \(U = \phi U \) in (5.7), it is obvious that

\[
\bar{P}(\phi X, \phi Y, \phi Z, \phi U) = \bar{R}(\phi X, \phi Y, \phi Z, \phi U) - \frac{1}{2}[\bar{S}(\phi Y, \phi Z)g(\phi X, \phi U) - \bar{S}(\phi X, \phi Z)g(\phi Y, \phi U)].
\]

Let \(\{e_1, e_2, \xi\} \) be a local orthonormal basis of vector fields in \(M \). Then \(\{\phi e_1, \phi e_2, \xi\} \) is also a local orthonormal basis. Putting \(X = \phi = e_i \) in (5.8), taking summation over \(i, \ 1 \leq i \leq 2 \) and also using (2.3), we get

\[
\bar{P}(\phi e_i, \phi Y, \phi Z, \phi e_i) = \bar{R}(\phi e_i, \phi Y, \phi Z, \phi e_i) - \frac{1}{2}[\bar{S}(\phi Y, \phi Z)g(\phi e_i, \phi e_i) - \bar{S}(\phi e_i, \phi Z)g(\phi Y, \phi e_i)].
\]

In view of (5.6) and (5.9) and using (2.3), we obtain

\[
\bar{S}(\phi Y, \phi Z) = 0.
\]

Combining (2.9), (4.4) and (5.10) and using (2.3), we have

\[
S(Y, Z) - 2\beta^2 \eta(Y) \eta(Z) + \beta(2\beta - 1)g(\phi Y, \phi Z) = 0.
\]
By making use of (2.1), (2.2) and (2.3) in (5.11), we can write

\[(5.12) \quad S(Y, Z) - \beta(4\beta - 1)\eta(Y)\eta(Z) + \beta(2\beta - 1)g(Y, Z) = 0.\]

Interchanging \(Y\) and \(Z\) in (5.12) and using (2.7), it follows that

\[(5.13) \quad S(Y, Z) - \beta(4\beta - 1)\eta(Y)\eta(Z) + \beta(2\beta - 1)g(Y, Z) = 0.\]

Adding the equations (5.12) and (5.13), we conclude that

\[S(Y, Z) = \beta(4\beta - 1)\eta(Y)\eta(Z) - \beta(2\beta - 1)g(Y, Z),\]

which means that a \(\phi\)-projectively flat 3-dimensional quasi-Sasakian manifold with constant structure function admitting the quarter-symmetric non-metric \(\xi\)-connection \(\bar{\nabla}\) is an \(\eta\)-Einstein manifold with respect to the Levi-Civita connection.

In view of the above discussions we state the following theorem:

Theorem 5.2. A \(\phi\)-projectively flat 3-dimensional non-cosymplectic quasi-Sasakian manifold \(M\) with constant structure function admitting the quarter-symmetric non-metric \(\xi\)-connection \(\bar{\nabla}\) is an \(\eta\)-Einstein manifold with respect to the Levi-Civita connection \(\nabla\).

6 The second order symmetric parallel tensor

Definition 6.1. A tensor \(\alpha\) of second order is said to be a parallel tensor if \(\nabla\alpha = 0\), where \(\nabla\) denotes the operator of covariant differentiation with respect to the metric tensor \(g\).

Let \(\bar{\alpha}\) be a \((0,2)\)-symmetric tensor field on a 3-dimensional non-cosymplectic quasi-Sasakian manifold with respect to the quarter-symmetric non-metric \(\xi\)-connection \(\bar{\nabla}\) such that \(\bar{\nabla}\alpha = 0\). Then it follows that

\[(6.1) \quad \bar{\alpha}(\bar{R}(W, X)Y, Z) + \bar{\alpha}(Y, \bar{R}(W, X)Z) = 0,\]

for all vector fields \(W, X, Y, Z\).

Substitution of \(W = Y = Z = \xi\) in (6.1) yields

\[(6.2) \quad \bar{\alpha}(R(\xi, X)\xi, \xi) = 0,\]

since \(\bar{\alpha}\) is symmetric. Using (4.3) in (6.2) we have

\[(6.3) \quad \bar{\alpha}(\xi, \xi) = 0.\]

Differentiating (6.3) covariantly along \(X\), we get

\[(6.4) \quad \bar{\alpha}(\phi X, \xi) = 0.\]
Substituting \(X \) by \(\phi X \) in (6.4) yields
\[
\bar{\alpha}(X, \xi) = 0.
\]
Again differentiating (6.4) covariantly along \(Y \) and making use of (6.3) and (6.4), we get
\[
\bar{\alpha}(\phi X, \phi Y) = 0.
\]
Substitution of \(X = \phi X \) and \(Y = \phi Y \) in (6.6) yields
\[
\bar{\alpha}(X, Y) = 0.
\]
In view of (6.7) we can state the following:

Theorem 6.1. On a 3-dimensional non-cosymplectic quasi-Sasakian manifold there does not exist a nonzero symmetric parallel tensor of second order with respect to a quarter-symmetric non-metric \(\xi \)-connection.

7 Example

In this section, we give an example of a 3-dimensional quasi-Sasakian manifold \(M \) with constant structure function admitting the quarter-symmetric non-metric \(\xi \)-connection \(\bar{\nabla} \).

We consider the 3-dimensional manifold \(\{(x, y, z) \in \mathbb{R}^3 : (x, y, z) \neq 0\} \), where \((x, y, z)\) are the standard coordinates in \(\mathbb{R}^3 \).

We choose the vector fields
\[e_1 = \frac{\partial}{\partial z} - y \frac{\partial}{\partial x}, \quad e_2 = \frac{\partial}{\partial y}, \quad e_3 = 2 \frac{\partial}{\partial x}, \]
which are linearly independent at each point of \(M \).

Let \(g \) be the Riemannian metric defined by
\[
g(e_i, e_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j; \ i, j = 1, 2, 3. \end{cases}
\]

Let \(\eta \) be the 1-form defined by
\[
\eta(Z) = g(Z, e_3),
\]
for any \(Z \in \chi(M) \).

Let \(\phi \) be the \((1,1)\)-tensor field defined by
\[
\phi(e_1) = -e_2, \ \phi(e_2) = e_1, \ \phi(e_3) = 0.
\]

Using the linearity of \(\phi \) and \(g \), we have
\[
\eta(e_3) = 1, \ \phi^2 Z = -Z + \eta(Z)e_3
\]
and
\[
g(\phi Z, \phi U) = g(Z, U) - \eta(Z)\eta(U),
\]
for any vector fields $Z, U \in \chi(M)$. Thus for $e_3 = \xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Then we have

$$[e_1, e_2] = \frac{1}{2} e_3, [e_1, e_3] = 0, [e_2, e_3] = 0. \quad (7.1)$$

The Levi-Civita connection ∇ of the metric tensor g is given by Koszul’s formula

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]).$$

Using Koszul’s formula, we get the following:

$$\nabla_{e_1} e_1 = 0, \quad \nabla_{e_1} e_2 = \frac{1}{4} e_3, \quad \nabla_{e_1} e_3 = \frac{1}{4} e_2,$$

$$\nabla_{e_2} e_1 = \frac{1}{4} e_3, \quad \nabla_{e_2} e_2 = 0, \quad \nabla_{e_2} e_3 = -\frac{1}{4} e_1,$$

$$\nabla_{e_3} e_1 = \frac{1}{4} e_2, \quad \nabla_{e_3} e_2 = -\frac{1}{4} e_1, \quad \nabla_{e_3} e_3 = 0.$$

In view of the above relations, we see that

$$\nabla_X \xi = -\beta \phi X, \quad (\nabla_X \phi) Y = \beta g(X, Y) \xi - \eta(Y) X.$$

Therefore, the manifold is a 3-dimensional quasi-Sasakian manifold M with constant structure function $\beta = \frac{1}{4}$.

Using (3.1) in above equations, we obtain

$$\bar{\nabla}_{e_1} e_1 = 0, \quad \bar{\nabla}_{e_1} e_2 = -\frac{1}{4} e_3, \quad \bar{\nabla}_{e_1} e_3 = 0,$$

$$\bar{\nabla}_{e_2} e_1 = \frac{1}{4} e_3, \quad \bar{\nabla}_{e_2} e_2 = 0, \quad \bar{\nabla}_{e_2} e_3 = 0,$$

$$\bar{\nabla}_{e_3} e_1 = e_2, \quad \bar{\nabla}_{e_3} e_2 = -e_1, \quad \bar{\nabla}_{e_3} e_3 = 0.$$

The above arguments tell us that M is a 3–dimensional quasi-Sasakian manifold with constant structure function admitting a type of quarter-symmetric non-metric ξ-connection $\bar{\nabla}$.

The expressions of the curvature tensor with respect to ∇ are:

$$R(e_1, e_2) e_3 = 0, \quad R(e_2, e_3) e_3 = \frac{1}{16} e_2, \quad R(e_1, e_3) e_3 = \frac{1}{16} e_1,$$

$$R(e_1, e_2) e_2 = -\frac{3}{16} e_1, \quad R(e_2, e_3) e_2 = -\frac{1}{16} e_3, \quad R(e_1, e_3) e_2 = 0,$$

$$R(e_1, e_2) e_1 = \frac{3}{16} e_2, \quad R(e_2, e_3) e_1 = 0, \quad R(e_1, e_3) e_1 = -\frac{1}{16} e_3.$$

From the above expressions the non-zero components of the Ricci tensor with respect to ∇ are given by

$$S(e_1, e_1) = -\frac{1}{8}, \quad S(e_2, e_2) = -\frac{1}{8}, \quad S(e_3, e_3) = \frac{1}{8}.$$
Similarly, the expressions of the curvature tensor with respect to ∇ are:

$$
\bar{R}(e_1, e_2)e_3 = 0, \quad \bar{R}(e_1, e_3)e_3 = 0, \\
\bar{R}(e_1, e_2)e_1 = -\frac{1}{2} e_2, \quad \bar{R}(e_1, e_2)e_2 = 0, \quad \bar{R}(e_2, e_3)e_3 = 0, \\
R(e_2, e_1)e_1 = 0.
$$

From the above expressions the components of the Ricci tensor with respect to ∇ are given by

$$
\bar{S}(e_1, e_1) = 0, \quad \bar{S}(e_2, e_2) = 0, \quad \bar{S}(e_3, e_3) = 0.
$$

In view of the above equations we can easily obtain

$$
P(e_i, e_j)e_3 = 0 = \bar{P}(e_i, e_j)e_3,
$$

for all $1 \leq i, j \leq 3$. Therefore theorem 5.1 is verified.

Acknowledgement. The authors are thankful to the referee for his valuable comments and suggestions towards the improvement of the paper.

References

Ajit Barman and Uday Chand De

On a type of quarter-symmetric non-metric ξ-connection

Authors’ addresses:

Ajit Barman
Department of Mathematics,
Ramthakur College,
P.O.: Arundhuti Nagar 799003, Agartala,
Dist-West Tripura, Tripura, India.
E-mail: ajitbarmanaw@yahoo.in

Uday Chand De
Department of Pure Mathematics,
University of Calcutta, 35, Ballygunge Circular Road,
Kolkata- 700019, West Bengal, India.
E-mail: uc_de@yahoo.com