Certain types of (LC'S),-manifold and the case of
the Riemannian soliton
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Abstract. Although the results discussed in the present study have been
studied separately and independently by many geometers, in the present
work the results are more generalised in a single stroke for different semisym-
metric conditions based on the study of equivalence of geometric structures
(initiated by Shaikh and Kundu in 2013) by considering different condi-
tions into various groups or classes in (LCS),-manifolds. The present
paper aims to investigate the nature of Ricci tensor in D-homothetically
deformed (LC'S),,-manifold under various groups of semisymmetric struc-
tures.
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1 Introduction

Herewith and in the sequel, the symbols V and V¢ stand for the Levi-Civita con-
nection and the D-homothetically deformed connection respectively. Also, the sym-
bols r, @, S, R, C, E, P, K, M and W; stand for scalar curvature, Ricci opera-
tor, Ricci tensor, curvature tensor, conformal curvature tensor[S], concircular curva-
ture tensor[30], projective curvature tensor[30], conharmonic curvature tensor[12], M-
projective curvature tensor[18], W;-curvature tensor([18], [19], [20]) and W;-curvature
tensor, ¢ = 1,2, ...,9 with respect to V respectively, whereas we use the same symbols
with superscript d for the same notions with respect to V.

Definition 1.1. Let T and D be two tensors of type (0, 4). A semi-Riemannian (or
Riemannian) manifold is said to be T-semisymmetric type if D(Y,Z)-T = 0 for all
Y, Z € x(M), the set all vector fields of the manifold M where D(X,Y) acts on T
as derivation of tensor algebra. The above condition is often written as D - T = 0
.Especially, if we consider D = T = R, then the manifold is called semisymmetric
[26]. Details about the semisymmetry and other conditions of semisymmetry type are
available in : [4], [22], [5], [2], [17], [27] and also references therein.
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In 2013, Kundu and Shaikh ([24], Table 2) investigated the equivalency of the
various geometric structures. They have pointed out the following conditions

)E-P=0,FE-R=0,E-E=0,E-P*=0,E-M=0,E-W;, =0 and
E-W! =0 (foralli=1,2,...9) are equivalent and named such a class by Gy;

i)R-P=0,R-R=0,R-E=0,R-P"=0,R-M=0,R-W,;, =0 and
R-Wr =0 (foralli=1,2,...9) are equivalent and named such a class by Gg;

iii) R-C =0 and R- K = 0 are equivalent and named such a class by G3;

iv) E-C =0and E- K =0 are equivalent and named such a class by Gu;

where
C(X,Y)
11) = R(X,Y)fni2 (nil)(X/\gY)Jr(X/\gQY)Jr(QX/\gY),
(1.2) P(X.Y) = R(X,Y) = —— (X AsY),
Wa (X,Y)
(1.3) = RXY) = i QX A Y)+ (X g QY) = (X As V)],
Wi (X,Y)
(1.4) - R(X,Y)+ﬁ[(QX/\gY)+(X/\gQY)f(X/\sY)],
(15  E(X,Y) = R(X,Y)—ﬁ(X/\gY),
(16)  K(XY) = R(GY) = - [(X A, QY)+(QX A, V)],
(L7) M(X)Y) = R(X,Y)—ﬁ[(X/\gQY)—k(QX/\gY)L
(18) Wi (X,Y) = R(X,Y)+ﬁ(X/\gQY),,
(19) Wo(X.Y) = R(XY) = tgs (XA, QV)
(1.10) Wi (X,Y) = R(X,Y)—ﬁ(X/\SY),
(1L11) Wi (X,Y) = R(X,Y)+ﬁ(X/\SY),
(112) Wy (X,Y) = R(X,Y)—ﬁ(Y/\gQX),
(113) Wi (X,Y) = R(X,Y)Jrﬁ(Y/\gQX),
(114) Wi(XY) = R(GY) = o (XA, QY) = (X As V)],
(115) WE (X,Y) = R(X,Y)Jr(nil) (X Ay QY) — (X As Y],
(1.16) Wi (X,Y) = R(X,Y)Jrﬁ[(ch%y)—(X/\SY)},
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(1.17) Wi(X,Y) = R(X,Y)- ﬁ (QX A Y) — (X As V)],
(L18)  Wi(X,Y)Z = R(X,Y)Z-— (n%l)[g (X,2)QY — ¢(X,Y)QZ],
(119)  Wi(XYV)Z = ROY)Z+ Lsl(N2)QY —g(X,Y)0z],
(1200 We(X,Y)Z = R(X,Y)Z— ﬁ[s Y, 2)X — g(X,Y)QZ].
where

(1.21) (X ApY)Z = B(Y,2)X — B(X, Z)Y.

The present paper is structured as follows: In Section 2, we briefly recall some
known results for (LCS),-manifolds and the properties of D-homothetic deformed
(LCS)p-manifold. In Section 3, we study D-homothetic deformed (LC'S),,-manifolds
belonging to the class G; (i = 1,2,3,4) and we show that a D-homothetic deformed
(LCS),,-manifold belonging to the classes G1, G2, G3 and G4 are Einstein manifold.
In section-4, we find out the conditions for which the Riemann soliton in (LCS),-
manifold belonging to the various classes are sometimes expanding, steady and some
other times shrinking.

2 Properties of the (LCS),-manifold

Let (M™,g) be a Lorentzian manifold admitting a unit timelike concircular vector
field £, the characteristic vector field of the manifold. In a (LCS),-manifold, the
following relations hold [ [21], [22]]:

(2.1) (Vxn)(Y) = o{g(X,Y) +n(X)n(Y)} (e #0)
(2.2) Vxa = (Xa) = a(X) = pn(X)

(2.3) 6X = 1V

(2.4) 6X = X +n(X)E

(2.5) n(€) =-1, ¢o&=0,

(2.6) n(6X) =0, g(¢X,¢Y) =g(X,Y) +n(X)n(Y),
(2.7) N(R(X,Y)Z) = (o® — p)g(Y, Z)n(X) — g(X, Z)n(Y)],
(2.8) R(X,Y)E = (o® = p)[n(Y)X — n(X)Y],

(2.9) R X)Y = (o® = p)[g(X,Y)E = n(Y)X],
(2.10) S(X,€) = (n = 1)(a® = p)n(X),

for any vector fields X,Y, Z.
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Definition 2.1. [28] Let M™ be an (LCS),-manifold with structure (¢, &, n, g). If
the Lorentzian concircular structure (¢, &, 17, g) on M™ is transformed into (¢?, £,
n?, g?) such that

1
(2.11) ¢ = o, £d=5€7 n?=bn, g*=bg—bb—1)n®mn,

where b is a positive constant, then the transformation is called a D-homothetic
deformation.

The D-homothetic deformation are studied by various authors in [23], [6], [14],
[15], [16], [25].
The relation between the V of g and V¢ of g¢ is given by ([1]),

b—1
(2.12) VLY =VxY — %g(aﬁx PY)S,
for any vector fields X, Y on M™.
In view of (2.11), (2.12) and definition of Riemannian curvature tensor, Ricci
tensor, scalar curvature, one can easily bring out the followings:

Proposition 2.1. If a Lorentzian concircular structure (¢, £, n, g) on M™ is trans-
formed into (¢?, €4, n?, g?) under a D-homothetic deformation, then R, RY, S, S9,
r and % are related by

RYX,Y)Z
—1)a?
(2.13) = rxnz- TN v 02)x - glox.02)y),
(2.14) SUX,Y)=5(X,Y) - wg(w ¢Z),
(2.15) rd:rfwmfl){

for any vector fields X, Y, Z on M™.

Now we shall find out some properties of a D-homothetically deformed structure
(¢4, €4, nd, g?) of a Lorentzian concircular structure manifold M™ as follows:

Proposition 2.2. Under a D-homothetic deformation of a Lorentzian concircular
structure (¢, €, m, g) on M™ is transformed into (¢%, €%, n¢, g?), then for any vector
fields X, Y, Z on M™, we have

(2.16) #?1X = X +ni(X)ed,
(2.17) n*(&h) = -1,

(2.18) ¢4t =0, no¢? =0,



Certain types of (LC'S),-manifold and the case of the Riemannian soliton 15

(2.19) 9" ("X, ¢"Y) = g?(X,Y) + 0 (X)n (),

(2.20) 9% (X, &%) = n(X),

(2:21) Vit = TIX 4" (0e",

(2:22) (Vin)(¥) = Zlo"(X.Y) + 0 (On ()],

(2.23) SUX, el = m:)%m[b(b +n—1) - 1n%(X),

2 R Y)Z) = O 2t - gtx 2]
(225 Ri(e! x)y = I g vyt )

(226) R v)e = C I ) x ),

for any vector fields X andY on M™.

In view of (2.24) from (1.1), (1.5), (1.2), (1.6) and (1.21) one can easily bring out
the followings:

gl (CUX,Y)Z, Y
_ ((a2 —bp)  (a® =bp)b(b+n—1)—1]
bt bi(n - 2)

rd

T2
(227) L (81, 2 (X) — UK, 2 (V)

)(g*(Y, Z)n(X) = ¢*(X, Z)n"(Y))

g (KY(X,Y)Z.€")

— (KX Y)2))
(@b (e bp)lblbn— 1) 1],
bt b (n — 2)

(9°(Y, 209 (X) = g (X, 2" (V)

(228) L (51 2 () — UK, 2 (V)
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g EYX,Y)Z,)
= n(BYX,Y)Z))

- (QQ—bP)_ rd d d _d d
em) = G - S 2 () - g (X2 ),
o (PU(X,Y)Z,€%)
= (P, Y)2))
= Iy, 2yt () - (X, 2 (V)
(230) - SIS 2 () - SUX 2 (V).

3 Semi-symmetric structures on D-homothetically
deformed (LCS),-manifold

In this section we consider different types of semi-symmetric structures on D-homothetically
deformed (LCS),-manifolds, namely, D-homothetically deformed (LC'S),-manifolds
belonging to the class G; (i = 1,2,3,4).

3.1 D-homothetically deformed (LC'S),-manifolds belonging to
the class GG,

Here, we take D-homothetically deformed (LC'S),-manifolds admitting the condition
(EYX,Y)-RHY(Z, U)WV =0
which implies
9" (B Y)RYZ,U)V, ") = g (RU(E(£4,Y) Z,U)V, %)
(3.1) +9'(RY(2, B¢, Y)U)V, ) + g*(RU(Z, U)E*(£7, V)V, €%).

Setting Y = Z =e; in (3.1) and taking the summation over i, 1 <4 < n, we get

> g BN )R e, UV, €%
1=1

= angd(Rd(Ed(fd, ei)ei, UV, €% + igdu%d(ei, B, e)U)V,€7)

=1 =1
(3.2) +> gt (R (es, U)EY(EY, eV, €%).

Using (2.16)- (2.26) and (2.29), we obtain

;gd(Ed(£d76i (61, )V§ ) [n(n _ 1) - bh

(a® = bp)

(3.3) [S4U, V) - 1

{g"(U. V) + n(U)n"(V)}],
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n o2 — i o2 —
S oI e e ) = g e - ()
34) B+~ 1 OV) + g O V)]

i: gd(Rd(eiv Ed(fda eZ)U)‘/? Ed)
=1

o2 — a o2 —
33 = Ol o) vl

n

ng(Rd(% U)E (€%, e)V, €%)
(0® —bp), r? (o — bp)

(36) = P gy b0 ) (V).

In consequence of (3.3), (3.4), (3.5) and (3.6), the equation (3.2) yields

(a® —bp)

(3.7) SYU,V) = o

[b(b+n —1) —1]g%(U, V)

Contracting over U and V in (3.7) we obtain

(3.8) rd = (a2b+bp){b(b+ n—1)—=1}b(b+n—1).

Thus we can state the following theorem:

Theorem 3.1. A D-homothetically deformed (LCS ),,-manifold belonging to the class
G1 is an Einstein manifold.

Theorem 3.2. The scaler curvature of a D-homothetically deformed (LCS ),,-manifolds
belonging to the class G satisfies (3.8).

3.2 D-homothetically deformed (LC'S),-manifolds belonging to
the class G5

Here, we cosider D-homothetically deformed (LC'S),-manifolds admitting the condi-
tion
(RYX,Y)- RY)(Z,U)V =0,

which means
g (RUELY)RYZ, U)WV, %) = g (RYRUELY) Z,U)V, €%
(3.9) +9" (RN Z, RY (., Y)U)V, €4 + g (RYZ, U)RY (X, Y)V, £%).

Putting Y = Z = ¢; in (3.9), where {e1,e2,€3,...,€n_1,€, = £} is an orthonormal
basis of the tangent space at each point of the manifold M™ and taking the summation
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over ¢, 1 <1 <n, we get
> g (RUE ei) R (es, U)V, %)
=1
= Y gURURUE e)es, U)V,61) + > gH (R (es, RU(E, e)U)V, €%)
=1 i=1

(3.10) +> g% (R (es, U)RY(E?, )V, £%).

i=1
Using (2.16)- (2.26), we obtain

Zg%Rd(sd,ei)Rd(ei, UV,
(3.11) = (O‘Qb%bp)[—sd(U,V) +

(a® = bp)

(O V) 'O (V)]

angd(R%Rd(éd,ei>ei,U)V,£d>
=1

_ (a® = bp)? 1) d d d

(312) (b4 — 1) = 1YW, V) + O V),

n a2 _ 2
313) Y g (R e R )V, = i vy 4 )

i=1

29" (R e, UYRY(E", eV, g”)
o2 — bp)2

(3.14) = O 4 1) - ),

By virtue of (3.11), (3.12), (3.13) and (3.14), the equation (3.10) yields

a? —bp
(3.15) SYU, V) = (1)74){1)(1) +n—1)—1}g4U, V).
Contracting over U and V in (3.15) we obtain
2 _
(3.16) i — (O‘l)%p){b(b+n_1)_1}b(b+n—1).

Thls leads to the following theorem:

Theorem 3.3. A D-homothetically deformed (LCS ),,-manifold belonging to the class
Gs is an Einstein manifold.

Theorem 3.4. The scaler curvature of a D-homothetically deformed (LCS ),,-manifolds
belonging to the class Gy satisfies (3.16).
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3.3 D-homothetically deformed (LC'S),-manifolds belonging to
the class G5

Choose a D-homothetically deformed (LC'S),-manifolds admitting the condition
(RUX,Y)-K))(Z,U)V =0,
that is,

g RUEY)KY(Z,U)V,¢%) = gY(KYRYE,Y)Z,U)V, %)
(3.17) +9 (KN Z, RY LY UV, ) + gH (KU Z, U)RY (&, YV, 7).

Putting Y = Z = ¢; in (3.17) and taking the summation over ¢, 1 < i < n, we get

S g (RUE, ) K e UV €%)
=1

= Y g KURUE, e)es, UYV,ED) + D g (K% (eq, RYE e)U)V, £7)
i=1 =1

(318) 0 UK e, UD)RAED o)V, €0,

In view of (2.16)- (2.26) and (2.28), we obtain

> g (RYUE e) K (es, U)WV, £%)
=1

_ _(a®—bp) [SY(U, V) — ﬁ{sd(m V){b(b+n—1) =2} +rg%(U,V)}

ba
o2 — o — n—1)—
e AR S D ) + 0 )
a19) (st + o - 1) - @),

n

> UK RYE, e)es, U)V,E7)

_ j(aQ —bp){b(b+n—1) -1} (a® = bp)
- b4 ( b4
0[2 — n — _
et == yw.y)

(b(b+n—1)—1} (a® — bp)

d

A (U)n* (V)] +

(3.20) A0 G- 1) = 1y V)]
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> gt (K (ei, RYEY, e)U)V, £%)
=1
(a® —bp) (a® —bp) (o —bp)[b(b+n—1)—1]

= pd ( bd - b4(n _ 2) )[gd(U7 V)

U] - — @2 =)

n—2 b4
(a® — bp)
JFT

[s4(U. V)

(3.21) {b(b+n—1) = " (U)n"(V)],

> gt (K e, UYRYE, €,)V, &)
=1
(@ —bp){b(b+mn—1)—1}

(o) - e e D= wyv)

(3.22)

In view of (3.19), (3.20), (3.21) and (3.22), the equation (3.18) yields

SHU, V)
= [(nrdl) —{b(b+n—1)—1}
(3.23) (a2 — bp) [b2b4—|(—nn£b1—) 1) — b+ 3] ULV,
Setting U = V = ¢ in (3.23) we obtain
(3.24) rd = —(azb%p){b(ﬂn—l) — 1Hb* +b(n — 1) + 2}.

Thus we can state the following theorem:

Theorem 3.5. A D-homothetically deformed (LCS ),-manifold belonging to the class
G3 is an Einstein manifold.

Theorem 3.6. The scaler curvature of a D-homothetically deformed (LCS ),,-manifolds
belonging to the class G satisfies (3.24).

3.4 D-homothetically deformed (LCS), manifolds belonging to
the class G4
Here, we consider D-homothetically deformed (LC'S),,-manifolds admitting the con-
dition
(BY(X,Y)- K)(Z,U)V =0,
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which implies

g1 (BUELY)KNZ,U)V,E7) = g (KB, Y)Z,U)V, %)
(3.25) +g!(KU(Z, BYEL YUYV, €7) + g/ (KU(Z,U) B, Y)V,€7).

Putting Y = Z = ¢; in (3.25) and taking the summation over i, 1 <i < n, we get

En:gd(Ed(éd, ei) K% (e;, U)V, %)

=1
= > U EUEYE e)ei, U)WV, 6N + > g (K (e, BY(EY, e)U)V, %)
i=1

i=1

(3.26) +§njgd<Kd<e,»,U)Ed@d,ei)v,&d)-

i=1
Using (2.16)- (2.26) and (2.28), (2.29), we obtain

> g (B ) K e, U)V, )
=1
(o — bp) r

= 7[ b4 - n(n_ 1)][Sd(U’ V)

L (SUTV) B+ - 1)~ 2) + gl (U}

(a2~ bp) (a®—bp)fb(b+n—1) 1]

_( i - b4(n — 2) ){gd(U7 V) + nd(U)nd(V)}

5 064 — 1)~ AV

(3.27) +ﬁ{sd(a V) +

n

> gUKNENE e, UV, €

_ @ty
- [ _n(n_l)]{b(b+n—1)—1}

{b(b+n—-1)—1} (aQ—bp)_ rd 189U, V)

n—2 [ b* n(n—1)

{b(b+n—1) = L") (V)}],

+n* (U (V)] +

(a® — bp)
b4

(3.28) +
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> g (K e, BUEY ) UV, £
i=1

_ (@ = bp) rt L (@®=bp) (o =bp)[b(b+n—1) 1]
- [ b - Tl(?’l— 1)]( i - b4(n—2) )[gd(U7 V)
1 (a®—bp) rd

(3.29) +(O‘2b;4b”){b(b +n—1) = 14 U)nd(V)),

> g (K e, U)EYE )V, €7
=1

o2 — i n—1) =112 (a2 —
_ _[( o bp) _ n(ni 1)]{b(b+n;) 1} ( = bp)’l]d(U>’l7d(V)
(a® —bp) rd
+[ 7 —n(n_l)]{b(b+n—1)—1}
(3.30) (@ = b) _ (o7~ b”m*g; D=3 a@yd o),
By virtue of (3.27), (3.28), (3.29) and (3.30), the equation (3.26) yields
SYU,V)
i
(3.31) (o” —bp) [bbj:nn(bl_) D=b4 3w v,
Setting U =V = ¢ in (3.31) we obtain
(3.32) rt = —(Oé:)%bp){b(b—i—n— 1) — 1}{b* + b(n — 1) + 2}.

Thus we can state the following theorem:

Theorem 3.7. A D-homothetically deformed (LCS ),,-manifold belonging to the class
G4 is an Finstein manifold.

Theorem 3.8. The scaler curvature of a D-homothetically deformed (LCS ), -manifolds
belonging to the class G4 satisfies (3.52).

4 Semisymmetric structures on D-homothetically
deformed (LCS),-manifold and the case of the

Riemannian soliton

Hirica and Udrisste [11] in 2016 introduced and studied Riemann soliton. A smooth
manifold M with Riemannian metric g is called Riemann soliton if g satisfies

(4.1) 2R+ AgANg)+(gA £eg) =0
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where £ is a potential vector field, £¢ denotes the Lie-derivative and A is a constant
and for (0,2)-tensors 7 and w, the Kulkarni-Nomizu product (a A b) is given by

(rAo)Y,U,V,Z2) = n(Y,V)w(U,2Z)+ (U, Z2)w(Y,V)
(4.2) (Y, Z2)w(U,V) —n(U,V)w(Y, Z).
A Riemann soliton is called expanding, steady and shrinking when A > 0, A = 0 and
A < 0 respectively. The Riemann soliton are also studied in [7], [10], [9].
In this section, we study D-homothetically deformed (LC'S),,-manifold with semisym-

metric structures when the metric g¢ is deformed Riemann soliton. Thus from (4.1),
we get

(4.3) 2R+ A(g? A g®) + (9% A £8ag®) = 0.
Now, using (4.2) in (4.3) and then contracting U over V' we obtain
SUY, Z)
2
= A+ Hb 0 - 1) -1} - $1g" (Y. 2)
(4.4) + 240+ n — 1) = 2 (V)n(2).
Contracting over Y and Z in (4.4) we have
Td
2

= A+ S Hob+n-1) -1} - 7]

(4.5) {(bb+n—1)} — %{b(b+n— 1) -2}

Comparing (3.16) and (4.5) we get

[@ CA{b(b+n— 1) — 1}b(b+n —1)
(4.6) - 2 %{b(b +n—1))?

which yields
Theorem 4.1. The Riemann soliton of D-homothetically deformed (LC'S),,-manifold

belonging to the class Gy and G is expanding, steady and shrinking when (Cﬁbsz) k(k—
1)+22k% >=< % where k = b(b+n — 1).
Again, comparing (3.24) and (4.5) we get

(4.7) Mbb+n—1)} = —@{zﬁ +b(n—1)+2} — %“{b(b +n—1)—1}.
This leads to

Theorem 4.2. The Riemann soliton of D-homothetically deformed (LCS),,-manifold

belonging to the class G3 and G4 is expanding, steady and shrinking when 270‘(/@‘ -1+

((12177_417’))(/{ + 2) <=> 0, where k = b(b+ n— 1).
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