On the classification of some totally umbilical submanifolds of C-manifolds

Yavuz Selim Balkan and Cenap Özel

Abstract. In this paper, we give some classifications of submanifolds of C-manifolds, particularly totally umbilical slant submanifolds and totally umbilical CR-submanifolds of globally framed type. Firstly, we show that a totally umbilical slant submanifold M of a C-manifold \mathcal{M} is either an anti-invariant submanifold or an s-dimensional submanifold. Then we prove that every totally umbilical proper slant submanifold of a C-manifold is totally geodesic. Last, we give the characterization of a totally umbilical globally framed CR-submanifold M of a C-manifold \mathcal{M}.

M.S.C. 2010: 53D10, 53C15, 53C25, 53C35.

Key words: Slant submanifold; totally umbilical; totally geodesic; minimal submanifold; globally framed CR-submanifold; C-manifold.

1 **Introduction**

The submanifold theory is an important research topic in Differential Geometry since the famous Nash’s embedding theorem. In time, several authors introduced some different classes of submanifolds. In this work, we particularly focus on the slant submanifolds and CR-submanifolds.

The notion of slant submanifolds in the complex spaces was initiated by Chen ([7], [8]). A slant submanifold is a natural generalization of both holomorphic and totally real submanifolds. Since then, many researchers focused on this area and proved the existence of these submanifolds in different known spaces ([5], [14], [19], [17]). Recently, the first author defined the slant submanifolds of globally framed metric f-manifolds in his Ph.D. thesis [1].

On the other hand, in 1978, Bejancu introduced the notion of CR-submanifolds of a Kähler manifold as a natural generalization of both the holomorphic and totally real submanifolds of a Kähler manifold. [2]. Then, a lot of researchers studied on the CR-submanifolds using different structures ([3], [9], [10], [18]).

In the present paper, firstly, we consider slant submanifolds of C-submanifolds and we give some classifications of these type submanifolds under some certain conditions. Secondly, we prove that a globally CR-submanifold of a C-submanifold is totally geodesic or the anti-invariant distribution D^{\perp} is s-dimensional or a mean curvature differential geometry.
vector $H \in \Gamma(\mu)$, where μ denotes the orthogonal complementary distribution of φD^\perp in $T^1 M$. Finally, we give some non-trivial examples.

2 Preliminaries

Let \overline{M} be a $(2n + s)$-dimensional manifold and φ is a non-null $(1, 1)$ tensor field on \overline{M}. If φ satisfies

$$\varphi^3 + \varphi = 0,$$

then φ is called an f-structure and M is called a f-manifold [20]. If $\text{rank} \varphi = 2n$, namely $s = 0$, φ is called an almost complex structure, and if $\text{rank} \varphi = 2n + 1$, namely $s = 1$, then φ reduces an almost contact structure [12], where $\text{rank} \varphi$ is always a constant [16].

On an f-manifold \overline{M}, the operators P_1 and P_2 are defined by

$$P_1 = -\varphi^2, \quad P_2 = \varphi^2 + I,$$

which satisfy

$$P_1 + P_2 = I, \quad P_1^2 = P_1, \quad P_2^2 = P_2,$$

These properties show that P_1 and P_2 are the complement projection operators. So there are D and D^\perp distributions with respect to P_1 and P_2 operators, respectively [21]. Also, we have $\dim (D) = 2n$ and $\dim (D^\perp) = s$.

Suppose that \overline{M} is a $(2n + s)$-dimensional f-manifold and φ is a $(1, 1)$ tensor field, ξ_k is a vector field and η^i is 1-form for each $1 \leq k \leq s$ on \overline{M}, respectively. If (φ, ξ_k, η^k) satisfies

$$\eta^i (\xi_k) = \delta^i_k,$$

and

$$\varphi^2 = -I + \sum_{k=1}^s \eta^k \otimes \xi_k,$$

then (φ, ξ_k, η^k) is called a globally framed f-structure or simply framed f-structure and M is called a globally framed f-manifold or simply framed f-manifold [15]. For a framed f-manifold \overline{M}, the following properties are satisfied [15].

$$\varphi \xi_k = 0,$$

$$\eta^k \circ \varphi = 0.$$
On the classification of some totally umbilical submanifolds of C-manifolds

and

\[(2.9) \quad g(\varphi X, \varphi Y) = g(X, Y) - \sum_{k=1}^{s} \eta^k (X) \eta^k (Y), \]

for all vector fields X, Y on \overline{M}, then \overline{M} is called a framed metric f-manifold [11].

On a framed metric f-manifold, the fundamental 2-form Φ can be defined by

\[(2.10) \quad \Phi(X, Y) = g(X, \varphi Y), \]

for all vector fields X, $Y \in \chi (\overline{M})$ [11]. For a framed metric f-manifold, if

\[(2.11) \quad N_\varphi + 2 \sum_{k=1}^{s} d\eta^k \otimes \xi_k, \]

holds, then M is called a normal framed metric f-manifold, where N_φ denotes the Nijenhuis torsion tensor of φ [13].

If a globally framed metric f-manifold satisfies $d\Phi = 0$ and $d\eta^k = 0$ for each $1 \leq k \leq s$, then it is called a C-manifold. On a C-manifold M,

\[(2.12) \quad (\nabla X \varphi) Y = 0, \]

holds for each vector fields X, $Y \in \chi (M)$ [4].

Now, let M be a submanifold immersed in \overline{M}. We denote the induced metric on M by g. Let TM be the Lie algebra of vector fields in M and $T^\perp M$ the set of all vector fields normal to M. Denote by ∇ and ∇^\perp the Levi-Civita connections of M and \overline{M}, respectively. Then, the Gauss and Weingarten formulas are given by

\[(2.13) \quad \nabla_X Y = \nabla^\perp_X Y + h(X, Y) \]

and

\[(2.14) \quad \nabla_X V = -A_V X + \nabla^\perp_X V \]

respectively, for any X, $Y \in TM$ and any $V \in T^\perp M$. Here, ∇^\perp is the normal connection in the normal bundle, h is the second fundamental form of M and A_V is the Weingarten endomorphism associated with V [6]. On the other hand, there is a relation between A_V and h in the following [6]

\[(2.15) \quad g(A_V X, Y) = g(h(X, Y), V). \]

The mean curvature vector H is defined by $H = \frac{1}{m} \text{trace} h$, where m is the dimension of M. M is said to be minimal, totally geodesic or totally umbilical if H vanishes identically, $h = 0$ and

\[(2.16) \quad h(X, Y) = g(X, Y) H, \]

respectively [6]. Furthermore, the second fundamental form h satisfies [6]

\[(2.17) \quad (\nabla_X h)(Y, Z) = \nabla^\perp_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z). \]
3 Submanifolds of globally framed metric \(f \)-manifolds

In this section, we recall some basic properties of submanifolds of a globally framed metric \(f \)-manifold. We give the following definition, corollary and propositions from [1].

Definition 3.1. Let \(\overline{M} \) be a globally framed metric \(f \)-manifold and \(M \) a submanifold of \(\overline{M} \). For all \(X \in \Gamma (TM) \), we can write

\[
\varphi X = TX + NX,
\]

where \(TX \) and \(NX \) are called the tangent and normal components of \(\varphi X \), respectively. Similarly, for each \(V \in \Gamma (T^\perp M) \), we have

\[
\varphi V = tV + nV,
\]

where \(tV \) is the tangent component and \(nV \) is the normal component of \(\varphi V \).

Corollary 3.1. Let \(\overline{M} \) be a globally framed metric \(f \)-manifold and \(M \) a submanifold of \(\overline{M} \). Then the following identities hold

\[
T^2 = -I + \sum_{k=1}^s \eta^k \otimes \xi_k - tN, \quad NT + nN = 0,
\]

where \(I \) denotes the identity transformation.

Proposition 3.2. Let \(\overline{M} \) be a globally framed metric \(f \)-manifold and \(M \) a submanifold of \(\overline{M} \). Then, \(T \) and \(n \) are the skew-symmetric tensor fields.

Proposition 3.3. Let \(\overline{M} \) be a globally framed metric \(f \)-manifold and \(M \) is a submanifold of \(\overline{M} \). Then, for \(X \in \Gamma (TM) \) and \(V \in \Gamma (T^\perp M) \), we have

\[
g(NX, V) = -g(X, tV),
\]

which gives the relation between \(N \) and \(t \).

Proposition 3.4. Let \(\overline{M} \) be a globally framed metric \(f \)-manifold and \(M \) is a submanifold of \(\overline{M} \). Then, for \(X, Y \in \Gamma (TM) \) and \(V \in \Gamma (T^\perp M) \), the following identities hold:

\[
(\nabla_X \varphi) Y = \nabla_X \varphi Y - \varphi \nabla_X Y
\]

\[
(\nabla_X T) Y = \nabla_X TY - T \nabla_X Y,
\]

\[
(\nabla_X N) Y = \nabla_X^\perp NY - N \nabla_X Y,
\]

\[
(\nabla_X t) V = \nabla_X tV - t \nabla_X^\perp V,
\]
On the classification of some totally umbilical submanifolds of C-manifolds

(3.10) \((\nabla_X n) V = \nabla_X^n V - n\nabla_X V,\)

(3.11) \((\nabla_X T) Y + (\nabla_Y T) X = A_N Y + A_N X + 2h (X, Y),\)

(3.12) \((\nabla_X N) Y + (\nabla_Y N) X = 2nh (X, Y) - h (X, TY) - h (Y, TX),\)

(3.13) \((\nabla_X t) V = A_n V - TA V,\)

(3.14) \((\nabla_X n) V = -h (tV, X) - NA V,\)

where h is the second fundamental form, ∇ is the Levi-Civita connection and A_V is the shape operator corresponding to the normal vector field V.

4 Geometry of slant submanifolds of C-manifolds

Firstly, we recall the following two definitions, theorem and corollary from [1].

Definition 4.1. Let \mathcal{M} be a globally framed metric f-manifold and M a submanifold of \mathcal{M}. Then, the tangent bundle TM of M can be decomposed as

\[(4.1) \quad TM = \sum_{k=1}^{s} D_k \otimes \xi_k,\]

where for each $1 \leq k \leq s$ the ξ_k is the distribution spanned by the structure vector fields ξ_k and D_0 is the complementary of distribution ξ_k in TM, which is known as the slant distribution on M.

Theorem 4.1. Let \mathcal{M} be a globally framed metric f-manifold and M a submanifold of \mathcal{M}. Then, M is a slant submanifold if and only if there exists a constant $\mu \in [0, 1]$ such that

\[(4.2) \quad T^2 = -\mu \left(I - \sum_{k=1}^{s} \eta^k \otimes \xi_k \right).\]

Moreover, if θ is the slant angle of M, then $\mu = \cos^2 \theta$.

Corollary 4.2. Let M be a slant submanifold of a globally framed metric f-manifold \mathcal{M} with a slant angle θ. Then for any vector fields $X, Y \in \Gamma(TM)$, we find

\[(4.3) \quad g(TX, TY) = \cos^2 \theta \left\{ g(X, Y) - \sum_{k=1}^{s} \eta^k (X) \eta^k (Y) \right\}\]

and

\[(4.4) \quad g(NX, NY) = \sin^2 \theta \left\{ g(X, Y) - \sum_{k=1}^{s} \eta^k (X) \eta^k (Y) \right\}.\]
Definition 4.2. Suppose that \(M \) is a submanifold of a globally framed metric \(f \)-manifold \(\overline{M} \) and tangent to the structure vector fields \(\xi_k \) for each \(1 \leq k \leq s \). For each nonzero vector \(X \) tangent to \(M \) at \(p \), we denote by \(\theta(X) \) with \(0 \leq \theta(X) \leq \frac{\pi}{2} \), the angle between \(\varphi X \) and \(T_p M \), known as the Wirtinger angle of \(X \). If the \(\theta(X) \) is constant, that is, independent of the choice of \(p \in M \) and \(X \in T_p M - \{ \xi_k \} \), for each \(1 \leq k \leq s \), then \(M \) is said to be a slant submanifold and the constant angle \(\theta \) is called a slant angle of the slant submanifold.

Here, if \(\theta = 0 \), \(M \) is an invariant submanifold and if \(\theta = \frac{\pi}{2} \), then \(M \) is an anti-invariant submanifold. A slant submanifold is proper slant if it is neither an invariant nor an anti-invariant submanifold.

Now, we give the main results for this section. Firstly, we prove the following.

Theorem 4.3. Let \(M \) be a totally umbilical slant submanifold of a \(C \)-manifold \(\overline{M} \). Then at least one of the following statements holds.

i) \(M \) is an anti-invariant submanifold.

iii) \(M \) is an \(s \)-dimensional submanifold.

iii) If \(M \) is a proper slant submanifold, then \(H \), where \(H \) is the mean curvature vector of the submanifold of \(M \) and \(\mu \) denotes the orthogonal complementary distribution of \(\varphi D^\perp \) in \(T^\perp M \).

Proof. Let \(M \) be a totally umbilical slant submanifold of a \(C \)-manifold \(\overline{M} \). Then we have

\[
h(TX, TY) = g(TX, TY)H,
\]
for any \(X, Y \in \Gamma(TM) \). From (2.13) and (4.3), we obtain that

\[
\nabla_TXX - \nabla_TX^2 = \cos^2 \theta \left\{ g(X, X) + \sum_{k=1}^{s} \eta^k(X) \eta^k(X) \right\} H.
\]

Using (3.1) and since \(\overline{M} \) is a \(C \)-manifold, we deduce that

\[
\varphi \nabla_TX - \nabla_TXN - \nabla_TX^2 = \cos^2 \theta \left\{ \|X\|^2 + \sum_{k=1}^{s} [\eta^k(X)]^2 \right\} H.
\]

On the other hand, using (2.13) and (2.14) then we derive

\[
\varphi \nabla_TX + \varphi h(X, TX) + A_{NX}TX - \nabla^\perp_TXN - \nabla_TX^2
\]

\[
= \cos^2 \theta \left\{ \|X\|^2 + \sum_{k=1}^{s} [\eta^k(X)]^2 \right\} H.
\]

Thus by (3.1) and (2.16), we get

\[
T\nabla_TX + N\nabla_TX + g(TX, X) \varphi H + A_{NX}TX - \nabla^\perp_TXN - \nabla_TX^2
\]

\[
= \cos^2 \theta \left\{ \|X\|^2 + \sum_{k=1}^{s} [\eta^k(X)]^2 \right\} H.
\]
Considering the normal components of the last equation, we have

\[N\nabla_{TX} X - \nabla_{NX} X = \cos^2 \theta \left\{ \|X\|^2 + \sum_{k=1}^{s} \left[\eta^k (X) \right]^2 \right\} H. \]

Moreover, using (4.4), we deduce

\[g \left(\nabla_{TX} X, X \right) = \sin^2 \theta \left\{ g \left(X, X \right) - \sum_{k=1}^{s} \eta^k (X) \eta^k (X) \right\} , \]

for any vector field \(X \in \Gamma (TM) \). Taking the covariant derivative of the above equation with respect to \(TX \), we conclude

\[2g \left(N\nabla_{TX} X, X \right) = 2 \sin^2 \theta g \left(\nabla_{TX} X, X \right) \]

\[-2 \sin^2 \theta \sum_{k=1}^{s} \left[\eta^k (X) g \left(\nabla_{TX} X, \xi_k \right) + \eta^k (X) g \left(g, \nabla_{TX} \xi_k \right) \right] . \]

In view of the property of metric connection \(\nabla \), since the last two terms of the right-hand side are cancelling each other, then we get

\[g \left(\nabla_{TX} X, X \right) = 2 \sin^2 \theta g \left(\nabla_{TX} X, X \right) . \]

Now, by using (2.13) and (2.14), we obtain

\[g \left(N\nabla_{TX} X, X \right) = 2 \sin^2 \theta g \left(\nabla_{TX} X, X \right) . \]

Taking the inner product of (4.10) with \(NX \), then we derive

\[g \left(N\nabla_{TX} X, X \right) - g \left(\nabla_{NX} X, X \right) = \cos^2 \theta \left\{ \|X\|^2 + \sum_{k=1}^{s} \left[\eta^k (X) \right]^2 \right\} g \left(H, NX \right) \]

for any vector field \(X \in \Gamma (TM) \). Then from (4.4) and (4.14), we get

\[-\sin^2 \theta \sum_{k=1}^{s} \eta^k (X) g \left(\nabla_{TX} X, \xi_k \right) = \cos^2 \theta \left\{ \|X\|^2 + \sum_{k=1}^{s} \left[\eta^k (X) \right]^2 \right\} g \left(H, NX \right) \]

From (2.13), we get

\[-\sin^2 \theta \sum_{k=1}^{s} \eta^k (X) g \left(\nabla_{TX} X, \xi_k \right) = \cos^2 \theta \left\{ \|X\|^2 + \sum_{k=1}^{s} \left[\eta^k (X) \right]^2 \right\} g \left(H, NX \right) . \]

The fact that \(\nabla \) is the metric connection, then the last equation can be written as

\[-\sin^2 \theta \sum_{k=1}^{s} \eta^k (X) g \left(X, \nabla_{TX} \xi_k \right) = \cos^2 \theta \left\{ \|X\|^2 + \sum_{k=1}^{s} \left[\eta^k (X) \right]^2 \right\} g \left(H, NX \right) . \]
For each $1 \leq k \leq s$, since M is a C-manifold, thus we have $\nabla_{TX}s_k = 0$ and using this fact, the left hand side of the above equation vanishes identically, then we get

\[(4.19) \quad \cos^2 \theta \left\{ \|X\|^2 + \sum_{k=1}^{m} [\eta(X)]^2 \right\} g(H, NX) = 0.\]

So, from (4.19), we deduce that either $\theta = \frac{\pi}{2}$ or $X = \xi_k$ or $H \in \Gamma(\mu)$, where μ is the invariant normal subbundle orthogonal to $N\overline{TM}$. Thus, the proof is completed. \(\square\)

Theorem 4.4. Every totally umbilical proper slant submanifold M of a C-manifold \overline{M} is totally geodesic, if $\nabla_{\xi_k} H \in \Gamma(\mu)$, for $X \in \Gamma(TM)$.

Proof. By the fact that \overline{M} is a C-manifold, then we get

\[(4.20) \quad \nabla_X \varphi Y = \varphi \nabla_X Y,\]

for any $X, Y \in \Gamma(TM)$. Using (4.20) and from (2.13) and (3.1), we obtain

\[(4.21) \quad \nabla_X TY + \nabla_X NY = T\nabla_X Y + N\nabla_X Y + \varphi h(X, Y),\]

for any $X, Y \in \Gamma(TM)$. Then taking in account of (2.13), (2.14) and (2.16), we have

\[(4.22) \quad \nabla_X TY + h(X, TY) - A_{NY} X + \nabla^\perp_X NY = T\nabla_X Y + N\nabla_X Y + g(X, Y) \varphi H.\]

Taking the inner product of (4.22) with φH and using $H \in \Gamma(\mu)$ and in view of Theorem 2, we conclude

\[(4.23) \quad g(h(X, TY), \varphi H) + g(\nabla^\perp_X NY, \varphi H) = g(X, Y) g(\varphi H, \varphi H).\]

Then by using (2.9) and (2.16), we get

\[(4.24) \quad g(X, TY) g(H, \varphi H) + g(\nabla^\perp_X NY, \varphi H) = g(X, Y) \|H\|^2,\]

which means

\[(4.25) \quad g(\nabla^\perp_X NY, \varphi H) = g(X, Y) \|H\|^2.\]

Now, considering

\[(4.26) \quad \nabla_X \varphi H = \varphi \nabla_X H,\]

for any $X \in \Gamma(TM)$. From (2.14), we have

\[(4.27) \quad -A_{\varphi H} X + \nabla^\perp_X \varphi H = \varphi (-A_H X + \nabla^\perp_X H).\]

Thus, by using (3.1) and (3.2), we obtain

\[(4.28) \quad -A_{\varphi H} X + \nabla^\perp_X \varphi H = -TA_H X - NA_H X + t\nabla^\perp_X H + n\nabla^\perp_X H.\]

Taking the inner product with NY, for any $Y \in \Gamma(TM)$, then we derive

\[(4.29) \quad g(\nabla^\perp_X \varphi H, NY) = -g(NA_H X, NY) + g(n\nabla^\perp_X H, NY).\]
As \(n\nabla^\perp_X H \in \Gamma(\mu) \), then from (4.4) the above equation takes the form

\[
g(\nabla^\perp_X \varphi H, NY) = -\sin^2 \theta \left\{ g(A_H X, Y) - \sum_{k=1}^s \eta^k (A_H X) \eta^k (Y) \right\}.
\]

Using (2.14), (2.15) and (2.16), we deduce

\[
g(\nabla^\perp_X \varphi H, NY) = -\sin^2 \theta \left\{ g(X, Y) - \sum_{k=1}^s \eta^k (X) \eta^k (Y) \right\} \|H\|^2.
\]

The last equation can be written as

\[
g(\nabla^\perp_X NY, \varphi H) = -\sin^2 \theta \left\{ g(X, Y) - \sum_{k=1}^s \eta^k (X) \eta^k (Y) \right\} \|H\|^2.
\]

Now using \(H \in \Gamma(\mu) \), then by (2.14), we get

\[
g(\nabla^\perp_X NY, \varphi H) = -\sin^2 \theta \left\{ g(X, Y) - \sum_{k=1}^s \eta^k (X) \eta^k (Y) \right\} \|H\|^2.
\]

Finally, by using (4.25) and (4.33), we conclude

\[
\left\{ \cos^2 \theta g(X, Y) + \sin^2 \theta \sum_{k=1}^s \eta^k (X) \eta^k (Y) \right\} \|H\|^2 = 0,
\]

which implies that either \(H = 0 \) or \(\theta = \tan^{-1} \left(\sqrt{g(X, Y)/\sum_{k=1}^s \eta^k (X) \eta^k (Y)} \right) \).

This is not possible, because the slant angle \(\theta \in (0, \pi/2) \). Hence, \(M \) is totally geodesic in \(\overline{M} \). \(\square \)

5 Globally framed CR-submanifolds of C-manifolds

In this section, we focus on the globally framed CR-submanifolds. Firstly, we recall the definition and then we give some basic properties.

Definition 5.1. Let \(\overline{M} \) be a globally framed metric \(f \)-manifold and \(M \) be an isometric immersed submanifold of \(\overline{M} \). If there is a differentiable distribution \(D : p \rightarrow D_p \subseteq T_p M \) on \(M \) satisfying the following conditions, then \(M \) is called a globally framed CR-submanifold of \(\overline{M} \)[1].

1) For each \(1 \leq k \leq s, \xi_k \in D \).
2) \(D \) is invariant under \(\varphi \) tensor field, i.e., for any point \(p \in M \varphi (D_p) \subseteq T_p M \).
3) The orthogonal distribution \(D^\perp : p \rightarrow D^\perp_p \subseteq T_p M \) satisfies \(\varphi (D^\perp_p) \subseteq T_p^\perp M \) for each point \(p \in M \).

If neither \(D = \{0\} \) nor \(D^\perp = \{0\} \), then \(M \) is called a proper globally framed CR-submanifold.
Lemma 5.1. Let \(M \) be a globally framed metric \(f \)-manifold and \(M \) be a globally framed \(CR \)-submanifold of \(M \). Then we have

\[
\phi \xi_k = T \xi_k + N \xi_k = 0
\]

and

\[
T \xi_k = 0, \quad N \xi_k = 0
\]

for each \(1 \leq k \leq s \) and \(\xi_k \in \Gamma(D) \subseteq \Gamma(TM) \) [1].

Definition 5.2. Let \(M \) be a globally framed metric \(f \)-manifold and \(M \) be a globally framed \(CR \)-submanifold of \(M \). Also, let \(\mu \) be orthogonal distribution of \(\varphi(D^\bot) \) in \(T^\bot M \) and then we have

\[
T^\bot M = \varphi(D^\bot) \otimes \mu, \quad \mu \perp \varphi(D^\bot).
\]

The dimension of \((\varphi(D^\bot))^\bot \) is even since it is invariant subbundle [1].

Now, let \(M \) be a globally framed metric \(f \)-manifold and \(M \) a proper globally framed \(CR \)-submanifold of \(M \). Then, for any \(X \in \Gamma(TM) \), we have

\[
X = P_1 X + P_2 X + \sum_{k=1}^{s} \eta^k(X) \xi_k,
\]

where \(P_1 \) and \(P_2 \) are the orthogonal projections from \(TM \) to \(D \) and \(D^\bot \), respectively. For a globally framed \(CR \)-submanifold, from (3.1) and (5.4), we get

\[
TX = \varphi P_1 X, \quad NX = \varphi P_2 X.
\]

Let \(M \) be a globally framed \(CR \)-submanifold of a \(C \)-manifold \(\overline{M} \), then for any \(X, Y \in \Gamma(D^\bot) \) and \(Z \in \Gamma(TM) \), we deduce

\[
g(A_{\varphi Y} X, Z) = g(h(X, Z), \varphi Y).
\]

By using (2.13), we get

\[
g(A_{\varphi Y} X, Z) = g(\nabla_Z X, \varphi Y) = -g(\varphi \nabla_Z X, Y).
\]

From (2.12), we have

\[
g(A_{\varphi Y} X, Z) = -g(\nabla_Z \varphi X, Y).
\]

Hence, using (2.14), we obtain

\[
g(A_{\varphi Y} X, Z) = g(A_{\varphi X} Z, Y) = g(h(Y, Z), \varphi X).
\]

Now, from (2.13), we derive

\[
g(A_{\varphi Y} X, Z) = g(\nabla_Y Z, \varphi X) = -g(Z, \nabla_Y \varphi X).
\]
Then, using (2.14), we have
\[g(A\varphi YX, Z) = g(A\varphi XY, Z). \]
Thus, for a globally framed CR-submanifold of a C-manifold we infer
\[A\varphi YX = A\varphi XY, \]
for all vector fields \(X, Y \in \Gamma(D^\perp) \). On the other hand, we obtain
\[g([X, Y], \varphi Z) = g(\nabla_X Y - \nabla_Y X, \varphi Z) = g(\varphi \nabla_X Y - \varphi \nabla_Y X, Z), \]
for any vector field \(Z \in \Gamma(D \oplus \{\xi_k\}) \) and for all vector fields \(X, Y \in \Gamma(D^\perp) \). Hence, from (2.12) and (3.6), we deduce
\[g([X, Y], \varphi Z) = g(A\varphi YX - A\varphi XY, Z). \]
Thus, using (5.5), we obtain \(g([X, Y], \varphi Z) = 0 \) which means \([X, Y] \in \Gamma(D^\perp)\) for any \(X, Y \in \Gamma(D^\perp) \). This implies that \(D^\perp \) is integrable.

Hence, we have the following theorem.

Theorem 5.2. Let \(M \) be a globally framed CR-submanifold of a C-manifold \(\overline{M} \). Then, the distribution \(D^\perp \) is completely integrable.

Now, for all vector fields \(Z, W \in \Gamma(D \oplus \{\xi_k\}) \) and for all vector fields \(X, Y \in \Gamma(D^\perp) \), we get
\[h(Z, TW) + \nabla_Z TW = \nabla_Z TW = \nabla_Z \varphi W. \]
Since \(\overline{M} \) is a C-manifold, then using (2.12) and (3.6), we conclude
\[h(Z, TW) + \nabla_Z TW = \varphi \nabla_Z W. \]
Now, in view of (2.13), (3.1) and (3.2), we have
\[h(Z, TW) + \nabla_Z TW = T \nabla_Z W + N \nabla_Z W + th(Z, W) + nh(Z, W). \]
Considering the normal components of the last equation, we derive
\[N \nabla Z W = h(Z, TW) - nh(Z, W). \]
In a similar way, we get
\[N \nabla W Z = h(W, TZ) - nh(Z, W) \]
Hence from (5.6) and (5.7), we deduce
\[N[Z, W] = h(Z, TW) - h(W, TZ). \]
Thus, we give the following theorem.
Theorem 5.3. Let M be a globally framed CR-submanifold of a C-manifold \tilde{M}. Then for each $1 \leq k \leq s$, the distribution $D \oplus \{\xi_k\}$ is integrable if and only if $h(Z, TW) = h(W, TZ)$ for any vector fields $Z, W \in \Gamma(D \oplus \{\xi_k\})$.

Now, we give main theorem of this section in the following:

Theorem 5.4. Let M be a totally umbilical globally framed CR-submanifold of a C-manifold \tilde{M}. Then at least one of the following statements is true

i) M is totally geodesic,

ii) $\dim (D^\perp) = s$,

iii) the mean curvature vector $H \in \Gamma(\mu)$.

Proof. As \tilde{M} is a C-manifold, we get

$$\nabla_X \varphi Y = \varphi \nabla_X Y,$$

for all vector fields $X, Y \in \Gamma(D^\perp)$. Since M is totally umbilical, from (2.13) and (2.14), we obtain

$$(5.9) \quad -g(H, \varphi Y) X + \nabla_X^\perp \varphi Y = \varphi \nabla_X Y + g(X, Y) \varphi H.$$

Taking the inner product of (5.9) with $X \in \Gamma(D^\perp)$, we have

$$(5.10) \quad g(H, \varphi X) \|X\|^2 = g(X, Y) g(H, \varphi Y).$$

Interchanging X and Y in (5.10), we derive

$$(5.11) \quad g(H, \varphi X) \|Y\|^2 = g(X, Y) g(H, \varphi Y).$$

Then, from (5.10) and (5.11), we conclude

$$g(H, \varphi X) = \frac{g(X, Y)^2}{\|X\|^2 \|Y\|^2} g(H, \varphi X),$$

which implies

$$(5.12) \quad g(H, \varphi X) \left\{1 - \frac{g(X, Y)^2}{\|X\|^2 \|Y\|^2}\right\} = 0.$$

If at least one of the following

i) $H = 0$,
ii) $X \parallel Y$,
iii) $H \perp \varphi D^\perp$.

holds, then the last equation has a solution. This completes the proof.

6 Examples

Example 6.1. Let (C^4, J, h) be a 4-dimensional Kähler manifold with complex structure J and the Euclidean Hermitian metric h. Then it is a flat manifold of real dimension 8. Hence $\tilde{M} = C^4 \times R^8$ is a C-manifold with structure vector fields $\xi_k = \ldots$
On the classification of some totally umbilical submanifolds of C-manifolds

\[\frac{\partial}{\partial t_k}, \] the dual 1-forms \(\eta^k = dt_k \) for each \(1 \leq k \leq s \) and the metric \(g = h + \sum_{k=1}^{s} dt_k^2 \).

Now, consider \(M = R^4 \times S^2 \), where \(S^2 \) is 2-dimensional unit sphere which is a totally real submanifold of \(C^4 \). Then \(M \) is a globally framed CR-submanifold of \(\mathcal{M} \) with the invariant distribution \(D = R^3 \), anti-invariant distribution \(D^\perp \Gamma \left(S^2\right) \) and the 2-dimensional distribution \((\xi_1, \xi_2) = R^2 \).

Example 6.2. Let \(\mathcal{M} \) be a Kähler manifold. Then \(\mathcal{M} \times R^s \) is a C-manifold with the usual product structure. Let \(M \) be a slant submanifold of a Kähler manifold \(\mathcal{M} \). Then \(M \times R^s \) is a slant submanifold of globally framed type of C-manifold \(\mathcal{M} \times R^s \).

References

Authors’ addresses:

Yavuz Selim Balkan
Department of Mathematics, Faculty of Art and Science,
Duzce University, Duzce, Turkey.
E-mail: y.selimbalkan@gmail.com

Cenap Özel
Department of Mathematics, Faculty of Science,
Jeddah 21589, Makkah KSA, Department of Mathematics,
Faculty of Science, Buca Izmir Turkey.
E-mail: cenap.ozel@gmail.com