On Einstein Kropina change of m-th root Finsler metrics

Bankteshwar Tiwari, Ghanashyam Kr. Prajapati

Abstract. In the present paper, we consider Kropina change of m-th root metric and prove that if it is an Einstein metric (or weak Einstein metric), then it is Ricci-flat.

M.S.C. 2010: 53B40, 53C60.

Key words: Finsler space; Kropina metrics; m-th root metrics; Einstein metrics.

1 Introduction

The theory of m-th root Finsler metrics has been developed by Shimada [11] in 1979, applied to ecology by Antonelli [1] and studied by several authors ([12],[14],[11]). It is regarded as a generalization of Riemannian metric in the sense that for $m = 2, 3$ and 4, it is called Riemannian metric, cubic metric and quartic metric respectively [7]. In the four-dimension, a special fourth root metric of the form $F = \sqrt[4]{y^1y^2y^3y^4}$ is called the Berwald-Moór metric [4], which is considered by physicists as an important subject for a possible model of space time. Recent studies show that m-th root Finsler metrics plays a very important role in physics, space-time and general relativity as well as in unified field theory ([3],[2]). Z. Shen and B. Li have studied the geometric properties of locally projectively flat fourth root metrics in the form $F = \sqrt[4]{a_{ijkl}(x)y^iy^jy^ky^l}$ and generalized fourth root metrics in the form $F = \sqrt[4]{a_{ijkl}(x)y^iy^jy^ky^l + b_{ij}(x)y^iy^j}$ [7].

Recently, B. Tiwari and M. Kumar [13] have studied Randers change of a Finsler space with m-th root metric. Also, A. Tayebi, T. Tabatabaeifar and E. Peyghan introduced the Kropina change of m-th root metric and established conditions on Kropina change of m-th root metric, to be locally dually flat and locally projectively flat.

Let $(M, F) = F^n$ be an n-dimensional Finsler manifold. For a 1-form $\beta(x, y) = b_i(x)y^i$ on M, define a Finsler change as follows

$$ F(x, y) \rightarrow \tilde{F}(x, y) = f(F, \beta), $$

Differential Geometry - Dynamical Systems, Vol.18, 2016, pp. 139-146.
where \(f(F, \beta) \) is a positively homogeneous function of \(F \) and \(\beta \). A Finsler change is called Kropina change if \(f(F, \beta) = \frac{F^2}{\beta} \). The purpose of the present paper is to investigate Kropina change of \(m \)-th root metrics, defined by

\[
F = \frac{F^2}{\beta},
\]

where \(F = \sqrt[2]{A} \) is an \(m \)-th root metric on the manifold \(M \), for which we shall restrict our consideration to the domain where \(\beta = \beta(x) > 0 \).

The Einstein metrics are solutions to Einstein field equation in General Relativity, which closely connect Riemannian geometry with gravitation in General Relativity. C. Robles studied a special class of Einstein Finsler metrics, that is, Einstein Randers metrics, and proved that for a Randers metric on a 3-dimensional manifold, it is Einstein if and only if it has constant flag curvature. E. Guo, X. Mo and X. Zhang have explicitly constructed an Einstein Finsler metrics of non-constant flag curvature in terms of navigation representation [6]. Recently, Z. Shen and C. Yu, using certain transformation, have constructed a large class of Einstein metrics [9]. In this paper, we establish following theorems

Theorem 1.1. Let \(F = \frac{F^2}{\beta} \) be a non-Riemannian Kropina change of \(m \)-th root Finsler metric \(F \) on a manifold of dimension \(n \geq 2 \), with \(m \geq 3 \). If \(F \) is Einstein metric, then it is Ricci-flat.

Theorem 1.2. Let \(F = \frac{F^2}{\beta} \) be a non-Riemannian Kropina change of \(m \)-th root Finsler metric \(F \) on a manifold of dimension \(n \geq 2 \), with \(m \geq 3 \). If \(F \) is a weak Einstein metric, then it is Ricci-flat.

Theorem 1.3. Let \(F = \frac{F^2}{\beta} \) be a non-Riemannian Kropina change of \(m \)-th root Finsler metric \(F \) on a manifold of dimension \(n \geq 2 \), with \(m \geq 3 \). If \(F \) is of scalar flag curvature \(K(x,y) \) and isotropic \(S \)-curvature, then \(K = 0 \).

Throughout the paper we call the Finsler metric \(F \) as Kropina change of \(m \)-th root metric and \(F^n = (M, F) \) as Kropina transformed Finsler space. We restrict ourselves for \(m \geq 3 \) throughout the paper and also the quantities corresponding to the Kropina transformed Finsler space \(F^n \) will be denoted by putting bar on the top of that quantity.

2 Preliminaries

Let \(M \) be an \(n \)-dimensional \(C^\infty \)-manifold. Denote by \(T_xM \) the tangent space at \(x \in M \) and by \(TM := \bigcup_{x \in M} T_xM \) the tangent bundle of \(M \). Each element of \(TM \) has the form \((x, y)\), where \(x \in M \) and \(y \in T_xM \). Let \(TM_0 = TM \setminus \{0\} \).

Definition. A Finsler metric on \(M \) is a function \(F : TM \to [0, \infty) \) with the following properties:

(i) \(F \) is \(C^\infty \) on \(TM_0 \),

(ii) \(F \) is positively 1-homogeneous on the fibers of tangent bundle \(TM \), and

(iii) the Hessian of \(\frac{F^2}{2} \) with components \(g_{ij} = \frac{1}{2} \frac{\partial^2 F^2}{\partial y_i \partial y_j} \) is positive definite on \(TM_0 \).
Therefore, by using the equations (3.1) and (3.2), we obtain the metric tensor g_{ij}. Clearly, A_i with a_i is called the fundamental tensor of the Finsler space F^n. The normalized supporting element l_i and the angular metric tensor h_{ij} of F are defined, respectively as $l_i = \frac{\partial F}{\partial y^i}$, and $h_{ij} = F \frac{\partial^2 F}{\partial y^i \partial y^j}$. The S-curvature $S = S(x, y)$ in Finsler geometry has been introduced by Shen [8] as a non-Riemannian quantity, defined as

$$S(x, y) = \left. \frac{d}{dt} [\tau(\sigma(t), \dot{\sigma}(t))] \right|_{t=0},$$

where $\tau = \tau(x, y)$ is a scalar function on $T_x M \setminus \{0\}$, called distortion of F and $\sigma = \sigma(t)$ be the geodesic with $\sigma(0) = x$ and $\dot{\sigma}(0) = y$. A Finsler metric F is called of isotropic if $S = (n + 1)cF$, for some scalar function $c = c(x)$, on M. Let F be a Finsler metric defined by $F = \sqrt{A}$, where A is given by $A = a_{ij} y^i y^j$, with a_{ij} symmetric in all its indices [11]. Then F is called an m-th root Finsler metric. Clearly, A is homogeneous of degree m in y. Let

$$A_i = \frac{\partial A}{\partial y^i}, \quad A_{ij} = \frac{\partial^2 A}{\partial y^i \partial y^j}, \quad A_{x^i} = \frac{\partial A}{\partial x^i}, \quad A_0 = A_{x^i} y^i.$$

Then the following relations hold

$$g_{ij} = A_i A_j + (2 - m) A_i A_j,$$
$$y^i A_i = m A_i y^i, \quad g_{ij} = (m - 1) A_i , \quad y_i = A_i,$$
$$A^{ij} A_k = \delta^i_k, \quad A^{ij} A_i = \frac{1}{m} y^j, \quad A_i A_j A^{ij} = \frac{m}{m-1} A.$$

3 Fundamental metric tensors and geodesic sprays of Kropina changed m-th root Finsler metrics

The differentiation of equation (1.1) with respect to y^i yields the normalized supporting element \bar{l}_i given by

$$\bar{l}_i = F \left(\frac{2 A_i}{m A} - \frac{b_i}{\beta} \right)$$

and the angular metric tensor \bar{h}_{ij} given by

$$\bar{h}_{ij} = F^2 \left[\frac{2}{m A} A_i A_j + \frac{2(2 - m)}{m^2 A^2} A_i A_j - \frac{2}{m A \beta} (A_i b_j + A_j b_i) + \frac{2}{\beta^2} b_i b_j \right].$$

Also the fundamental metric tensor \bar{g}_{ij} of Finsler space F^n is given by $\bar{g}_{ij} = \bar{h}_{ij} + \bar{l}_i \bar{l}_j$. Therefore, by using the equations (3.1) and (3.2), we obtain the metric tensor \bar{g}_{ij} as

$$\bar{g}_{ij} = F^2 \left[\frac{2}{m A} A_i A_j + \frac{2(4 - m)}{m^2 A^2} A_i A_j - \frac{4}{m A \beta} (A_i b_j + A_j b_i) + \frac{3}{\beta^2} b_i b_j \right].$$

This equation can be rewritten as

$$\bar{g}_{ij} = F^2 \left[\frac{2}{m A} A_i A_j + \frac{2(4 - 3m)}{m^2 A^2} A_i A_j + \left(\frac{4}{\sqrt{3m A}} A_i - \sqrt{\frac{3}{\beta}} b_i \right) \left(\frac{4}{\sqrt{3m A}} A_j - \sqrt{\frac{3}{\beta}} b_j \right) \right] .$$
In order to calculate the components of inverse metric tensor g^{ij}, we use the following Proposition twice.

Proposition. [8] Let $G = (g_{ij})$ and $H = (h_{ij})$ be symmetric $n \times n$ matrices and $C = (c_i)$ be an n-vector. Assume that H is invertible with $H^{-1} = (h^{ij})$ and $g_{ij} = h_{ij} + \delta c_i c_j$. Then $det(g_{ij}) = (1 + \delta c^2)det(h_{ij})$, where $c = \sqrt{h^{ij}c_ic_j}$. If $1 + \delta c^2 \neq 0$, then G is invertible. The inverse matrix $G^{-1} = (g^{ij})$ is given by

$$g^{ij} = h^{ij} - \frac{\delta c^2 c^j}{1 + \delta c^2}, \text{ where } c' = h^{ij}c_j.$$

Let

$$H_{ij} = \frac{2}{m^2} A_{ij} + \frac{2(4 - 3m)}{3m^2 A^2} A_i A_j. \tag{3.4}$$

By using the Proposition from above, we infer $H^{ij} = \frac{m^2 A^{ij}}{2} - \frac{4 - 3m}{2(m - 1)} y^i y^j$. Thus, in view of equations (3.3) and (3.4), \overline{g}_{ij} can be written as $\overline{g}_{ij} = \frac{F^2}{2} [H_{ij} + K_i K_j]$, where $K_i = \left(\frac{4}{\sqrt{3mA}} A_i - \frac{2 A}{\sqrt{3m}} b_i \right)$. By direct computation, we have

$$\overline{g}^{ij} = \frac{1}{F^2} \left[a_0 A^{ij} + a_1 y^i y^j + a_2 B^i B^j + a_3 (y^i B^j + y^j B^i) \right],$$

where,

$$a_0 = \frac{m A}{2}, a_1 = \left\{ \frac{2(m - 4)\beta^2 + m(3m - 4) A B^2}{2((m - 2)\beta^2 + m(m - 1) A B^2)} \right\}, a_2 = \frac{m^2 (1 - m) A^2}{2((m - 2)\beta^2 + m(m - 1) A B^2)},$$

$$a_3 = \frac{m^2 \beta A}{2((m - 2)\beta^2 + m(m - 1) A B^2)}, B^i = A^{ij} b_j, B^2 = B^i b_i. \tag{3.5}$$

Thus we have

Proposition 3.1. The covariant metric tensor \overline{g}_{ij} and the contravariant metric tensor \overline{g}^{ij} of Kropina transformed Finsler space \tilde{F}^n are given as

$$\overline{g}_{ij} = \frac{F^2}{2} \left[\frac{2}{m^2 A} A_{ij} + \frac{2(4 - m)}{m^2 A} A_i A_j - \frac{4}{m A^2} (A_i b_j + A_j b_i) + \frac{3}{\beta^2} b_i b_j \right]$$

and

$$\overline{g}^{ij} = \frac{1}{F^2} \left[a_0 A^{ij} + a_1 y^i y^j + a_2 B^i B^j + a_3 (y^i B^j + y^j B^i) \right],$$

where a_0, a_1, a_2, a_3, B^i and B^2 are given by equation (3.5).

In local coordinates, the geodesics of a given Finsler metric $F = F(x, y)$ are characterized by the equations

$$\frac{d^2 x^i}{dt^2} + 2G^i \left(\frac{dx^i}{dt} \right) = 0,$$

where

$$G^i = \frac{1}{4} g^{ij} \left([F^2]_{x^i y^j} y^k - [F^2]_{x^i x^j} \right) \tag{3.6}$$
are called spray coefficients. To calculate the spray coefficients G^i, we use the relations

$$ (F^2)_{x^k} = F^2 \left(\frac{4A_{x^k}}{mA} - \frac{2\beta_{x^k}}{\beta} \right) $$

and

$$ (F^2)_{x^k y^k} = F^2 \left(\frac{4(A_0)_{y^k}}{mA} + \frac{(16 - 4m)_{A_0 A_0}}{m^2 A^2} - \frac{2(b_0)_0}{\beta^2} + \frac{6b_0 \beta_0 + A_0 b_1}{m \beta} \right). $$

In view of equations (3.6), (3.7), (3.8) and Proposition 3.1, we have

$$ G^i = \left[\frac{1}{4} \left[a_0 A^i + a_1 y^i y^j + a_2 B^i B^j + a_3 (y^i B^j + y^j B^i) \right] \times \right] $$

$$ \left[\frac{4(A_0)_0 + (16 - 4m)_{A_0 A_0}}{m A} + \frac{2(b_0)_0}{\beta^2} + \frac{6b_0 \beta_0 + A_0 b_1}{m A \beta} \right]. $$

Proposition 3.2 Let $F = F^2$ be a non-Riemannian Kropina change of an m-th root Finsler metric F on a manifold of dimension $n \geq 2$, with $m \geq 3$. Then the spray coefficients G^i of F^n are given by equation (3.9).

Remark 3.1 It is remarkable to note that the metric tensors \bar{g}_{ij} and \bar{g}_{ij} of F^n are not necessarily rational functions of y, but the spray coefficients G^i of F^n are rational functions of y.

4 Einstein metrics

For a Finsler metric $F = F(x, y)$, its Riemann curvature $R^i_k = \frac{\partial G^i}{\partial x^k} \otimes dx^k$ is defined by

$$ R^i_k = 2 \frac{\partial G^i}{\partial x^k} - y^i \frac{\partial^2 G^i}{\partial x^j \partial x^k} + 2G^i \frac{\partial^2 G^i}{\partial y^j \partial y^k} - \frac{\partial G^i}{\partial y^j} \frac{\partial G^i}{\partial y^k}. $$

The Finsler metric $F = F(x, y)$ is said to be of scalar flag curvature if there is a scalar function $K = K(x, y)$ such that

$$ R^i_k = K(x, y) F^2 \left(\delta^i_k - \frac{F_k y^i}{F} \right). $$

The Ricci curvature is the trace of the Riemann curvature, $Ric = R^i_k$. In view of the definition of Riemann curvature, Ricci curvature and Remark 3.1, we have

Lemma 4.1. Let $F = F^2$ be a non-Riemannian Kropina change of an m-th root Finsler metric F on a manifolds of dimension $n \geq 2$, with $m \geq 3$. Then R^i_k and $Ric = R^i_k$ are rational functions of y.

A Finsler metric $F = F(x, y)$ on an n-dimensional manifold M is called an Einstein metric if there is a scalar function $\lambda = \lambda(x)$ on M such that $Ric = (n - 1)\lambda F^2$. F is said to be Ricci constant (resp. flat) if $\lambda = \text{constant}$ (resp. zero).

By definition, every 2-dimensional Riemann metric is an Einstein metric, but generally not of Ricci constant. In dimension $n \geq 3$, the second Schur Lemma ensures that...
every Riemannian Einstein metric must be Ricci constant. In particular, in dimension $n = 3$, a Riemann metric is Einstein if and only if it is of constant sectional curvature.

Proof of Theorem 1.1. By Lemma 4.1, Ric is a rational function of y. Suppose F is an Einstein metric, that is $\text{Ric} = (n - 1)\lambda F^2$ and F^2 is not a rational function. Therefore $\lambda = 0$. □

In Finsler geometry, the flag curvature is an analogue of the sectional curvature from Riemannian geometry. A natural problem is to study and characterize Finsler metrics of constant flag curvature. There are only three local Riemannian metrics of constant sectional curvature, up to a scaling. However there are lots of non-Riemannian Finsler metrics of constant flag curvature. For example, the Funk metric is positively complete and non-reversible with $K = \frac{1}{4}$, and the Hilbert-Klein metric is complete and reversible with $K = 1$. Clearly, if a Finsler metric is of constant flag curvature, then it is an Einstein metric. We obtain

Corollary 4.2. Let $F = \frac{F^2}{a^2}$ be a non-Riemannian Kropina change of m-th root Finsler metric on a manifold of dimension $n \geq 2$, where $m \geq 3$. If F is of constant flag curvature K, then $K = 0$.

Example 1. Let $F = \sqrt{\sum_{i=1}^{n} (y^i)^4}$, for any fixed j, $1 \leq j \leq n$. By direct computation, we get $G^i = 0$ and $R^i_k = 0$. Thus the flag curvature of F is zero.

Example 2. Let $F = \frac{\sqrt{\sum_{i=1}^{n} (x^i)^2 (y^i)^4}}{x^j y^j}$, for any fixed j, $1 \leq j \leq n$. By direct computation, we get $\tilde{G}^i = \frac{(y^j)^2}{4x^j}$ and $\tilde{R}^i_k = 0$. Thus the flag curvature of F is zero. It is known that every Berwald metric with $K = 0$ is locally Minkowskian. So F is locally Minkowskian.

5 Weak Einstein metrics

A weakly Einstein metric is the generalization of the Einstein metric. A Finsler metric F is called a weakly Einstein metric if its Ricci curvature Ric is of the form $\text{Ric} = (n - 1)(\frac{\theta}{2} + \lambda)F^2$, where θ is a 1-form and $\lambda = \lambda(x)$ is a scalar function. In general, a weak Einstein metric is not necessarily an Einstein metric and vice versa.

Proof of Theorem 1.2. Suppose F is a weak Einstein metric, then

$$\text{Ric} = (n - 1)(\theta F + \lambda F^2),$$

where θ is an 1-form and $\lambda = \lambda(x)$ is a scalar function. By Lemma 4.1 Ric is rational function of y. If $\lambda \neq 0$, we get

$$F = \frac{-3(n-1)\theta \pm \sqrt{9(n-1)^2 \theta^2 + 4(n-1)\lambda \text{Ric}}}{2(n-1)\lambda}.$$

On the other hand, $F = \frac{(a_{11,2\ldots n}(x)y^{i_1}y^{i_2}\ldots y^{i_n})^\frac{1}{\beta}}{\beta}$, so we get...
\[
\left(a_{i_1 i_2 \ldots i_m}(x) y^{i_1} y^{i_2} \ldots y^{i_m} \right)^{\frac{1}{m}} = \left(\frac{-3(n-1)\theta \pm \sqrt{9(n-1)^2 \theta^2 + 4(n-1)\lambda \Ric}}{2(n-1)\lambda} \right) \beta.
\]

Here the left hand side is purely irrational for \(m \geq 3 \). Then the right hand side will be irrational if and only if \(\theta = 0 \). Thus we have that \(\mathcal{F} \) is an Einstein metric. Using Theorem 1.1, we obtain \(\Ric = 0 \).

\[\square\]

6 Scalar flag curvature

For a tangent plane \(P = \text{span}(y, u) \), \(y \) and \(u \) are linearly independent vectors of tangent space \(T_x M \) of \(M \) at point \(x \in M \), the flag curvature \(K = K(P, u) \) depends on plane \(P \) as well as vector \(u \in P \).

(a) A Finsler metric \(F \) is of scalar flag curvature if for any non-zero vector \(y \in T_x M \), \(K = K(x, y) \) is independent of \(P \) containing \(y \in T_x M \).

(b) \(F \) is called of almost isotropic flag curvature if \(K = \frac{3c(x)y^m}{p} + \lambda \), where \(c = c(x) \) and \(\lambda = \lambda(x) \) are some scalar functions on \(M \).

(c) \(F \) is of weakly isotropic flag curvature if \(K = \frac{3c(x)y^m}{p} + \lambda \), where \(\theta \) is an 1-form and \(\lambda = \lambda(x) \) is a scalar function.

Clearly, if a Finsler metric is of weakly isotropic flag curvature, then it is a weak Einstein metric.

Lemma 6.1. Let \(\mathcal{F} = F^2 \) be a non-Riemannian Kropina change of \(m \)-th root Finsler metric on a manifold of dimension \(n \geq 2 \), where \(m \geq 3 \). If \(\mathcal{F} \) is of almost isotropic flag curvature \(K \), then \(K = 0 \).

The S-curvature \(S = S(x, y) \) in Finsler geometry was introduced by Shen [8] as a non-Riemannian quantity, defined as
\[
S(x, y) = \frac{d}{dt} |r(\sigma(t), \dot{\sigma}(t))|_{t=0}
\]

where \(r = r(x, y) \) is a scalar function on \(T_x M \setminus \{0\} \), called distortion of \(F \) and \(\sigma = \sigma(t) \) is the geodesic with \(\sigma(0) = x \) and \(\dot{\sigma}(0) = y \). A Finsler metric \(F \) is called of isotropic S-curvature if \(S = (n+1)cF \), for some scalar function \(c = c(x) \), on \(M \).

Theorem 6.2. [5] Let \((M, F) \) be an \(n \)-dimensional Finsler manifold of scalar flag curvature \(K(x, y) \). Suppose that the S-curvature is isotropic, \(S = (n+1)c(x)F \), then there is a scalar function \(\lambda(x) \) on \(M \) such that \(K = \frac{3c(x)y^m}{p} + \lambda \). In particular, \(c(x) = c \) is a constant if and only if \(K = K(x) \) is a scalar function on \(M \).

In dimension \(n \geq 3 \), a Finsler metric \(F \) is of isotropic flag curvature if and only if \(F \) is of constant flag curvature by Schur’s Lemma. In general, a Finsler metric of weakly isotropic flag curvature and that of isotropic flag curvature are not equivalent.

Proof of Theorem 1.3. Lemma 6.1 and Theorem 6.2 yield the claimed result. \(\square \)
References

[11] H. Shimada, *On Finsler spaces with the metric $L = \sqrt[4]{a_{i_1...i_m} y^{i_1}...y^{i_m}}$*, Tensor, N. S. 33 (1979), 365-372.

Authors’ address:

Bankteshwar Tiwari and Ghanashyam Kr. Prajapati (corresponding author)
DST-CIMS, Faculty of Science, Banaras Hindu University, Varanasi-221005, India.
E-mails: banktesht@gmail.com , gsphhu@gmail.com