Notes on Finsler manifolds with a compact submanifold

Yecheng Zhu

Abstract. In this paper, we study the relationship between a Finsler manifold and its submanifolds, prove some rigidity theorems, and then obtain some results which have the form of the well-known Bonnet-Myers theorem.

Key words: Chern connection; Finsler geometry; totally geodesic; compact.

1 Introduction

Recently, there has been a surge of interest in Finsler geometry, especially in its global and analytic aspects (see [1,8,10]). One of the fundamental problems is to study the relationship between a Finsler manifold and its compact submanifolds. This study started in [3,4,5,6,9]. The purpose of this paper is to discuss some properties on a Finsler manifold with a compact submanifold.

At the beginning, using the Chern connection and the first variation formula of arc-length, we obtain the result that \(γ'(l) \) is perpendicular to \(T_{x_1}N \), where \(N \) is a submanifold of \(M \) and \(γ : [0, l] \rightarrow M \) is a shortest geodesic curve such that \(γ(0) \notin N, γ(l) = x_1 \in N \). It is noteworthy that this conclusion is the basis of the ensuing discussion.

As is known to all, the Bonnet-Myers theorem states that every geodesic of length \(\frac{l}{\sqrt{c}} \) has conjugate points and a manifold \(M \) is compact under some particular curvature conditions. Also, because totally geodesic submanifolds are the higher dimension generalizations of geodesic curves, we expect to obtain some rigidity results for Finsler manifolds with a totally geodesic submanifold. Therefore we define \(\text{Ric}_r M \) and \(K(X, H) \) by analyzing the characteristic of the flag curvature, then compute the second variation formula of arc-length. Finally we get some results similar to the Bonnet-Myers theorem.

In the end of this article we point out that to conclude our results, ” totally geodesic ” cannot be weakened to ” minimal ” submanifolds.
2 Preliminaries

Let \((M, F)\) be a \(m\)-dimensional complete connected Finsler manifold with Finsler metric \(F : TM \rightarrow [0, +\infty)\). Let \((x, v) = (x^i, v^i)\) be local coordinates on \(TM\), and \(\pi : TM \setminus 0 \rightarrow M\) be the natural projection. Then we present some fundamental quantities:

\[
g_{ij} := \frac{1}{2} \frac{\partial^2 F^2(x, v)}{\partial v^i \partial v^j}, \quad \text{(fundamental tensor)}
\]

\[
C_{ijk} := \frac{1}{4} \frac{\partial^3 F^2(x, v)}{\partial v^i \partial v^j \partial v^k}. \quad \text{(Cartan tensor)}
\]

According to [1], the pulled-back bundle \(\pi^*TM\) admits a unique linear connection, named Chern connection. Its connection forms are characterized by the following structural equations:

\[
dx^j \wedge \omega^j_i = 0, \quad \text{(Torsion freeness)}
\]

\[
dg_{ij} - g_{kj} \omega^k_i - g_{ik} \omega^k_j = 2C_{ijk} \omega^k_n + C_{ijk}, \quad \text{(Almost \(g\)-compatibility)}
\]

Let \(V = v^i \frac{\partial}{\partial x^i}\) be a non-vanishing vector field on an open subset \(U \subset M\). One can introduce a Riemannian metric \(g_V\) and a linear connection \(\nabla^V\) on the tangent bundle over \(U\) as follows:

\[
g_V(X, Y) = X^i Y^j g_{ij}(x, V), \quad \forall X = X^i \frac{\partial}{\partial x^i}, Y = Y^j \frac{\partial}{\partial x^j}
\]

\[
\nabla^V_{\frac{\partial}{\partial x^j}} \frac{\partial}{\partial x^k} = \Gamma^k_{ij}(x, V) \frac{\partial}{\partial x^k}.
\]

From the torsion freeness and \(g\)-compatibility of Chern connection, we have (see [1][12])

\[
\nabla^V_X Y - \nabla^V_Y X = [X, Y]
\]

\[
X g_V(Y, Z) = g_V(\nabla^V_X Y, Z) + g_V(Y, \nabla^V_X Z) + 2C_V(\nabla^V_X V, Y, Z),
\]

where \(C_V\) is defined by \(C_V(X, Y, Z) = X^i Y^j Z^k C_{ijk}(x, v)\).

The Chern curvature \(R^V(X, Y)Z\) for vector fields \(X, Y, Z\) on \(U\) is defined by

\[
R^V(X, Y)Z := \nabla^V_X \nabla^V_Y Z - \nabla^V_Y \nabla^V_X Z - \nabla^V_{[X,Y]} Z.
\]

For a flag \((V; \sigma)\) (or \((V; W)\)), the flag curvature \(K(V; \sigma)\) is defined as follows:

\[
K(V; \sigma) = K(V; W) := \frac{g_V(R^V(V, W)W, V)}{g_V(V, V)g_V(W, W) - g^2_V(V, W)}.
\]

where \(W\) is a tangent vector such that \(V, W\) span the two-plane \(\sigma\).
Let \(H^r \subset T_x M \) be an \(r \)-plane spanned by \(r \)-mutually orthogonal unit tangent vectors \(e_1, e_2, \ldots, e_r \in T_x M \) and \(V \in T_x M \) be a tangent vector orthogonal to \(H^r \).

Then the \(r \)-th Ricci curvature and the \(V \)-\(H^r \) flag curvature of \(M \) are defined by

\[
\begin{align*}
\text{Ric}_r M & := \sup_{1 \leq i \leq r} K(V, e_i), \\
K(V, H^r) & := \sum_{i=1}^r K(V, e_i).
\end{align*}
\]

It is obvious that \(V \)-\(H^r \) flag curvature is independent of choice of the vectors \(e_1, e_2, \ldots, e_r \). In fact, let \(b_1, b_2, \ldots, b_r \) be another orthogonal unit tangent vectors which span \(H^r \), then there exists \(\lambda_{ij} \in \mathfrak{N} \), such that \(b_i = \sum_{j=1}^r \lambda_{ij} e_j \), where \((\lambda_{ij}) \) is an orthogonal matrix. Thus

\[
\sum_{i=1}^r K(V, b_i) = \sum_{i=1}^r K(V, \sum_{j=1}^r \lambda_{ij} e_j) = \frac{1}{g_V(V, V)} \sum_{i,j,k=1}^r \lambda_{ij} \lambda_{ik} g_V(R^V(V, e_j)e_k, V)
\]

\[
= \frac{1}{g_V(V, V)} \sum_{j,k=1}^r \delta_{jk} g_V(R^V(V, e_j)e_k, V) = \sum_{j=1}^r K(V, e_j) = K(V, H^r).
\]

\section{Main theorems}

Now let us first fix \(x \in M \) and let \(N \) be a \(n \)-dimensional compact submanifold of \(M \). Then there is a point \(x_1 \in N \), such that \(d := d(x, N) = d(x, x_1) \). Let \(\gamma(t), t \in [0, d] \) be a minimizing geodesic in \(M \) parametrized by arc-length from \(x \) to \(x_1 \) such that \(\gamma \) realizes the distance from \(x \) to \(N \), then define \(V = \gamma'(t) \). First of all, we obtain an available theorem as follows:

\textbf{Theorem 3.1.} Let \((M, F) \) be a complete connected Finsler manifold, \(N \) be a compact submanifold of \(M \), and \(\gamma : [0, l] \rightarrow M \) be a geodesic such that \(\gamma(0) \notin N, \gamma(l) = x_1 \in N \). If \(\gamma \) is the shortest curve from \(\gamma(0) \) to \(N \), then \(\gamma'(l) \) is perpendicular to \(T_{x_1} M \).

\textbf{Proof.} If \(\gamma'(l) \) is not perpendicular to \(T_{x_1} M \), choose \(X \in T_{x_1} M \) such that \(g_V(\gamma'(l), X) > 0 \). Let \(c(u) \) be a curve starting from \(x_1 \) with initial tangent vector \(X \) in \(N \), then we can construct a variation \(b : [0, l] \times [-\varepsilon, \varepsilon] \rightarrow M \) such that \(b|[0,l] \times \{0\} = \tilde{\gamma}, b(0, u) = c(u), b(l, u) = \gamma(0) \). Denote \(\tilde{\gamma}_u = b|[0,l] \times u, \tilde{\gamma}_u(t, u) = \frac{\partial b}{\partial u}(t, u), \tilde{\gamma}(t, u) = \frac{\partial b}{\partial u}(t, u). \) From the first variation formula of arc-length (see [1], [11]), we have

\[
\frac{d}{du} L(\tilde{\gamma}_u)_{u=0} = \|\tilde{\gamma}\|^{-1} \int_0^l g_V(\nabla^V \tilde{\gamma}_u, \tilde{\gamma}_u) dt
\]

\[
= \|\tilde{\gamma}\|^{-1} [g_V(\tilde{\gamma}, \tilde{\gamma})]_0^l - \int_0^l g_V(\tilde{\gamma}_u, \nabla^V \tilde{\gamma}_u) dt],
\]

where \(\tilde{\gamma} \) is \(\gamma \) itself, but its direction is from \(\gamma(0) \) to \(\gamma(0) \). Since \(\gamma \) is a geodesic, then the terms \(\nabla^V \tilde{\gamma}_u|_{u=0} = 0 \) and \(g_V(\tilde{\gamma}, \tilde{\gamma})|_{u=1} = 0 \). As a result,

\[
\frac{d}{du} L(\tilde{\gamma}_u)_{u=0} = -\|\tilde{\gamma}\|^{-1} g_V(\tilde{\gamma}, \tilde{\gamma})|_{u=0} = -\|\tilde{\gamma}\|^{-1} g_V(\gamma'(l), X) < 0.
\]
Therefore, for a small \(u \), we have \(L(\tilde{\gamma}_u) < L(\tilde{\gamma}) = L(\gamma) \), which contradicts the assumption that \(\gamma \) is the shortest curve from \(\gamma(0) \) to \(N \).

Next let \(N \) be a totally geodesic submanifold, then the second fundamental form of \(N \) is zero and the tangent vector field along the geodesics in \(N \) are also the geodesics in \(M \). Take an orthogonal basic \(e_1, e_2, \ldots, e_n \) of \(T_x N \) and let \(\{E_i(t)\} \) be the parallel translate of \(\{e_i\} \) along \(\gamma \). Then set \(W_i(t) = (\sin \frac{\pi}{2}) E_i(t) \) \((i = 1, \ldots, n)\) is a vector field on \(\gamma \). Obviously, each \(W_i \) gives rise to a geodesic variation of the variational curves of the geodesic \(\gamma \) by keeping one end point \(x \) fixed and the other end point on submanifold \(N \). Let \(L_i \) be the arc-length of the variational curve induced by \(W_i \), it is easy to see that \(L_i(0) = 0 \). Now we compute \(L''_i(0) \) by using the second variation formula of arc-length (see [1][11]).

Noting that \(g(V, \nabla_V W_i)\big|_0^d = 0 \), we have

\[
L''_i(0) = \frac{d^2}{du^2} L(\gamma_u)|_{u=0} = g(V, \nabla_V W_i)|_0^d + \int_0^d [g(V, \nabla^2 V W_i) - g(V, R^V (V, W_i) W_i, V)] dt = \int_0^d [g(V, \nabla^2_V W_i) - g(V, R^V (V, W_i) W_i, V)] dt.
\]

(3.3)

Based on this argument, it can be concluded the following result:

Theorem 3.2. Let \((M, F)\) be a complete connected Finsler manifold and \(N \) be a totally geodesic compact submanifold whose dimension is \(n \). For all \(x \in M \), if \(K(\gamma'(t), H^r(t)) \geq rc > 0 \) \((r \leq n)\), along each minimizing geodesic \(\gamma \) starting from \(x \) for any \(r \)-plane \(H^r(0) \subset \gamma(0)^\perp \), then \(d(x, N) \leq \frac{\pi}{2} \sqrt{rc} \); where \(\gamma(0)^\perp \) denotes the orthogonal complement of \(\gamma(0) \) in \(T_x M \) and \(H^r(t) \) denotes the parallel translate of the plane \(H^r(0) \) \((H^r(0) \subset T_x M)\) along \(\gamma \).

Proof. Since \(K(\gamma'(t), H^r(t)) \geq rc \), for \(i_1, i_2, \ldots, i_r \in \{1, \ldots, n\}, i_j \neq i_k \) \((j \neq k)\), \(r \leq n \) and \(\gamma'(t) = V \), we have \(\sum_{j=1}^{r} g(V, R^V (V, E_{i_j}(t)) E_{i_j}(t), V) \geq rc \). As a result, we get

\[
\sum_{i=1}^{n} g(V, R^V (V, E_i(t)) E_i(t), V) = \frac{1}{r} (r \sum_{i=1}^{n} g(V, R^V (V, E_i(t)) E_i(t), V)) \geq \frac{1}{r} \cdot \frac{n}{r^2} (\sum_{1 \leq i_1 \leq i_2 \leq \cdots \leq i_r} \sum_{j=1}^{r} g(V, R^V (V, E_{i_j}(t)) E_{i_j}(t), V)) \geq \frac{n}{r c_n} \sum_{1 \leq i_1 \leq i_2 \leq \cdots \leq i_r \leq n} rc = nc.
\]

(3.4)
Let L_i be minimal, then geodesic in Ric totally geodesic compact submanifold whose dimension is n. From (3.4) and (3.5), we have

$$\sum_{i=1}^{n} L_i''(0) = \int_0^{d} \left(\sum_{i=1}^{n} g_V(\nabla^V_i W_i, \nabla^V_i W_i) - \sum_{i=1}^{n} g_V(R^V(V, W_i)W_i, V) \right) dt$$

(3.5)

$$= \int_0^{d} \left(\sum_{i=1}^{n} \left(\frac{\pi}{\sqrt{2r}} \cos \frac{\pi}{2r} \right)^2 - \sum_{i=1}^{n} \sin^2 \frac{\pi}{2r} g_V(R^V(V, E_i)E_i, V) \right) dt$$

$$= \int_0^{d} \left(\frac{\pi^2}{4r^2} \cos^2 \frac{\pi}{2r} - \sin^2 \frac{\pi}{2r} \sum_{i=1}^{n} g_V(R^V(V, E_i)E_i, V) \right) dt.$$
References

Author’s address:

Yecheng Zhu
Department of Applied Mathematics,
Anhui University of Technology,
Hudong Road. NO.59, Huashan District,
243002, Maanshan, Anhui Province, China.
E-mail: zhuyecheng929@sohu.com