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Abstract. If a (non-constant) polynomial has no zero, then a certain
Riemannian metric is constructed on the two dimensional sphere. Several
geometric arguments are then shown to contradict this fact.
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1 Introduction

In [1] the authors proved that the Gauss-Bonnet theorem implies the fundamental
theorem of algebra. In this note we present several new Riemannian geometry ar-
guments which lead also to the fundamental theorem of algebra. All the proofs are
based on the following technical result:

Lemma 1.1. If there exists an irreducible polynomial p(z) of degree n > 1, then there
exists a Riemannian metric g on the sphere S2 such that its Gaussian curvature, Kg,
vanishes identically.

This result was already proved in [1] but we state it here in a completely different
approach that, in our opinion, is more systematic than the previous one.

Clearly, the metric stated in Lemma 1.1, if it exists, it is a quite strange geometric
object. Indeed, the second step in all the proofs we present here consist of showing
that this metric cannot exist. In other words, we will point out several well-known
geometrical obstructions to the construction of a flat metric on the sphere S2.

In Section 2 we prove Lemma 1.1. Section 3 is devoted to explain the distinct
arguments leading to a proof of the fact that sphere is not flat. Finally, in Section
4 we connect our proof to the field extension version of the fundamental theorem of
algebra.
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2 Proof of Lemma 1

Assume p(z) is an irreducible polynomial of degree n > 1. This implies that the
quotient A := C[z] /〈 p(z) 〉 is a field. Furthermore, the map τ : Cn −→ A given by

τ(a0, · · · , an−1) = a0 + a1z + · · ·+ an−1z
n−1 + 〈 p(z) 〉

defines an isomorphism of complex vector spaces. In particular,

β =
{

τ(0, · · · , 1i-th position, · · · , 0)
}n

i=1

is a basis of A. Moreover, we have that τ(−w, 1, 0, · · · , 0), τ(−1, w, 0, · · · , 0) 6= 0, for
any w ∈ C. Hence

H(w) = τ(−w, 1, 0, · · · , 0) τ(−1, w, 0, · · · , 0) 6= 0.

Let M(w) be the associated matrix, with respect to the basis β above, to the complex
linear operator Lw : A −→ A given by

Lw

(
τ(a0, · · · , an−1)

)
= H(w) τ(a0, · · · , an−1).

Obviously, Lw is an isomorphism since H(w) 6= 0 and A is a field. Hence det
(
M(w)

) 6=
0 for all w. Furthermore, f(w) := det

(
M(w)

)
is a polynomial.

Now, the linearity of τ guarantees that, for all w ∈ C \ {0},

H(1/w) = τ(−1/w, 1, 0, · · · , 0) τ(−1, 1/w, 0, · · · , 0)

=
[
(1/w) τ(−1, w, 0, · · · , 0)

] [
(1/w) τ(−w, 1, 0, · · · , 0)

]

= (1/w2)H(w),

so that

f(1/w) = det
(
M(1/w)

)
= det

(
(1/w2)M(w)

)
= (1/w2n) det

(
M(w)

)
= (1/w2n)f(w).

It follows that there exists a Riemannian metric g on the sphere S2 = Ĉ = C ∪ {∞},
such that

g =
1

|f(w)| 2n |dw|2 for w ∈ C

and
g =

1
|f(1/w)| 2n |d(1/w)|2 for w ∈ Ĉ \ {0}.

Now, a simple computation shows that the Gaussian curvature Kg of g satisfies

1
|f(w)| 1n Kg =

1
n

∆log |f(w)| = 1
n

∆Re log f(w) = 0 for all w ∈ C \ {0},

since the real part of a holomorphic function must be harmonic. This obviously
implies that Kg = 0 on the whole sphere and ends the proof.
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3 The sphere is not flat

Of course, the following arguments leading the title of this section are well-known.
We recall them for sake of completeness of this note.
First argument. Any Riemannian metric on S2 must be geodesically complete,
from the Hopf-Rinow theorem. Therefore, the flat Riemannian manifold (S2, g) is
also geodesically complete, and, taking into account that S2 is connected and simply
connected, the Cartan theorem on the classification of space forms (see [2, Theorem
7.10], for instance) gives that (S2, g) should be globally isometric to Euclidean plane,
which is impossible because of the compactness of the sphere.
Second argument. The usual Riemannian metric of Gaussian curvature 1 on S2 is
locally written g0 =

(
4/(1+|w|2)2) |dw|2, w ∈ C. Therefore, the Riemannian metric g

in Lemma 1.1 is pointwise conformally related to g0, i.e., g = e2ug0, where u ∈ C∞(S2)
is non constant (note that a homothetical metric to g0 has constant positive Gaussian
curvature). Using now the relation between the Gaussian curvatures of two pointwise
conformally related metrics we get ∆0u = 1, where ∆0 is the Laplacian relative to the
metric g0. Making use again of the compactness of the sphere, the classical maximum
principle gets that u must be constant which is impossible.
Third argument [1]. As an easy consequence of the Gauss-Bonnet theorem, any
Riemannian metric on S2 has some elliptic point, i.e., a point where its Gaussian
curvature is strictly positive. Hence, the existence of the metric g in Lemma 1.1
contradicts the Gauss-Bonnet theorem.

Remark 3.1. It should be noted that is crucial for our purposes that the the Gaussian
curvature of the metric g in Lemma 1.1 is zero on all S2. Riemannian metrics on a
sphere with non-constant Gaussian curvature K such that 0 ≤ K ≤ 1 and K = 0 on
a non zero measure set are known to exist.

4 A final comment

The proof of Lemma 1.1 we have presented in this note can be adapted with no extra
effort to give a proof of the fact:

If A is a commutative C-algebra, M is a maximal ideal of A and x + M ∈
A/M is algebraic of degree n > 1 over C, then there exists a Riemannian
metric g on the sphere S2 such that Kg vanishes identically.

This, in conjunction with the arguments in previous section, leads to a new and
direct proof of the following well-known result:

Theorem 4.1 (Field extension version of FTA). Let A be a commutative C-
algebra and let M be a maximal ideal of A. If A/M is an algebraic field extension
of C (in particular, if [A/M : C] = dimC(A/M) = n < ∞, where dimC V denotes
complex dimension) then [A/M : C] = 1.
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