On the generalized timelike Bertrand curves in 5-dimensional Lorentzian space

Soley Ersoy and Abdullah Inalcik

Abstract. In this paper, a generalization of timelike Bertrand curves in 5-dimensional Lorentzian space \mathbb{R}^5_1 is introduced and the characterization of these curves is obtained. Furthermore, in 5-dimensional Lorentzian space some special Bertrand curves are defined and characterized.

Key words: Bertrand curve; Lorentzian Space.

1 Introduction

The curves are fundamental objects of differential geometry. An increasing interest of the theory of curves makes a development of special curves to be examined. The classification and characterization of curves can be done by investigating the relationship between the Frenet vectors of the curves. For example, Saint Venant proposed the question whether upon the surface generated by the principal normal of a curve, a second curve can exist which has for its principal normal of the given curve in 1845. This question was answered by Bertrand in 1850; he showed that a necessary and sufficient condition for the existence of such a second curve is that a linear relationship with constant coefficients exists between the first and second curvatures of the given original curve. The pairs of curves of this kind have been called conjugate Bertrand curves or more commonly Bertrand curves, [3], [6] and [12]. There are many works related with Bertrand curves in 3-dimensional Euclidean space and Lorentzian space, [1]-[4], [7].

In 3-dimensional Euclidean or Lorentzian space, it is well-known theorem that a curve is a Bertrand curve if and only if its curvature function k_1 and torsion function k_2 satisfy $ak_1 + bk_2 = 1$ for all $s \in \mathcal{L}$, where a and b are constant real numbers. This theorem suffices to define the curve

$$r^*(s^*) = r^*(f(s)) = r(s) + \alpha t_2(s)$$

then it is immediate that r^* is the Bertrand mate curve of r, [3], [6] and [12]. In 4-dimensional Euclidean space, generalized Bertrand curves are defined and characterized by [8]. The notion of timelike Bertrand curve stands only in \mathbb{E}^2_1 and \mathbb{E}^3_1. In
On the generalized timelike Bertrand curves in \mathbb{R}_1^5

the literature there are lots of studies in \mathbb{E}_1^5, [1], [2], [4], [5], [7], [11], etc. On the other hand Nadenik generalized the Bertrand curves in 5-dimensional Euclidean space, [9]. In these regards, we define generalized timelike Bertrand curves in 5-dimensional Lorentzian space \mathbb{R}_1^5 and give a general characterization of these curves.

2 Preliminaries

To meet the requirements in the next sections, the basic elements of the theory of curves in the Lorentzian space \mathbb{R}_1^5 are briefly presented in this section. A more complete elementary treatment can be found in [10].

Let \mathbb{R}_1^5 denote the 5-dimensional Lorentzian space, i.e., the usual vector space provided with standard flat metric given by

$$g = -dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2 + dx_5^2,$$

where $(x_1, x_2, x_3, x_4, x_5)$ is a rectangular coordinate system in \mathbb{R}_1^5. Since g is an indefinite metric, recall that a vector $v \in \mathbb{R}_1^5$ can have one of three Lorentzian causal characters: it can be spacelike if $g(v, v) > 0$ or $v = 0$, timelike if $g(v, v) < 0$ and null (lightlike) if $g(v, v) = 0$ and $v \neq 0$. The norm of $v \in \mathbb{R}_1^5$ is defined as $|v| = \sqrt{|g(v, v)|}$. Therefore, v is a unit vector if $g(v, v) = \pm 1$. Furthermore, vectors v and w are said to be orthogonal if $g(v, w) = 0$, [10].

An arbitrary curve $r = r(s)$ in \mathbb{R}_1^5 can locally be spacelike, timelike or null (lightlike) if all of its velocity vectors $v^r(s)$ are, respectively, spacelike, timelike or null (lightlike). The velocity of the curve r is given by $|v^r|$. Thus, a timelike curve r is said to be parametrized by arc length function if $g(r^r, r^r) = -1$, [10].

Let r be a timelike curve parametrized by arc length function s and $\{t_1(s), t_2(s), t_3(s), t_4(s), t_5(s)\}$ denotes the moving Frenet frame along the curve r in the 5-dimensional Lorentzian space \mathbb{R}_1^5, then the following Frenet formulae of the timelike curve r holds

$$
\begin{pmatrix}
 t_1' \\
 t_2' \\
 t_3' \\
 t_4' \\
 t_5'
\end{pmatrix} =
\begin{pmatrix}
 0 & k_1 & 0 & 0 & 0 \\
 k_1 & 0 & k_2 & 0 & 0 \\
 0 & -k_2 & 0 & k_3 & 0 \\
 0 & 0 & -k_3 & 0 & k_4 \\
 0 & 0 & 0 & -k_4 & 0
\end{pmatrix}
\begin{pmatrix}
 t_1 \\
 t_2 \\
 t_3 \\
 t_4 \\
 t_5
\end{pmatrix},
$$

where non-zero scalar functions k_1, k_2, k_3 and k_4 are the first, second, third and fourth curvatures of r, respectively, [10].

3 Generalized Timelike Bertrand Curves in \mathbb{R}_1^5

Let r and r^* be timelike curves with arc length parameter s and s^* in 5-dimensional Lorentzian space \mathbb{R}_1^5. These curves are parametrically given by

$$
(3.1) \quad r = r(s) \quad \text{and} \quad r^* = r^*(s^*),
$$

respectively. Let t_i and t_i^*, $1 \leq i \leq 5$, respectively, be the Frenet vectors fields of timelike curves r and r^* such that t_1 and t_1^* are timelike unit tangent vector fields of
\(r \) and \(r^* \). Moreover, let \(k_1k_2k_3k_4k_5k_6 \neq 0 \), where \(k_\nu \) and \(k_\nu^* \), \(1 \leq \nu \leq 4 \), are the \(\nu^{th} \) curvature function of the curves given by the equation (3.1), respectively.

In these regards, the definition of the curve mate (3.1) to be Bertrand curve mate can be given as follows:

Definition 3.1. Let \(r (r : I \to \mathbb{R}_1^5) \) be a timelike curve and \(r^* (r^* : I^* \to \mathbb{R}_1^5) \) be another timelike curve. If there is a bijection

\[
f : I \to I^*, \ s \to s^* = f(s), \quad \frac{ds^*}{ds} \neq 0,
\]

and Frenet 5-frames of these curves at the corresponding points \(r(s) \) and \(r^*(s^*) \) construct invariant volume under this map with respect to Lorentzian motion group, then the curve \(r = r(s) \) is called timelike Bertrand curve and the curve \(r^* = r^*(s^*) \) is called timelike conjugate Bertrand curve of \(r \). Also the curve mate \((r, r^*) \) is called generalized timelike Bertrand curve mate.

Theorem 3.1. Let the curves \((r, r^*) \) be generalized timelike Bertrand mate in \(\mathbb{R}_1^5 \) given by

\[
r^* = r + \sum_{i=1}^{5} \mu_i t_i.
\]

Then, there are the relations between the Frenet vector fields of the curves if there exist the constant real numbers \(\mu_i, a_i, b_i, c_i, d_i, e_i \) and the function \(\varphi_i = \varphi_i(s) \neq 0 \), \(1 \leq i \leq 5 \), satisfying

\[
|\lambda_1| t_1^* = \sum_{i=1}^{5} a_i t_i, \quad \lambda_1^2 = -a_1^2 + \sum_{i=2}^{5} a_i^2,
\]

\[
|\lambda_2| t_2^* = \sum_{i=1}^{5} b_i t_i, \quad \lambda_2^2 = -b_1^2 + \sum_{i=2}^{5} b_i^2,
\]

\[
|\lambda_3| t_3^* = \sum_{i=1}^{5} c_i t_i, \quad \lambda_3^2 = -c_1^2 + \sum_{i=2}^{5} c_i^2,
\]

\[
|\lambda_4| t_4^* = \sum_{i=1}^{5} d_i t_i, \quad \lambda_4^2 = -d_1^2 + \sum_{i=2}^{5} d_i^2,
\]

\[
|\lambda_5| t_5^* = \sum_{i=1}^{5} e_i t_i, \quad \lambda_5^2 = -e_1^2 + \sum_{i=2}^{5} e_i^2,
\]

where, for \(2 \leq h \leq 4 \),

\[
a_1 |\varphi_1| = 1 + \mu_2 k_1, \quad a_h |\varphi_1| = \mu_{h-1} k_{h-1} - \mu_{h+1} k_h, \quad a_5 |\varphi_1| = \mu_4 k_4.
\]
(3.10) \[b_1 \varphi_2 = a_2 k_1, \quad b_2 |\varphi_2| = a_{h-1} k_{h-1} - a_{h+1} k_h, \quad b_5 |\varphi_2| = a_4 k_4, \]

\[c_1 |\varphi_3| = b_2 k_1 - a_1 \left(\frac{\lambda^2}{\lambda^2} \right) |\varphi_2|, \]

\[c_h |\varphi_3| = b_{h-1} k_{h-1} - b_{h+1} k_h - a_h \left(\frac{\lambda^2}{\lambda^2} \right) |\varphi_2|, \]

\[c_5 |\varphi_3| = b_4 k_4 - a_5 \left(\frac{\lambda^2}{\lambda^2} \right) |\varphi_2|, \]

\[d_1 |\varphi_4| = c_2 k_1 + b_1 \left(\frac{\lambda^2}{\lambda^2} \right) |\varphi_3|, \]

\[d_h |\varphi_4| = c_{h-1} k_{h-1} - c_{h+1} k_h + b_h \left(\frac{\lambda^2}{\lambda^2} \right) |\varphi_3|, \]

\[d_5 |\varphi_4| = c_4 k_4 + b_5 \left(\frac{\lambda^2}{\lambda^2} \right) |\varphi_3|, \]

Moreover, arc length parameter of the timelike curve \(r^* \) is \(s^* = |\lambda_1| \int |\varphi_1| ds \), and \(v^\text{th} \) curvature of the timelike curve \(r^* \) is

\[k_v^* = \left| \frac{\lambda_{v+1} \varphi_{v+1}}{\lambda_1 \varphi_1} \right|, \quad 1 \leq v \leq 4. \]

Proof. Since the unit Frenet vectors \(t_i \) and \(t_i^* \) (1 ≤ i ≤ 5) are orthogonal to each other and the Frenet 5-frames of \(r \) and \(r^* \) construct invariant volume with respect to Lorentzian motion group, then \(t_i^* = \sum_{i=1}^{5} \gamma_{ji} t_i, 1 \leq j \leq 5 \), where \(\gamma_{ji} \) are constants and \((\gamma_{ji}) \) is an orthogonal matrix. The Frenet formulae of the curves given by the equation (3.1) are as follows;

\[\frac{dr}{ds} = t_1, \quad \frac{dt_1}{ds} = k_1 t_2, \quad \frac{dt_2}{ds} = k_1 t_1 + k_2 t_3, \]

\[\frac{dt_3}{ds} = -k_{h-1} t_{h-1} + k_h t_{h+1}, \quad \frac{dt_4}{ds} = -k_{h+1} t_{h+1}, \]

\[\frac{dr^*}{ds} = t_1^*, \quad \frac{dt_1^*}{ds} = k_1^* t_2, \quad \frac{dt_2^*}{ds} = k_1^* t_1 + k_2^* t_3, \]

\[\frac{dt_3^*}{ds} = -k_{h-1}^* t_{h-1}^* + k_h^* t_{h+1}^*, \quad \frac{dt_4^*}{ds} = -k_{h+1}^* t_{h+1}^*. \]

By differentiating the equation (3.3) with respect to arc length parameter \(s \),

\[\frac{dr^*}{ds} = r^* + \sum_{i=1}^{5} \mu_i t_i \frac{dr^*}{ds} \frac{ds}{ds} = t_1 + \mu_1 k_1 t_2 + \mu_2 (k_1 t_1 + k_2 t_3) + \mu_3 (-k_2 t_2 + k_3 t_3) + \mu_4 (-k_3 t_3 + k_4 t_5) + \mu_5 (-k_4 t_4). \]
The differentiation of the above equation with respect to k gives

\begin{equation}
(3.20)
\end{equation}

By substituting the Frenet formulae given by (3.15) into the last equation, we get

The first curvature of the timelike curve r^* is obtained and by arranging the last equation, it is found that

\begin{equation}
(3.17)
\end{equation}

Some simplifying assumptions are made for the sake of brevity as follows:

\begin{align*}
a_1 &= \frac{1 + \mu_2 k_1}{|\varphi_1|}, \\
a_2 &= \frac{\mu_1 k_1 - \mu_3 k_2}{|\varphi_1|}, \\
a_3 &= \frac{\mu_2 k_2 - \mu_4 k_3}{|\varphi_1|}, \\
a_4 &= \frac{\mu_3 k_3 - \mu_5 k_4}{|\varphi_1|}, \\
a_5 &= \frac{\mu_4 k_4}{|\varphi_1|}.
\end{align*}

Then, we can rewrite the equation (3.17) as

\begin{equation}
(3.19)
\end{equation}

The arc length parameter s^* of the timelike curve r^* is given by $s^* = \int \left\| \frac{ds^*}{ds} \right\| ds$, where $f : I \rightarrow I^*$, $s \rightarrow s^* = f(s)$. Thus, it is obtained that

\begin{equation}
(3.18)
\end{equation}

For the sake of brevity, if $|a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2| = |\lambda_1|$ is taken, then we infer $s^* = |\lambda_1| \int |\varphi_1| ds$. The unit tangent vector of the curve r^* at each point $r^*(f(s))$ is given by $|\lambda_1| t^*_1 = \sum_{i=1}^{5} a_i t_i$. Here $|a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2| = \lambda_1^2$ and (3.4) is proved.

The differentiation of the above equation with respect to s leads to $|\lambda_1| t^*_1 = \sum_{i=1}^{5} a_i t_i$. By substituting the Frenet formulae given by (3.15) into the last equation, we get

\begin{equation}
(3.19)
\end{equation}

The first curvature of the timelike curve r^* is

\begin{equation}
(3.20)
\end{equation}

So, by using the equation (3.18), $k_1^* = \frac{1}{|\lambda_2^2\varphi_2|} \sqrt{K_1}$, where

\begin{equation}
(3.20)
\end{equation}

If we take $\sqrt{K_1} = |\lambda_2\varphi_2|$, then we get the first curvature of the timelike curve r^* as

\begin{equation}
(3.20)
\end{equation}
If we rewrite the equation (3.18) with respect to the equations (3.16) and (3.20), we obtain
\[|\lambda_2 \varphi_2| t_2^* = a_2 k_1 t_1 + (a_1 k_1 - a_3 k_2) t_2 + (a_2 k_2 - a_4 k_3) t_3 + (a_3 k_3 - a_5 k_4) t_4 + a_4 k_4 t_5, \]
that is,
\[|\lambda_2| t_2^* = \frac{a_2 k_1}{|\varphi_2|} t_1 + \frac{a_1 k_1 - a_3 k_2}{|\varphi_2|} t_2 + \frac{a_2 k_2 - a_4 k_3}{|\varphi_2|} t_3 + \frac{a_3 k_3 - a_5 k_4}{|\varphi_2|} t_4 + \frac{a_4 k_4}{|\varphi_2|} t_5. \]
By using the abbreviations
\[b_1 = \frac{a_2 k_1}{|\varphi_2|}, \quad b_2 = \frac{a_1 k_1 - a_3 k_2}{|\varphi_2|}, \quad b_3 = \frac{a_2 k_2 - a_4 k_3}{|\varphi_2|}, \quad b_4 = \frac{a_3 k_3 - a_5 k_4}{|\varphi_2|}, \quad b_5 = \frac{a_4 k_4}{|\varphi_2|}, \]
we obtain
\[|\lambda_2| t_2^* = \sum_{i=1}^{5} b_i t_i, \]
such that \(|-b_1^2 + b_2^2 + b_3^2 + b_4^2 + b_5^2| = \lambda_2^2 \). Thus, (3.5) is proved. If we differentiate the equation (3.5) with respect to arc length parameter \(s \), we get
\[|\lambda_2| f'(s) \frac{dt_2^*}{ds} \bigg|_{s=f(s)} = \sum_{i=1}^{5} b_i t_i'. \]
If we substitute Frenet formulae given by (3.15) into the last equation
\[(3.21) \quad |\lambda_2 \lambda_1 \varphi_1| \frac{dt_2^*}{ds} \bigg|_{s=f(s)} = b_2 k_1 t_1 + \sum_{h=2}^{4} (b_{h-1} k_{h-1} - b_{h+1} k_h) t_h + b_4 k_4 t_5. \]
Since the second curvature of the timelike curve \(r^* \) is
\[k_2^* = \left\| \frac{dt_2^*}{ds} \bigg|_{s=f(s)} + k_1^* t_1^* \right\| \]
then, by the aid of the equations (3.4) and (3.21), it we infer
\[k_2^* = \frac{1}{|\lambda_2 \lambda_1 \varphi_1|} \sqrt{K_2}, \]
where
\[K_2 = \left| -\left(\frac{\lambda_2^2 |\varphi_2| a_1}{\lambda_1^2} - b_2 k_1 \right)^2 + \sum_{h=2}^{4} \left(\frac{\lambda_2^2 |\varphi_2| a_{h-1}}{\lambda_1^2} + b_{h-1} k_{h-1} - b_{h+1} k_h \right)^2 + \right. \]
\[+ \left(\frac{\lambda_2^2 |\varphi_2| a_5}{\lambda_1^2} + b_4 k_4 \right)^2 \].
If we take \(\sqrt{K_2} = |\lambda_3 \varphi_3| \), then we get
\[(3.23) \quad k_2^* = \frac{|\lambda_3 \varphi_3|}{|\lambda_2 \lambda_1 \varphi_1|}. \]
If we substitute the equality of the curvature function \(k_2^* \) and the Frenet formulae (3.16) into the equation (3.21), we have
\[|\lambda_3 \varphi_3| t_3^* = b_2 k_1 t_1 + \sum_{h=2}^{4} (b_{h-1} k_{h-1} - b_{h+1} k_h) t_h + b_4 k_4 t_5 - \left(\frac{\lambda_2^2 |\varphi_2|}{\lambda_1^2} \right) \sum_{i=1}^{5} a_i t_i, \]
In order to get fourth curvature function k^*_4, after similar calculations, we infer that $|\lambda_4| t_4^*$ is equal to

\[
\left(c_2 k_1 + b_1 \left(\frac{\lambda_2^2}{\lambda_1^2} \right) |\varphi_2| \right) t_1 + \sum_{h=2}^4 \left(c_{h-1} k_{h-1} - c_{h+1} k_h + b_h \left(\frac{\lambda_2^2}{\lambda_1^2} \right) |\varphi_2| \right) t_h + \left(c_4 k_4 + b_5 \left(\frac{\lambda_2^2}{\lambda_1^2} \right) |\varphi_2| \right) t_5 \]

and substituting the equations (3.5) and (3.21) into the equation (3.25), we find

\[
k^*_3 = \frac{\lambda_4 \varphi_4}{\lambda_3 \lambda_1 \varphi_1}.
\]
If we take
\[d_1 = \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_3|, \quad d_2 = \left(\frac{c_1 k_1 - c_3 k_2 + b_2 \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_3|}{|\varphi_4|} \right), \quad d_3 = \left(\frac{c_2 k_2 - c_4 k_3 + b_3 \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_3|}{|\varphi_4|} \right), \]
\[d_4 = \left(\frac{c_3 k_3 - c_5 k_4 + b_4 \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_3|}{|\varphi_4|} \right), \quad d_5 = \left(\frac{c_4 k_4 + b_5 \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_3|}{|\varphi_4|} \right), \]
we obtain the equation (3.7). By substituting the equation (3.15) into the differentiation of equation (3.7),
\[(3.27) \quad |\lambda_4 \lambda_1 \varphi_1| \left| \frac{dt_i^*}{ds} \right|_{s^* = f(s)} = d_2 k_1 t_1 + \sum_{h=2}^{4} (d_h - 1 k_h - d_h + 1 k_h) t_h + d_4 k_4 t_5 \]
is found. Finally, the fourth curvature function of \(r^* \) is
\[(3.28) \quad k^*_4 = \left\| \frac{dt_i^*}{ds} \right|_{s^* = f(s)} + k_4^* t_4^* \right\| . \]
The equations (3.6) and (3.28) give us \(k^*_4 = \frac{1}{|\lambda_4 \lambda_1 \varphi_1|} \sqrt{K_4} \), where
\[K_4 = \left| \left(d_2 k_1 + c_1 \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_4| \right)^2 + \sum_{h=2}^{4} (d_h - 1 k_h - d_h + 1 k_h + c_h \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_4|)^2 + \left(d_4 k_4 + c_5 \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_4| \right)^2 \right| . \]
If we take into consideration the abbreviation \(\sqrt{K_4} = |\lambda_5 \varphi_5| \), we find that
\[(3.29) \quad k^*_4 = \left| \frac{\lambda_5 \varphi_5}{\lambda_4 \lambda_1 \varphi_1} \right| . \]
Moreover, by the aid of the equations (3.28), (3.29) and (3.15), we have
\[|\lambda_5 \varphi_5| t^*_4 = d_2 k_1 t_1 + (d_1 k_1 - d_3 k_3) t_2 + (d_2 k_2 - d_4 k_4) t_3 + (d_3 k_3 - d_5 k_5) t_4 + d_4 k_4 t_5 + \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_4| \sum_{i=1}^{5} c_i t_i . \]
Finally, if we take into consideration
\[e_1 = \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_3|, \quad e_2 = \left(\frac{d_1 k_1 - d_3 k_3 + c_2 \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_3|}{|\varphi_5|} \right), \quad e_3 = \left(\frac{d_2 k_2 - d_4 k_4 + c_3 \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_3|}{|\varphi_5|} \right), \]
\[e_4 = \left(\frac{d_3 k_3 - d_5 k_5 + c_4 \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_3|}{|\varphi_5|} \right), \quad e_5 = \left(\frac{d_4 k_4 + c_5 \left(\frac{\lambda_3}{\lambda_4} \right) |\varphi_3|}{|\varphi_5|} \right), \]
we obtain
\[|\lambda_5| t^*_4 = \sum_{i=1}^{5} e_i t_i \]
such as \(|e_2^2 + e_3^2 + e_4^2 + e_5^2 - e_1^2| = \lambda_5^2 \). Thus, (3.8) is proved. From the equations (3.20), (3.23), (3.26) and (3.29) we infer that the \(\nu^{th} \) curvature function of conjugate timelike Bertrand curve \(r^* \) of timelike curve \(r \) is
\[k^*_\nu = \left| \frac{\lambda_{\nu+1} \varphi_{\nu+1}}{\lambda_{\nu} \lambda_1 \varphi_1} \right|, \quad 1 \leq \nu \leq 4. \]
3.1 Some special timelike Bertrand curves in \mathbb{R}^5_1

In 5-dimensional Lorentzian space \mathbb{R}^5_1, there are three types special Bertrand curves that are defined and characterized in the following theorems. These theorems can be proved by similar calculations in the proof of Theorem 3.1.

Firstly, by taking $\mu_1 = \mu_3 = \mu_4 = \mu_5 = 0$, $\mu_2 \neq 0$ in (3.3) parametric representation of generalized timelike Bertrand curve mate $r = r(s)$ and $r^* = r^*(s^*)$ in 5-dimensional Lorentzian space \mathbb{R}^5_1, we can investigate a timelike Bertrand curve mate in \mathbb{R}^5_1, which is the well-known parametrization of timelike Bertrand curve mate in \mathbb{R}^3_1.

Theorem 3.2. If the curve mate (r, r^*) is timelike Bertrand curve mate in \mathbb{R}^5_1 given by $r^* = r + \mu_2 t_2$, then

$$\begin{align*}
|\lambda_1| t_1^* &= a_1 t_1 + a_2 t_3, \quad \lambda_2^2 = -a_1^2 + a_2^2 + a_3^2, \\
|\lambda_2| t_2^* &= b_2 t_2 + b_4 t_4, \quad \lambda_3^2 = b_2^2 + b_4^2, \\
|\lambda_3| t_3^* &= c_1 t_1 + c_3 t_3 + c_5 t_5, \quad \lambda_4^2 = -c_1^2 + c_3^2 + c_5^2, \\
|\lambda_4| t_4^* &= d_2 t_2 + d_4 t_4, \quad \lambda_5^2 = d_2^2 + d_4^2, \\
|\lambda_5| t_5^* &= e_1 t_1 + e_3 t_3 + e_5 t_5, \quad \lambda_6^2 = -e_1^2 + e_3^2 + e_5^2
\end{align*}$$

where μ_2 and a_i, b_i, c_i, d_i, e_i are non-zero constants and $\varphi_1 = \varphi_1(s)$, $(1 \leq i \leq 5)$ is non-zero function satisfying

$$
\begin{align*}
a_1 |\varphi_1| &= 1 + \mu_2 k_1, \quad a_3 |\varphi_1| = \mu_2 k_2, \quad b_2 |\varphi_2| = a_1 k_1 - a_2 k_2, \quad b_4 |\varphi_2| = a_2 k_2 - a_5 k_3, \\
c_1 |\varphi_1| &= b_2 k_1 - a_1 \frac{\lambda_2^2}{\lambda_1^2} |\varphi_1|, \quad c_3 |\varphi_3| = b_2 k_2 - b_4 k_3 - a_3 \frac{\lambda_3^2}{\lambda_1^2} |\varphi_2|, \quad c_5 |\varphi_3| = b_4 k_4, \\
d_2 |\varphi_1| &= c_1 k_1 - c_3 k_3 - b_2 \frac{\lambda_2^2}{\lambda_1^2} |\varphi_3|, \quad d_4 |\varphi_4| = c_3 k_3 - c_5 k_4 + b_4 \frac{\lambda_4^2}{\lambda_1^2} |\varphi_3|, \\
e_1 |\varphi_5| &= d_2 k_1 + c_1 \frac{\lambda_2^2}{\lambda_1^2} |\varphi_4|, \quad e_3 |\varphi_5| = d_2 k_2 - d_4 k_3 + c_5 \frac{\lambda_5^2}{\lambda_1^2} |\varphi_4|, \quad e_5 |\varphi_5| = d_4 k_4 + c_5 \frac{\lambda_5^2}{\lambda_1^2} |\varphi_4|.
\end{align*}$$

Here the the arc length parameter of the timelike curve r^* is $s^* = |\lambda_1| \int |\varphi_1| \, ds$ and the v^{th} curvature of the curve r^* is

$$k^*_v = \frac{|\lambda_{v+1} \varphi_{v+1}|}{\lambda_v \lambda_1 \varphi_1}, \quad 1 \leq v \leq 4.$$

Secondly, let us consider $\mu_1 \mu_3 \mu_5 \neq 0$ and $\mu_2 = \mu_4 = 0$ in the (3.3) parametric representation of Bertrand curve mate $r = r(s)$ and $r^* = r^*(s^*)$. The characterization of such Bertrand curve mate in \mathbb{R}^5_1 is given in the following theorem.

Theorem 3.3. If the curve mate (r, r^*) is timelike Bertrand curve mate in \mathbb{R}^5_1 given by $r^* = r + \mu_1 t_1 + \mu_3 t_3 + \mu_5 t_5$, then

$$\begin{align*}
|\lambda_1| t_1^* &= a_1 t_1 + a_2 t_2 + a_4 t_4, \quad \lambda_2^2 = -a_1^2 + a_2^2 + a_4^2, \\
|\lambda_2| t_2^* &= b_1 t_1 + b_3 t_3 + b_5 t_5, \quad \lambda_3^2 = -b_1^2 + b_3^2 + b_5^2, \\
|\lambda_3| t_3^* &= c_1 t_1 + c_3 t_3 + c_5 t_5, \quad \lambda_4^2 = -c_1^2 + c_3^2 + c_5^2, \\
|\lambda_4| t_4^* &= d_1 t_1 + d_3 t_3 + d_5 t_5, \quad \lambda_5^2 = -d_1^2 + d_3^2 + d_5^2, \\
|\lambda_5| t_5^* &= e_1 t_1 + e_3 t_3 + e_5 t_5, \quad \lambda_6^2 = -e_1^2 + e_3^2 + e_5^2
\end{align*}$$
where

\[
\begin{align*}
& a_1 |\varphi_1| = 1, \quad a_2 |\varphi_1| = \mu_1 k_1 - \mu_3 k_2, \quad a_4 |\varphi_1| = \mu_3 k_3 - \mu_5 k_4, \\
& b_1 |\varphi_2| = a_2 k_1, \quad b_2 |\varphi_2| = a_1 k_1, \quad b_3 |\varphi_2| = a_2 k_2 - a_4 k_3, \quad b_5 |\varphi_2| = a_4 k_4, \\
& c_1 |\varphi_3| = b_2 k_1 + a_1 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_2|, \quad c_2 |\varphi_3| = b_1 k_1 - b_3 k_2 + a_2 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_2|, \\
& c_3 |\varphi_3| = b_2 k_2, \quad c_4 |\varphi_3| = b_3 k_3 - b_5 k_4 + a_4 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_2|, \\
& d_1 |\varphi_4| = c_2 k_1 + b_1 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_3|, \quad d_2 |\varphi_4| = c_1 k_1 - c_3 k_2 + b_2 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_3|, \\
& d_3 |\varphi_4| = c_2 k_2 - c_3 k_3 + b_3 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_3|, \quad d_5 |\varphi_4| = c_4 k_4 + b_5 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_3|, \\
& e_1 |\varphi_5| = d_2 k_1 + c_1 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_4|, \quad e_2 |\varphi_5| = d_1 k_1 - d_3 k_2 + c_2 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_4|, \\
& e_3 |\varphi_5| = d_2 k_2 + c_3 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_4|, \quad e_4 |\varphi_5| = d_3 k_3 - d_5 k_4 + c_4 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_4|.
\end{align*}
\]

Also, the arc length parameter of the conjugate timelike Bertrand curve \(r^* \) is \(s^* = |\lambda_1| \int |\varphi_1| \, ds \), and \(\nu^{th} \) curvature of the curve \(r^* \) is

\[
k^*_\nu = \left| \frac{\lambda_{n+1} \varphi_{v+1}}{\lambda_n \lambda_1 \varphi_1} \right|, \quad 1 \leq v \leq 4.
\]

Lastly, let \(\mu_2 \neq 0, \mu_4 \neq 0 \) and \(\mu_1 = \mu_3 = \mu_5 = 0 \) for the Bertrand curve mate \(r = r(s) \) and \(r^* = r^*(s^*) \) with parametrization (3.3). The characterization of such Bertrand curve mate in \(R^5_1 \) is given in the following theorem.

Theorem 3.4. In 5-dimensional Lorentzian space \(R^5_1 \), if timelike Bertrand curve mate \((r, r^*) \) is given by \(r = r + \mu_2 t_2 + \mu_4 t_4 \), then

\[
\begin{align*}
& |\lambda_1| t_1^* = a_1 t_1 + a_3 t_3 + a_5 t_5, \quad \lambda_1^2 = -a_1^2 + a_3^2 + a_5^2, \\
& |\lambda_2| t_2^* = b_2 t_2 + b_4 t_4, \quad \lambda_2^2 = b_2^2 + b_4^2, \\
& |\lambda_3| t_3^* = c_1 t_1 + c_3 t_3 + c_5 t_5, \quad \lambda_3^2 = -c_1^2 + c_3^2 + c_5^2, \\
& |\lambda_4| t_4^* = d_2 t_2 + d_4 t_4, \quad \lambda_4^2 = d_2^2 + d_4^2, \\
& |\lambda_5| t_5^* = e_1 t_1 + e_3 t_3 + e_5 t_5, \quad \lambda_5^2 = -e_1^2 + e_3^2 + e_5^2,
\end{align*}
\]

where

\[
\begin{align*}
& a_1 |\varphi_1| = (1 + \mu_2 k_1), \quad a_3 |\varphi_1| = (\mu_2 k_2 - \mu_4 k_3), \quad a_5 |\varphi_1| = \mu_4 k_4, \\
& b_2 |\varphi_2| = (a_1 k_1 - a_3 k_3), \quad b_3 |\varphi_2| = (a_3 k_3 - a_5 k_4), \\
& c_1 |\varphi_3| = b_2 k_1 - a_1 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_2|, \quad c_3 |\varphi_3| = b_1 k_1 - b_3 k_2 + a_2 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_2|, \\
& c_5 |\varphi_3| = b_4 k_4 - a_5 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_2|, \\
& d_2 |\varphi_4| = c_1 k_1 - c_3 k_3 + b_2 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_3|, \quad d_4 |\varphi_4| = c_2 k_2 - b_4 k_3 - a_3 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_2|, \\
& e_1 |\varphi_5| = d_2 k_1 + c_1 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_4|, \quad e_3 |\varphi_5| = d_3 k_3 - d_5 k_4 + c_3 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_3|, \\
& e_5 |\varphi_5| = d_4 k_4 + c_5 \left(\frac{\lambda^2}{\lambda_1^2} \right) |\varphi_4|.
\end{align*}
\]

Here, arc length parameter of timelike curve and the \(\nu^{th} \) curvature function of timelike Bertrand conjugate curve \(r^* \) is \(s^* = |\lambda_1| \int |\varphi_1| \, ds \), and

\[
k^*_\nu = \left| \frac{\lambda_{n+1} \varphi_{v+1}}{\lambda_n \lambda_1 \varphi_1} \right|, \quad 1 \leq v \leq 4,
\]

respectively.
References

[7] R. Lopez, Differential Geometry of Curves and Surfaces in Lorentz-Minkowski space, Mini-Course taught at the Instituto de Matematica e Estatistica (IME-USP) University of Sao Paulo, Brazil, October 18, 2008.

Authors’ addresses:

S. Ersoy
Department of Mathematics, Faculty of Arts Sciences, Sakarya University, 54187 Sakarya, Turkey.
E-mail: sersoy@sakarya.edu.tr

A. Inalcik
Department of Mathematics, Faculty of Arts Sciences, Artvin Çoruh University, Artvin, Turkey.
E-mail: abdullahinalcik@artvin.edu.tr