Warped product semi-slant submanifolds of trans-Sasakian manifolds

Siraj Uddin and Khalid Ali Khan

Abstract. In the present paper, we study warped product semi-slant submanifolds of trans-Sasakian manifolds. We have obtained results on the existence of warped product semi-slant submanifolds of trans-Sasakian manifolds in term of the canonical structure F.

Key words: Warped product; doubly warped product; slant submanifold; semi-slant submanifold; trans-Sasakian manifold; canonical structure.

1 Introduction

The notion of semi-slant submanifolds of almost Hermitian manifolds was introduced by N. Papaghuic [14]. In fact, semi-slant submanifolds in almost Hermitian manifolds are defined on the line of CR-submanifolds. In the setting of almost contact metric manifolds, semi-slant submanifolds are defined and investigated by J.L. Cabrerizo et. al [4].

In [13] J.A. Oubina studied a new class of almost contact metric structure, called trans-Sasakian which is, in some sense, an analogue of a locally conformal Kaehler structure on an almost Hermitian manifold.

On the other hand, in Gray-Hervella classification of almost Hermitian manifolds [7], there appears a class W_4, of Hermitian manifolds which are closely related to a locally conformal Kaehler manifolds. An almost contact metric structure on a manifold M is called trans-Sasakian structure [13] if the product manifold $M \times \mathbb{R}$ belongs to class W_4. In [6], the authors introduced two subclasses of trans-Sasakian structure, the C_5 and C_6-structures, which contains the Kenmotsu and Sasakian structures, respectively. The class $C_6 \oplus C_5$ [11] coincides with the class of trans-Sasakian of type (α, β). We note that the trans-Sasakian structures of type $(0,0)$, $(0, \beta)$ and $(\alpha,0)$ are cosymplectic [3], β–Kenmotsu and α–Sasakian [8], respectively.

Warped product manifolds were introduced by R.L. Bishop and B. O’Neill in [2]. The problem of existence or non-existence of warped product manifolds plays some important role in differential geometry and physics. The study of warped product semi-slant submanifolds of Kaehler manifolds was introduced by B. Sahin [15]. Later, K.A. Khan et.al studied warped product semi-slant submanifolds in cosymplectic
manifolds and showed that there exist no proper warped product semi-slant submanifolds in the forms $N_T \times fN_\theta$ and reversing the two factors in cosymplectic manifolds [9].

Recently, M. Atceken proved that the warped product submanifolds of the types $M = N_\theta \times fN_T$ and reversing the two factors in cosymplectic manifolds [9].

Recently, M. Atceken proved that the warped product submanifolds of the types $M = N_\theta \times fN_T$ and reversing the two factors in cosymplectic manifolds [9].

In this paper, we have obtained some results for the existence of warped product semi-slant submanifolds of trans-Sasakian manifolds.

2 Preliminaries

Let \tilde{M} be a $(2m + 1)$-dimensional manifold with almost contact structure (ϕ, ξ, η) is defined on \tilde{M} by a $(1,1)$ tensor field ϕ, a vector field ξ and the dual 1-form η of ξ, satisfying the following properties [3]

\begin{align*}
\phi^2 &= -I + \eta \otimes \xi, \quad \phi \xi = 0, \quad \eta \circ \phi = 0, \quad \eta(\xi) = 1.
\end{align*}

There always exists a Riemannian metric g on an almost contact manifold \tilde{M} satisfying the following compatibility condition

\begin{align*}
g(\phi X, \phi Y) &= g(X, Y) - \eta(X)\eta(Y).
\end{align*}

An almost contact structure (ϕ, ξ, η) is said to be normal if the almost complex structure J on the product manifold $\tilde{M} \times \mathbb{R}$ given by

\begin{align*}
J(X, f \frac{d}{dt}) &= (\phi X - f \xi, \ \eta(X) \frac{d}{dt}),
\end{align*}

has no torsion i.e., J is integrable where f is a C^∞-function on $\tilde{M} \times \mathbb{R}$, in other words the tensor $[\phi, \phi] + 2d\eta \otimes \xi$ vanishes identically on \tilde{M}, where $[\phi, \phi]$ is the Nijenhuis tensor of ϕ [17].

An almost contact metric manifold \tilde{M} is called trans-Sasakian [13] if

\begin{align*}
(\nabla_X \phi)Y &= \alpha(g(X, Y)\xi - \eta(Y)X) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X).
\end{align*}

for all $X, Y \in T\tilde{M}$, where α, β are smooth function on \tilde{M} and ∇ is the Levi-Civita connection of g and in this case we say that the trans-Sasakian structure is of type (α, β).

If $\alpha = 0$ then \tilde{M} is β-Kenmotsu manifold and if $\beta = 0$ then \tilde{M} is α-Sasakian manifold. Moreover, if $\alpha = 1$ and $\beta = 0$ then \tilde{M} is a Sasakian manifold and if $\alpha = 0$ and $\beta = 1$ then \tilde{M} is a Kenmotsu manifold. From (2.3), it follows that

\begin{align*}
\nabla_X \xi &= -\alpha \phi X + \beta(X - \eta(X)\xi).
\end{align*}

Let \tilde{M} be submanifold of an almost contact metric manifold \tilde{M} with induced metric g and if ∇ and ∇^\perp are the induced connections on the tangent bundle TM and the normal bundle $T^\perp M$ of \tilde{M}, respectively then Gauss and Weingarten formulae are given by

\begin{align*}
\nabla_X Y &= \nabla_X Y + h(X, Y)
\end{align*}
\(\nabla_X N = -A_N X + \nabla^\perp_X N \),

for each \(X, Y \in TM \) and \(N \in T^\perp M \), where \(h \) and \(A_N \) are the second fundamental form and the shape operator (corresponding to the normal vector field \(N \)) respectively for the immersion of \(M \) into \(\bar{M} \). They are related as \([17]\)

\[g(h(X,Y),N) = g(A_N X,Y), \]

where \(g \) denotes the Riemannian metric on \(\bar{M} \) as well as induced on \(M \).

For any \(X \in TM \), we write

\[\phi X = PX + FX, \]

where \(PX \) is the tangential component and \(FX \) is the normal component of \(\phi X \).

Similarly, for any \(N \in T^\perp M \), we write

\[\phi N = BN + CN, \]

where \(BN \) is the tangential component and \(CN \) is the normal component of \(\phi N \). The covariant derivatives of the tensor fields \(P \) and \(F \) are defined as

\[(\nabla_X P)Y = \nabla_X PY - P\nabla_X Y, \]

\[(\nabla_X F)Y = \nabla^\perp_X FY - F\nabla_X Y \]

for all \(X, Y \in TM \). The canonical structures \(P \) and \(F \) on a submanifold \(M \) are said to be parallel if \(\nabla P = 0 \) and \(\nabla F = 0 \), respectively.

We shall always consider \(\xi \) to be tangent to \(M \). The submanifold \(M \) is said to be invariant if \(\phi X \in TM \) for any \(X \in TM \). On the other hand \(M \) is said to be anti-invariant if \(P \) is identically zero, that is, \(\phi X \in T^\perp M \), for any \(X \in TM \).

For each non zero vector \(X \) tangent to \(M \) at \(x \), such that \(X \) is not proportional to \(\xi \), we denote by \(\theta(X) \), the angle between \(\phi X \) and \(PX \).

\(M \) is said to be slant \([5]\) if the angle \(\theta(X) \) is constant for all \(X \in TM - \{\xi\} \) and \(x \in M \). The angle \(\theta \) is called slant angle or Wirtinger angle. Obviously if \(\theta = 0 \), \(M \) is invariant and if \(\theta = \pi/2 \), \(M \) is an anti-invariant submanifold. If the slant angle of \(M \) is different from 0 and \(\pi/2 \) then it is called proper slant.

A characterization of slant submanifolds is given by the following

Theorem 2.1 \([5]\]. Let \(M \) be a submanifold of an almost contact metric manifold \(\bar{M} \), such that \(\xi \in TM \). Then \(M \) is slant if and only if there exists a constant \(\lambda \in [0,1] \) such that

\[P^2 = \lambda(-I + \eta \otimes \xi). \]

Furthermore, if \(\theta \) is slant angle, then \(\lambda = \cos^2 \theta \).

The following relations are straightforward consequences of equation (2.12):

\[g(PX,PY) = \cos^2 \theta[g(X,Y) - \eta(X)\eta(Y)] \]
Warped product semi-slant submanifolds 263

\begin{equation}
\eta(X,Y) = \sin^2 \theta \{ g(X,Y) - \eta(X)\eta(Y) \}
\end{equation}

for any \(X, Y\) tangent to \(M\).

The study of semi-slant submanifolds of almost Hermitian manifolds was introduced by N. Papaghiuc [14], which were latter extended to almost contact metric manifold by J.L. Cabrerizo et.al [4]. We say \(M\) is a semi-slant submanifold of \(\bar{M}\) if there exist an orthogonal direct decomposition of \(TM\) as

\[TM = D_1 \oplus D_2 \oplus \{\xi\}\]

where \(D_1\) is an invariant distribution i.e., \(\phi(D_1) = D_1\) and \(D_2\) is slant with slant angle \(\theta \neq 0\). The orthogonal complement of \(FD_2\) in the normal bundle \(T^\perp M\), is an invariant subbundle of \(T^\perp M\) and is denoted by \(\mu\). Thus, we have

\[T^\perp M = FD_2 \oplus \mu.\]

Similarly, we say that \(M\) is anti-slant submanifold of \(\bar{M}\) if \(D_1\) is an anti-invariant distribution of \(M\) i.e., \(\phi D_1 \subseteq T^\perp M\) and \(D_2\) is slant with slant angle \(\theta \neq 0\).

3 Warped and doubly warped product submanifolds

Let \((N_1, g_1)\) and \((N_2, g_2)\) be two Riemannian manifolds and \(f\), a positive differentiable function on \(N_1\). The warped product of \(N_1\) and \(N_2\) is the Riemannian manifold \(N_1 \times fN_2 = (N_1 \times N_2, g)\), where

\begin{equation}
g = g_1 + f^2 g_2.
\end{equation}

A warped product manifold \(N_1 \times fN_2\) is said to be trivial if the warping function \(f\) is constant. We recall the following general formula on a warped product [2].

\begin{equation}
\nabla_X V = \nabla_V X = (X \ln f)V,
\end{equation}

where \(X\) is tangent to \(N_1\) and \(V\) is tangent to \(N_2\).

Let \(M = N_1 \times fN_2\) be a warped product manifold, this means that \(N_1\) is totally geodesic and \(N_2\) is totally umbilical submanifold of \(M\), respectively.

Doubly warped product manifolds were introduced as a generalization of warped product manifolds by B. Ünal [16]. A doubly warped product manifold of \(N_1\) and \(N_2\), denoted as \(f_2N_1 \times f_1N_2\) is endowed with a metric \(g\) defined as

\begin{equation}
g = f_2^2 g_1 + f_1^2 g_2
\end{equation}

where \(f_1\) and \(f_2\) are positive differentiable functions on \(N_1\) and \(N_2\) respectively.

In this case formula (3.2) is generalized as

\begin{equation}
\nabla_X V = (X \ln f_1)V + (V \ln f_2)X
\end{equation}

for each \(X \in TN_1\) and \(V \in TN_2\) [12].

If neither \(f_1\) nor \(f_2\) is constant we have a non trivial doubly warped product \(M = f_2N_1 \times f_1N_2\). Obviously in this case both \(N_1\) and \(N_2\) are totally umbilical submanifolds of \(M\).
Theorem 3.1. There do not exist proper doubly warped product submanifolds $M = f_2.N_1 \times f_1.N_2$ of a trans-Sasakian manifold \bar{M} where N_1 and N_2 are any Riemannian submanifolds of M.

Proof. For any $X \in TN_1$ and $Z \in TN_2$ then by (3.4) we have
\[\nabla_Z X = \nabla_X Z = (X \ln f_1)Z + (Z \ln f_2)X. \]
If $\xi \in TN_1$ then above equation gives
\[(\xi \ln f_1)Z + (Z \ln f_2)\xi. \]
On the other hand, using (2.4) and the fact that ξ is tangent to N_1 we have
\[\nabla_Z \xi = -\alpha\phi Z + \beta Z. \]
By (2.5) and (2.8), we get
\[\nabla_Z \xi + h(Z, \xi) = -\alpha PZ + \beta Z. \]
Using (3.5) and then comparing the tangential and normal components we obtain
\[(\xi \ln f_1)Z + (Z \ln f_2)\xi = -\alpha PZ + \beta Z \]
and
\[h(Z, \xi) = -\alpha FZ. \]
Taking product with Z in (3.6) and using the fact that ξ, Z and PZ are orthogonal vector fields then
\[\xi \ln f_1 = \beta, \quad Z \ln f_2 = 0. \]
This shows that f_2 is constant.
Similarly, if the structure vector field ξ is tangent to N_2 and for any $X \in TN_1$ we obtain
\[\xi \ln f_2 = \beta, \quad X \ln f_1 = 0, \]
showing that f_1 is constant. This completes the proof. \qed

The following corollary is an immediate consequence of the above theorem:

Corollary 3.1. There do not exist warped product submanifolds $M = N_1 \times f_2.N_2$ of a trans-Sasakian manifold \bar{M} such that $\xi \in TN_2$, where N_1 and N_2 are any Riemannian submanifolds of M.

Thus, the only remaining case to study of warped product submanifolds $N_1 \times f_2.N_2$ of trans-Sasakian manifolds is that the structure vector field ξ tangential to the first factor i.e., $\xi \in TN_1$. In this case, first we obtain some useful formulae for later use.

Lemma 3.1. Let $M = N_1 \times f_2.N_2$ be warped product submanifolds of a trans-Sasakian manifold \bar{M} such that ξ is tangent to N_1, where N_1 and N_2 are any Riemannian submanifolds of M. Then
(i) $\xi \ln f = \beta$,
(ii) $A_{FZ}X = -Bh(X, Z)$,
(iii) \(g(h(X, Y), FZ) = g(h(X, Z), FY) \),
(iv) \(g(h(X, Z), FW) = g(h(X, W), FZ) \)

for any \(X, Y \in \mathcal{TN}_1 \) and \(Z, W \in \mathcal{TN}_2 \) where \(\beta \) is a smooth function on \(\bar{M} \).

Proof. First part follows by Theorem 3.1. Now, for any \(X \in \mathcal{TN}_1 \) and \(Z \in \mathcal{TN}_2 \) we have
\[
(\nabla_X \phi)Z = \nabla_X \phi Z - \phi \nabla_X Z.
\]
Using (2.3) and the fact that \(\xi \in \mathcal{TN}_1 \), left hand side of the above equation is zero by orthogonality of two distributions, then
\[
\nabla_X \phi Z = \phi \nabla_X Z.
\]
By (2.5), (2.6), (2.8) and (2.9) we obtain
\[
\nabla_X PZ + h(X, PZ) - A_{FZ}X + \nabla^\perp_X FZ = P\nabla_X Z + F\nabla_X Z + Bh(X, Z) + Ch(X, Z).
\]
Equating the tangential and normal components and using (3.2), we get
\[
(3.7) \quad A_{FZ}X = - Bh(X, Z)
\]
and
\[
(3.8) \quad \nabla^\perp_X FZ = (X \ln f)FZ + Ch(X, Z) - h(X, PZ).
\]
Equation (3.7) follows part (ii). Parts (iii) and (iv) follow by taking the product in (ii) with \(Y \in \mathcal{TN}_1 \) and \(W \in \mathcal{TN}_2 \), respectively. \(\square \)

In the following section we shall investigate warped product semi-slant submanifolds of trans-Sasakian manifolds.

4 Warped product semi-slant submanifolds

We have seen that the warped products of the type \(N_1 \times fN_2 \) of trans-Sasakian manifolds do not exist if the structure vector field \(\xi \) is tangent to \(N_2 \). Thus, in this section we study warped product semi-slant submanifolds \(N_1 \times fN_2 \) of trans-Sasakian manifolds only when \(\xi \in \mathcal{TN}_1 \). If the manifolds \(N_0 \) and \(N_T \) (resp. \(N_\perp \)) are slant and invariant (resp. anti-invariant) submanifolds of a trans-Sasakian manifold \(\bar{M} \), then their warped product semi-slant submanifolds may given by one of the following forms:

(i) \(N_T \times fN_0 \),
(ii) \(N_\perp \times fN_0 \),
(iii) \(N_0 \times fN_T \),
(iv) \(N_0 \times fN_\perp \).

For the warped products of the type (i), we have

Theorem 4.1. Let \(M = N_T \times fN_0 \) be warped product semi-slant submanifolds of a trans-Sasakian manifold \(M \) such that \(\xi \) is tangent to \(N_T \). Then \((\nabla_X F)Z \) lies in the invariant normal subbundle for all \(X \in \mathcal{TN}_T \) and \(Z \in \mathcal{TN}_0 \) where \(N_T \) and \(N_0 \) are invariant and proper slant submanifolds of \(M \).
Proof. For any $X \in TN_T$ and $Z \in TN_\theta$ we have
\[g(\phi \bar{\nabla}_X Z, \phi Z) = g(\bar{\nabla}_X Z, Z). \]

Then from (3.2), we obtain
\[g(\phi \bar{\nabla}_X Z, \phi Z) = (X \ln f)\|Z\|^2. \] (4.1)

On the other hand we have
\[(\bar{\nabla}_X \phi) Z = \bar{\nabla}_X \phi Z - \phi \bar{\nabla}_X Z, \]
for any $X \in TN_T$ and $Z \in TN_\theta$. Using (2.3) and the fact that ξ is in TN_T, left hand side of the above equation is zero, then
\[\phi \bar{\nabla}_X Z = \bar{\nabla}_X \phi Z. \]

Taking the product with ϕZ and then using (2.8), we get
\[g(\phi \bar{\nabla}_X Z, \phi Z) = g(\bar{\nabla}_X (PZ + FZ), PZ + FZ). \]

Then on applying (2.5) and (2.6) we obtain
\[g(\phi \bar{\nabla}_X Z, \phi Z) = g(\bar{\nabla}_X PZ, PZ) + g(h(X, PZ), FZ) \]
\[-g(A_F Z X, PZ) + g(\bar{\nabla}_X FZ, FZ). \]

Thus from (2.7) and (3.2) we have
\[g(\phi \bar{\nabla}_X Z, \phi Z) = (X \ln f)g(PZ, PZ) + g((\bar{\nabla}_X F) Z, FZ) + (X \ln f)g(FZ, FZ). \]

On using (2.13) and (2.14), we get
\[g(\phi \bar{\nabla}_X Z, \phi Z) = (X \ln f) \cos^2 \theta\|Z\|^2 + g((\bar{\nabla}_X F) Z, FZ) + (X \ln f) \sin^2 \theta\|Z\|^2, \]

or
\[g(\phi \bar{\nabla}_X Z, \phi Z) = (X \ln f)\|Z\|^2 + g((\bar{\nabla}_X F) Z, FZ). \] (4.2)

By equations (4.1) and (4.2), it follows that
\[g((\bar{\nabla}_X F) Z, FZ) = 0. \] (4.3)

for any $X \in TN_T$ and $Z \in TN_\theta$. Since N_θ is a proper slant submanifold of \tilde{M}, then (4.3) implies $(\bar{\nabla}_X F) Z \in \mu$. The proof is complete. \qed

For the warped product of the type $N_\perp \times f N_\theta$ of a trans-Sasakian manifold \tilde{M} such that $\xi \in TN_\perp$, we have the following theorem

Theorem 4.2. Let $M = N_\perp \times f N_\theta$ be warped product semi-slant submanifolds of a trans-Sasakian manifold \tilde{M} such that ξ is tangent to N_\perp. Then
\[Z \ln f = \beta \eta(Z) \] (4.4)
for any $Z \in TN_\perp$ where β is a smooth function on \bar{M} and N_\perp and N_θ are anti-invariant and proper slant submanifolds of \bar{M}, respectively.

Proof. For any $X \in TN_\theta$ and $Z \in TN_\perp$ we have

$$(\bar{\nabla}_X \phi)Z = \bar{\nabla}_X \phi Z - \phi \bar{\nabla}_X Z.$$

On using (2.5), (2.6), (2.8), (2.9) and the structure equation of trans-Sasakian and the fact that $\xi \in TN_\perp$, we obtain

$$-\eta(Z)\alpha X + \beta \eta(Z)PX = A_{FZ}X + \nabla^N_{\frac{1}{2}}FZ - P\nabla_X Z$$

$$-F\nabla_X Z - Bh(X, Z) - Ch(X, Z).$$

Equating the tangential components and using (3.2), we get

(4.5) $$\eta(Z)\alpha X + \beta \eta(Z)PX = A_{FZ}X + (Z \ln f)PX + Bh(X, Z).$$

Taking the product with PX in (4.5) and using the fact that X and PX are mutually orthogonal vector fields, then

$$\beta \eta(Z)g(PX, PX) = g(A_{FZ}X, PX) + (Z \ln f)g(PX, PX) + g(Bh(X, Z), PX).$$

Thus from (2.7) and (2.13) we get

(4.6) $$\{\beta \eta(Z) - (Z \ln f)\} \cos^2 \theta ||X||^2 = g(h(X, PX), FZ) - g(h(X, Z), FPX).$$

As N_θ is proper slant, interchanging X by PX in (4.6) and taking account of equation (2.12), we deduce that

(4.7) $$\{\beta \eta(Z) - (Z \ln f)\} \cos^2 \theta ||X||^2 = -g(h(X, PX), FZ) + g(h(PX, Z), FX).$$

On adding (4.6) and (4.7), we obtain

(4.8) $$2\{\beta \eta(Z) - (Z \ln f)\} \cos^2 \theta ||X||^2 = g(h(PX, Z), FX) - g(h(X, Z), FPX).$$

Thus by Lemma 3.1 (iv), the right hand side of the above equation is zero then we have

$$\{\beta \eta(Z) - (Z \ln f)\} \cos^2 \theta ||X||^2 = 0.$$

Since N_θ is proper slant and X is non-null, then $Z \ln f = \beta \eta(Z)$. Hence the theorem is proved. \[\square\]

Now, the case (iii) is dealt with the following

Proposition 4.1. Let \bar{M} be a $(2n+1)-$dimensional trans-Sasakian manifold and $M = N_\theta \times fN_T$ be warped product semi-slant submanifolds of \bar{M} such that ξ is tangent to N_θ. Then

(4.9) $$g((\bar{\nabla}_X F)Z, FZ) = \sec^2 \theta g((\bar{\nabla}_X F)PZ, FPZ)$$

for any $X \in TN_T$ and $Z \in TN_\theta$ where N_T and N_θ are invariant and proper slant submanifolds of \bar{M}, respectively.
Proof. Assume $M = N_{\theta} \times f N_{T}$ be warped product semi-slant submanifolds of a trans-Sasakian manifold M such that ξ is tangent to N_{θ}. Then for any $X \in TN_{T}$ and $Z \in TN_{\theta}$ we have

$$(\bar{\nabla}_X \phi)Z = \nabla_X \phi Z - \phi \nabla_X Z.$$

Since $\xi \in TN_{\theta}$ then from (2.3), (2.5), (2.6), (2.8) and (2.9), we get

$$-\eta(Z)\alpha X - \beta \eta(Z)\phi X = \nabla_X PZ + h(X, PZ) - AFZX + \nabla_X FZ - P\nabla_X Z - F\nabla_X Z - Bh(X, Z) - Ch(X, Z).$$

On comparing the tangential and normal parts we have

$$(4.10) -\eta(Z)\alpha X - \beta \eta(Z)\phi X = \nabla_X PZ - AFZX - P\nabla_X Z - Bh(X, Z)$$

and

$$(4.11) \quad (\bar{\nabla}_X F)Z = Ch(X, Z) - h(X, PZ).$$

Taking the product with FZ in (4.11) we have

$$g((\bar{\nabla}_X F)Z, FZ) = g(Ch(X, Z), FZ) - g(h(X, PZ), FZ) = g(\phi h(X, Z), \phi Z) - g(Bh(X, Z), PZ) - g(h(X, PZ), \phi Z).$$

That is,

$$(4.12) \quad g((\bar{\nabla}_X F)Z, FZ) = -g(Bh(X, Z), PZ) + g(Bh(X, PZ), Z).$$

As $\theta \neq \frac{\pi}{2}$, then substituting Z by PZ in (4.12) and using (2.12) we obtain

$$g((\bar{\nabla}_X F)PZ, FPZ) = \cos^2 \theta \{ -g(Bh(X, Z), PZ) + g(Bh(X, PZ), Z) \}.$$

Using (4.12), we get

$$g((\bar{\nabla}_X F)PZ, FPZ) = \cos^2 \theta g((\bar{\nabla}_X F)Z, FZ).$$

This proves our assertion. \hfill \Box

The case (iv) is dealt in the following Theorem.

Theorem 4.3. Let $M = N_{T} \times \perp N_{\perp}$ be warped product submanifold of a trans-Sasakian manifold M such that N_{T} an invariant submanifold tangent to ξ and N_{\perp} is an anti-invariant submanifold of M. Then $(\bar{\nabla}_X F)Z$ lies in the invariant normal subbundle for each $X \in TN_{T}$ and $Z \in TN_{\perp}$.

Proof. As $M = N_{T} \times \perp N_{\perp}$ be warped product submanifold with ξ is tangent to N_{T}, then for any $X \in TN_{T}$ and $Z \in TN_{\perp}$ we have

$$(\bar{\nabla}_X \phi)Z = \nabla_X \phi Z - \phi \nabla_X Z.$$

On using (2.3) and the fact that ξ tangential to N_{T} the left hand side of the above equation is zero. Thus, we have

$$\nabla_X \phi Z = \phi \nabla_X Z.$$
Then from (2.5) and (2.6) we obtain

\[-A_{FZ}X + \nabla_X^\perp FZ = \phi(\nabla_X Z + h(X, Z)).\]

Which on using (2.8) and (2.9) yields

\[-A_{FZ}X + \nabla_X^\perp FZ = P\nabla_X Z + F\nabla_X Z + Bh(X, Z) + Ch(X, Z).\]

From the normal components of the above equation and formula (3.2) gives

\[(4.13) \quad \nabla_X^\perp FZ = (X \ln f)FZ + Ch(X, Z).\]

Taking the product in (4.13) with FW_1 for any W_1 \in TN_\perp, we get

\[g(\nabla_X^\perp FZ, FW_1) = (X \ln f)g(FZ, FW_1) + g(Ch(X, Z), FW_1)\]

or,

\[g(\nabla_X^\perp FZ, FW_1) = (X \ln f)g(\phi Z, \phi W_1) + g(\phi h(X, Z), \phi W_1).\]

Then from (2.2) we have

\[(4.14) \quad g(\nabla_X^\perp FZ, FW_1) = (X \ln f)g(Z, W_1).\]

On the other hand for any X \in TN_T and Z \in TN_\perp we have

\[(\nabla_X F)Z = \nabla_X^\perp FZ - F\nabla_X Z.\]

Taking the product with FW_1, for any W_1 \in TN_\perp and using (3.2), we get

\[(4.15) \quad g((\nabla_X F)Z, FW_1) = g(\nabla_X^\perp FZ, FW_1) - (X \ln f)g(Z, W_1).\]

Equations (4.14) and (4.15), it follows that

\[(4.16) \quad g((\nabla_X F)Z, FW_1) = 0,\]

for any X \in TN and Z, W_1 \in TN_\perp. Now, if W_2 \in TN_T then using the formula (2.11), we get

\[g((\nabla_X F)Z, \phi W_2) = g(\nabla_X^\perp FZ, \phi W_2) - g(F\nabla_X Z, \phi W_2).\]

As N_T is an invariant submanifold then \phi W_2 \in TN_T for any W_2 \in TN_T, thus using the fact that the product of tangential component with normal is zero, we obtain that

\[(4.17) \quad g((\nabla_X F)Z, \phi W_2) = 0,\]

for any X, W_2 \in TN_T and Z \in TN_\perp. Thus from equations (4.16) and (4.17) it follows that (\nabla_X F)Z \in \mu. This proves the theorem completely.

Acknowledgement. The authors are thankful to the referee for his valuable suggestions and comments.
References

Authors’ addresses:

Siraj Uddin
Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
E-mail: siraj.ch@gmail.com

Khalid Ali Khan
School of Engineering & Logistics, Faculty of Technology, Charles Darwin University, NT-0909, Australia.
E-mail: khalid.mathematics@gmail.com