On the m-projective curvature tensor of a Kenmotsu manifold

S.K. Chaubey and R.H. Ojha

Abstract. In this paper, we study the properties of the M–projective curvature tensor in Riemannian and Kenmotsu manifolds.

Key words: Riemannian manifold; Kenmotsu manifold; M–projective curvature tensor; η–Einstein manifold and irrotational M–projective curvature tensor.

1 Introduction

Let M_n be an n–dimensional differentiable manifold of differentiability class C^{r+1} with a (1,1) tensor field ϕ, the associated vector field ξ, a contact form η and the associated Riemannian metric g. In 1958, Boothby and Wong [1] studied odd dimensional manifolds with contact and almost contact structures from topological point of view. Sasaki and Hatakeyama [14] re-investigated them using tensor calculus in 1961. In 1972, K. Kenmotsu studied a class of contact Riemannian manifold and call them Kenmotsu manifold [7]. He proved that if a Kenmotsu manifold satisfies the condition $R(X,Y).R = 0$, then the manifold is of negative curvature -1, where R is the Riemannian curvature tensor of type $(1,3)$ and $R(X,Y)$ denotes the derivation of the tensor algebra at each point of the tangent space. In 1963, Kobayashi and Nomizu [8] shown that any two simply connected complete Riemannian manifolds of constant curvature k are isometric to each other. A space form (i.e., a complete simply connected Riemannian manifold of constant curvature) is said to be elliptic, hyperbolic or euclidean according as the sectional curvature tensor is positive, negative or zero [2]. The properties of Kenmotsu manifold have been studied by several authors such as De [3], Sinha and Srivastava [15], Jun, De and Pathak [6], De and Pathak [4], De, Yildiz and Yaliniz [5], Çiğhan and De [12] and many others.

In this paper, we studied the properties of the Kenmotsu manifold equipped with M–projective curvature tensor. Section 2 consist the basic definitions of the Kenmotsu and η–Einstein manifolds. Section 3 is the study of M–projective curvature tensor in the Riemannian manifold and obtain the relation between different curvature tensors. In section 4, we prove that an n–dimensional Kenmotsu manifold M_n is M–projectively flat if and only if it is either locally isometric to the hyperbolic space $H^n(-1)$ or M_n has constant scalar curvature $-n(n-1)$. Section 5 deals
with \(W^* (\xi, X) \cdot R = 0 \) and obtain some interesting results. In section 6, we proved that the \(M \)-projective curvature tensor in an \(\eta \)-Einstein Kenmotsu manifold \(M_n \) is irrotational if and only if it is locally isometric to the hyperbolic space \(H^n (-1) \).

2 Preliminaries

If on an odd dimensional differentiable manifold \(M_n \), \(n = 2m + 1 \), of differentiability class \(C^{r+1} \), there exist a vector valued real linear function \(\phi \), a 1-form \(\eta \), the associated vector field \(\xi \) and the Riemannian metric \(g \) satisfying

\[
\phi^2 X = -X + \eta(X) \xi, \tag{2.1}
\]

\[
\eta(\phi X) = 0, \tag{2.2}
\]

\[
g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y), \tag{2.3}
\]

for arbitrary vector fields \(X \) and \(Y \), then \((M_n, g) \) is said to be an almost contact metric manifold and the structure \(\{\phi, \eta, \xi, g\} \) is called an almost contact metric structure to \(M_n \) [9].

In view of (2.1), (2.2) and (2.3), we find

\[
\eta(\xi) = 1, \quad g(X, \xi) = \eta(X), \quad \phi(\xi) = 0. \tag{2.4}
\]

If moreover,

\[
(D_X \phi)(Y) = -g(X, \phi Y)\xi - \eta(Y) \phi X, \tag{2.5}
\]

and

\[
D_X \xi = X - \eta(X) \xi, \tag{2.6}
\]

where \(D \) denotes the operator of covariant differentiation with respect to the Riemannian metric \(g \), then \((M_n, \phi, \xi, \eta, g) \) is called a Kenmotsu manifold [7]. Also, the following relations hold in Kenmotsu manifold [5], [4], [6]

\[
R(X, Y) \xi = \eta(X) Y - \eta(Y) X, \tag{2.7}
\]

\[
R(\xi, X) Y = \eta(Y) X - g(X, Y) \xi, \tag{2.8}
\]

\[
S(X, \xi) = -(n - 1) \eta(X), \tag{2.9}
\]

\[
\eta(R(X, Y) Z) = \eta(Y) g(X, Z) - \eta(X) g(Y, Z), \tag{2.10}
\]

for arbitrary vector fields \(X, Y, Z \).

A Kenmotsu manifold \((M_n, g) \) is said to be \(\eta \)-Einstein if its Ricci-tensor \(S \) takes the form

\[
S(X, Y) = ag(X, Y) + b\eta(X) \eta(Y) \tag{2.11}
\]
for arbitrary vector fields X, Y; where a and b are functions on (M, g). If $b = 0$, then η–Einstein manifold becomes Einstein manifold. Kenmotsu [7] proved that if (M, g) is an η–Einstein manifold, then $a + b = -(n - 1)$.

In view of (2.4) and (2.11), we have

$$QX = aX + b\eta(X)\xi,$$

where Q is the Ricci operator defined by

$$S(X, Y) \overset{\text{def}}{=} g(QX, Y).$$

Again, contracting (2.12) with respect to X and using (2.4), we have

$$r = na + b.$$

Now, substituting $X = \xi$ and $Y = \xi$ in (2.11) and then using (2.4) and (2.9), we obtain

$$a + b = -(n - 1).$$

Equations (2.14) and (2.15) gives

$$a = \left(\frac{r}{n-1} + 1\right) \quad \text{and} \quad b = -\left(\frac{r}{n-1} + n\right).$$

3 The M-projective curvature tensor

In 1971, G. P. Pokhariyal and R. S. Mishra [13] defined a tensor field W^* on a Riemannian manifold as

$$W^*(X, Y)Z = R(X, Y)Z - \frac{1}{2(\alpha - 1)}[S(Y, Z)X - S(X, Z)Y]$$

so that

$$'W^*(X, Y, Z, U) \overset{\text{def}}{=} g(W^*(X, Y)Z, U) = 'W^*(Z, U, X, Y)$$

and

$$'W_{ijkl}^* w_{ij}^k w^k = 'W_{ijkl} w_{ij}^k w^k,$$

where $'W_{ijkl}^*$ and $'W_{ijkl}$ are components of $'W^*$ and $'W$ respectively and w_{kl} is a skew-symmetric tensor [10], [16]. Such a tensor field W^* is known as M–projective curvature tensor. Second author [11], [10] defined and studied the properties of M–projective curvature tensor in Sasakian and Kähler manifolds. He has also shown that it bridges the gap between conformal curvature tensor, con-harmonic curvature tensor and con-circular curvature tensor on one side and H–projective curvature tensor on the other.

The Weyl projective curvature tensor W, con-circular curvature tensor C and conformal curvature tensor V are given by [9]

$$W(X, Y)Z = R(X, Y)Z - \frac{1}{n-1} \{S(Y, Z)X - S(X, Z)Y\}.$$
On the m-projective curvature tensor

\begin{equation}
C(X,Y)Z = R(X,Y)Z - \frac{r}{n(n-1)} \{ g(Y,Z)X - g(X,Z)Y \}
\end{equation}

\begin{equation}
V(X,Y)Z = R(X,Y)Z - \frac{1}{n-2} [S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY] + \frac{r}{(n-1)(n-2)} \{ g(Y,Z)X - g(X,Z)Y \}
\end{equation}

Theorem 3.1. The M-projective and Weyl projective curvature tensors of the Riemannian manifold M_n are linearly dependent if and only if M_n is an Einstein manifold.

Proof. We consider,

$$W^*(X,Y)Z = \alpha W(X,Y)Z,$$

where α being any non-zero constant. In view of (3.1) and (3.2), above equation becomes

\begin{align*}
(1 - \alpha)R(X,Y)Z &+ \left(\frac{\alpha}{n-1} - \frac{1}{2(n-1)} \right) \{ S(Y,Z)X - S(X,Z)Y \} \\
&- \frac{1}{2(n-1)} \{ g(Y,Z)QX - g(X,Z)QY \} = 0
\end{align*}

Contracting last result with respect to X, we get

\begin{equation}
S(Y,Z) = \frac{r}{n} g(Y,Z) \iff QY = \frac{r}{n} Y,
\end{equation}

which gives the first part of the theorem. In consequence of (3.1), (3.2) and (3.5), we obtain the converse part of the theorem. \qed

Theorem 3.2. The necessary and sufficient condition for a Riemannian manifold to be an Einstein manifold is that the M-projective curvature tensor W^* and concircular curvature tensor C are linearly dependent.

Proof. Let

$$W^*(X,Y,Z) = \alpha C(X,Y,Z),$$

where α is a non-zero scalar. In consequence of (3.1) and (3.3), above equation becomes

\begin{align*}
(1 - \alpha)R(X,Y,Z) &- \frac{1}{2(n-1)} [S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY] \\
&\quad - g(X,Z)QY + \frac{\alpha r}{n(n-1)} [g(Y,Z)X - g(X,Z)Y] = 0.
\end{align*}

Contracting above with respect to X, we obtain (3.5). Converse part is obvious from (3.1), (3.3) and (3.5). \qed

Theorem 3.3. A Riemannian manifold becomes an Einstein manifold if and only if conformal and M-projective curvature tensors of the manifold are linearly dependent.

The proof is straightforward as theorem (3.4).

Corollary 3.4. In an n-dimensional Riemannian manifold M_n, the following are equivalent

(i) M_n is an Einstein manifold,
(ii) M-projective and Weyl projective curvature tensors are linearly dependent.
(iii) M-projective and Con-circular curvature tensors are linearly dependent.
(iv) M-projective curvature and conformal curvature tensors are linearly dependent.
4 \(M\)-projectively flat Kenmotsu manifolds

In view of \(W^* = 0\), (3.1) becomes

\[
(4.1) \quad R(X,Y)Z = \frac{1}{2(n-1)} [S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY].
\]

Replacing \(Z\) by \(\xi\) in (4.1) and then using (2.4), (2.7) and (2.9), we obtain

\[
(n-1)(\eta(X)Y - \eta(Y)X) = \eta(Y)QX - \eta(X)QY.
\]

Again putting \(Y = \xi\) in the above relation and using (2.4) and (2.9), we have

\[
(4.2) \quad QX = -(n-1)X \iff S(X,Y) = -(n-1)g(X,Y)
\]

and

\[
(4.3) \quad r = -n(n-1).
\]

In consequence of (4.2), (4.1) becomes

\[
(4.4) \quad R(X,Y)Z = -\{g(Y,Z)X - g(X,Z)Y\}.
\]

A space form is said to be hyperbolic if and only if the sectional curvature tensor is negative [2]. Thus, we can state

Theorem 4.1. An \(n\)-dimensional Kenmotsu manifold \(M_n\) is \(M\)-projectively flat if and only if it is either locally isometric to the hyperbolic space \(H^n(-1)\) or \(M_n\) has constant scalar curvature \(-n(n-1)\).

5 An \(\eta\)-Einstein Kenmotsu manifold satisfying a certain condition

In view of (2.4), (2.8), (2.11), (2.12) and (2.16), (3.1) becomes

\[
(5.1) \quad W^*(\xi,X)Y = \frac{1}{2} \left\{ 1 + \frac{1}{n-1} \left(\frac{r}{n-1} + 1 \right) \right\} \{\eta(Y)X - g(X,Y)\xi\}.
\]

Now, we have

\[
\]

\[
- R(Y,W^*(\xi,X)Z)U - R(Y,Z)W^*(\xi,X)U.
\]

In consequence of \(W^*(\xi,X).R = 0\), (5.2) becomes

\[
W^*(\xi,X)R(Y,Z)U - R(W^*(\xi,X)Y,Z)U
\]

\[
- R(Y,W^*(\xi,X)Z)U - R(Y,Z)W^*(\xi,X)U = 0.
\]
On the m-projective curvature tensor

In view of (2.4), (2.7), (2.8), (2.10) and (5.1), last result becomes

\[
\frac{1}{2} \left\{ 1 + \frac{1}{n-1} \left(\frac{r}{n-1} + 1 \right) \right\} \left[\eta(R(Y, Z)U)X - 'R(Y, Z, U, X)\xi \right.
\]
\[- \eta(Y)R(X, Z)U + g(X, Y)R(\xi, Z)U - \eta(Z)R(Y, X)U
\]
\[+ \ g(X, Z)R(Y, \xi)U - \eta(U)R(Y, Z)X + g(X, U)R(Y, Z)\xi \right]\ = 0,
\]

where

(5.2) \quad 'R(X, Y, Z, U) \overset{\text{def}}{=} g(R(X, Y)Z, U).

Taking inner-product of above with respect to the Riemannian metric \(g\) and then using (2.4) and (2.10), we have

\[
\frac{1}{2} \left\{ 1 + \frac{1}{n-1} \left(\frac{r}{n-1} + 1 \right) \right\} \left[-'R(Y, Z, U, X) - g(X, Y)g(Z, U) + g(X, Z)g(Y, U) \right] = 0
\]

\[\implies \ 'R(Y, Z, U, X) = g(X, Z)g(Y, U) - g(X, Y)g(Z, U).
\]

Using (2.4) and (5.2) in the above equation, we obtain

(5.3) \quad R(Y, Z)U = g(Y, U)Z - g(Z, U)Y.

Contracting (5.3) with respect to the vector field \(Y\), we find

(5.4) \quad S(Z, U) = -(n-1)g(Z, U),

which gives

(5.5) \quad QZ = -(n-1)Z

and

(5.6) \quad r = -n(n-1).

In view of (2.4), (5.1), (5.3), (5.4) and (5.5), (5.2) gives \(W^* (\xi, X)R = 0\). Thus, consequently we state

Theorem 5.1. An \(n\)–dimensional \(\eta\)–Einstein Kenmotsu manifold \(M_n\) satisfies the condition \(W^* (\xi, X)R = 0\) if and only if either \(M_n\) is locally isometric to the hyperbolic space \(H^n(-1)\) or \(M_n\) has constant scalar curvature tensor \(-n(n-1)\).

In the light of Corollary (3.4) and theorem (4.1), theorem (5.1) state

Corollary 5.2. An \(n\)–dimensional \(\eta\)–Einstein Kenmotsu manifold \(M_n\) satisfies \(W^* (\xi, X)R = 0\) if and only if it is Conformally flat.
6 The irrotational M–projective curvature tensor

Definition 6.1. - Let D be a Riemannian connection, then the rotation (Curl) of M–projective curvature tensor W^* on a Riemannian manifold M_n is defined as

$$\text{Rot}W^* = (D_UW^*)(X,Y)Z + (D_XW^*)(U,Y)Z + (D_YW^*)(X,U)Z - (D_ZW^*)(X,Y)U.$$

(6.1)

In consequence of Bianchi’s second identity for Riemannian connection D, (6.1) becomes

$$\text{Rot}W^* = -(D_ZW^*)(X,Y)U.$$

(6.2)

If the M–projective curvature tensor is irrotational, then curl W^*=0 and therefore

$$(D_ZW^*)(X,Y)U = 0,$$

which gives

Replacing $U = \xi$ in (6.3), we have

$$(6.4) \quad D_Z(W^*(X,Y)\xi) = W^*(D_ZX,Y)\xi + W^*(X,D_ZY)\xi + W^*(X,Y)D_Z\xi.$$

Now, substituting $Z = \xi$ in (3.1) and using (2.4), (2.7) and (2.9), we obtain

$$(6.5) \quad W^*(X,Y)\xi = k[\eta(X)Y - \eta(Y)X],$$

where

$$(6.6) \quad k = \frac{1}{2} \left\{ 1 + \frac{1}{n-1} \left(\frac{r}{n-1} + 1 \right) \right\}.$$

Using (6.5) in (6.4), we obtain

$$(6.7) \quad W^*(X,Y)Z = k[g(X,Z)Y - g(Y,Z)X].$$

Also equations (3.1) and (6.7) gives

$$k[g(X,Z)Y - g(Y,Z)X] = R(X,Y)Z - \frac{1}{2(n-1)}[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY].$$

Contracting above equation with respect to the vector X and then using (6.6), we find

$$(6.8) \quad S(Y,Z) = -(n-1)g(Y,Z) \iff QY = -(n-1)Y,$$

which gives

$$(6.9) \quad r = -n(n-1).$$

In consequence of (3.1), (6.6), (6.7), (6.8) and (6.9), we can find

$$(6.10) \quad R(X,Y)Z = -[g(Y,Z)X - g(X,Z)Y].$$

Thus, we can state
Theorem 6.2. The M–projective curvature tensor in an \(\eta\)–Einstein Kenmotsu manifold \(M_n\) is irrotational if and only if it is locally isometric to the hyperbolic space \(H^n(−1)\).

Theorem 5.1 together with Theorem 6.2 lead to

Corollary 6.3. An \(n\)–dimensional \(\eta\)–Einstein Kenmotsu manifold \(M_n\) satisfies \(W^*(\xi, X).R = 0\) if and only if the \(M\)–projective curvature tensor is irrotational.

Corollary 6.4. The \(M\)–projective curvature tensor in an \(\eta\)–Einstein Kenmotsu manifold \(M_n\) is irrotational if and only if the manifold is conformally flat.

References

Authors’ address:

S.K. Chaubey and R.H. Ojha
Department of Mathematics, Faculty of Science,
Banaras Hindu University-221005, India.
E-mail: sk22.math@yahoo.co.in ; rh_ojha@rediffmail.com