On weak symmetries of almost $r-$paracontact Riemannian manifold of $P-$Sasakian type

Nesip Aktan and Ali Görgülü

Abstract. In this paper, we consider weakly symmetric and weakly Ricci-symmetric almost $r-$paracontact Riemannian manifolds of $P-$Sasakian type. We find necessary conditions in order that an almost $r-$paracontact Riemannian manifold of $P-$Sasakian type be weakly symmetric and weakly Ricci-symmetric.

Key words: $r-$paracontact Riemannian manifold, weakly symmetric, weakly Ricci-symmetric.

§ 1. Introduction

Weakly symmetric Riemannian manifolds are generalizations of locally symmetric manifolds and pseudo-symmetric manifolds. These are manifolds in which the covariant derivative DR of the curvature tensor R is a linear expression in R. The appearing coefficients of this expression are called associated 1−forms. They satisfy in the specified types of manifolds gradually weaker conditions.

Firstly, the notions of weakly symmetric and weakly Ricci-symmetric manifolds were introduced by L. Tamásy and T.Q. Binh in 1992 (see [4],[5]). In [4], the authors considered weakly symmetric and weakly projective-symmetric Riemannian manifolds. In 1993, the authors considered weakly symmetric and weakly Ricci-symmetric Einstein and Sasakian manifolds [5]. In 2000, U. C. De, T.Q. Binh and A.A. Shaikh gave necessary conditions for the compatibility of several $K-$contact structures with weak symmetry and weakly Ricci-symmetry [1]. In 2002, C. Özgür, considered weakly symmetric and weakly Ricci-symmetric Lorentzian para-Sasakian manifolds [6]. Recently in [7], C. Özgür studied weakly symmetric Kenmotsu manifolds.

In this study, we consider weakly symmetric and weakly Ricci-symmetric almost $r-$paracontact Riemannian manifold of $P-$Sasakian type.

§ 2. Preliminaries

Let (M^n, g) be an $n-$dimensional Riemann manifold. We denote by D the covariant differentiation with respect to the Riemann metric g. Then we have

$$R(X, Y)Z = DXDYZ - DYDXZ - D_{[X,Y]}Z.$$
The Riemannian curvature tensor is defined by
\[R(X, Y, Z, W) = g(R(X, Y)Z, W). \]

The Ricci tensor of \(M \) is defined by
\[\text{Ric}(X, Y) = \text{trace} \{ Z \rightarrow R(X, Z)Y \}. \]

Locally, \(\text{Ric} \) is given by
\[\text{Ric}(X, Y) = \sum_{i=1}^{n} R(X, E_i, Y, E_i), \]
where \(\{E_1, E_2, ..., E_n\} \) is a local orthonormal frames field on \(M \) and \(X, Y, Z, W \) are vector fields on \(M \).

The Ricci operator \(Q \) is a tensor field of type \((1, 1)\) on \(M \) defined by
\[g(QX, Y) = \text{Ric}(X, Y), \]
for all vector fields on \(M \).

A non-flat differentiable manifold \((M^n, g), \ (n > 2)\), is called weakly symmetric if there exist 1–forms \(\alpha, \beta, \gamma, \delta \) and \(\sigma \) on \(M \) such that
\[(D_X R)(Y, Z, U, V) = \alpha(X)R(Y, Z, U, V) + \beta(Y)R(X, Z, U, V) + \gamma(Z)R(Y, X, U, V) + \delta(U)R(Y, Z, X, V) + \sigma(V)R(Y, Z, U, X) \]
holds for any vector fields \(X, Y, Z, U, V \) on \(M \). A weakly symmetric manifold is said to be proper if \(\alpha = \beta = \gamma = \delta = \sigma = 0 \) is not the case \([1]\).

A differentiable manifold \((M^n, g), \ (n > 2)\), is called weakly Ricci-symmetric if there exist 1–forms \(\rho, \mu, \nu \) such that the relation
\[(D_X \text{Ric})(Y, Z) = \rho(X)\text{Ric}(Y, Z) + \mu(Y)\text{Ric}(X, Z) + \nu(Z)\text{Ric}(X, Y) \]
holds for all vector fields \(X, Y, Z, U, V \) on \(M \). A weakly Ricci-symmetric manifold is said to be proper if \(\rho = \mu = \nu = 0 \) is not the case \([1]\).

From (2.1), an easy calculation shows that if \(M \) is weakly symmetric then we obtain (see \([4], [5]\))
\[(D_X \text{Ric})(Z, U) = \alpha(X)\text{Ric}(Z, U) + \beta(Z)\text{Ric}(X, U) + \delta(U)\text{Ric}(Z, X) + \beta(R(X, Z)U) + \delta(R(X, U)Z). \]

\[§ \ 3. \text{ Almost } r-\text{paracontact Riemannian manifolds} \]

We need the following definition \([3]\)

Let \((M, g)\) be a Riemannian manifold with \(\dim(M) = 2n + r \) and denote by \(T(M) \) the tangent space of \(M \). Then \(M \) is said to be an almost \(r-\text{paracontact} \) Riemannian manifold if there exist on \(M \) a tensor field \(\phi \) of type \((1, 1)\) and \(r \) global vector fields \(\xi_1, ..., \xi_s \) (called structure vector fields) such that
(i) If $\eta_1, ..., \eta_r$ are dual 1-forms of $\xi_1, ..., \xi_r$, then:

\[\eta_i(\xi_j) = \delta_i^j, \quad g(\xi_i, X) = \eta_i(X) \quad \phi^2 = I - \sum_{i=1}^r \xi_i \otimes \eta_i \]

(ii)

\[g(\phi X, \phi Y) = g(X, Y) - \sum_{i=1}^r \eta_i(X) \eta_i(Y) , \]

for any $X, Y \in T(M)$, $i = 1, ..., r$.

In an almost r–paracontact Riemannian manifold M, besides the relations (3.4) and (3.5) the following also hold

\[\phi \xi = 0 \]
\[\eta \circ \phi = 0. \]

An almost r–paracontact Riemannian manifold M is said to be of P–Sasakian type if

\[D_X \xi_i = \phi X \]
\[(D_X \phi) Y = - \sum_{i=1}^r \left[g(\phi X, \phi Y) \xi_i + \eta_i(Y) \phi^2 X \right] \]

for all $X, Y \in T(M)$.

In an almost r–paracontact Riemannian manifold of P–Sasakian type M, the following hold

\[\text{Ric}(\xi_i, X) = -2n \sum_{\beta=1}^r \eta_{\beta}(X) \]
\[R(\xi_i, X) \xi_\beta = X - \sum_{\gamma=1}^r \eta_\gamma(X) \xi_\gamma \]
\[g(R(\xi_i, X)Y, \xi_\beta) = -g(X, Y) + \sum_{\gamma=1}^r \eta_\gamma(X) \eta_\gamma(Y) \]

for any vector fields $X, Y \in T(M)$.

Since ϕ and the Ricci operator Q are symmetric in an almost r–paracontact Riemannian manifold of P–Sasakian type M, $Q\phi + \phi Q = 0$ and the Lie derivative of Ric vanishes, i.e.

\[L_{\xi_\alpha} \text{Ric} = 0, \]

for any $\alpha = 1, ..., r$.
4. Weakly symmetric almost r–paracontact Riemannian manifolds of P–Sasakian type

In this chapter we investigate weakly symmetric almost r–paracontact Riemannian manifold of P–Sasakian type. We assume that the weakly symmetric manifold is almost r–paracontact Riemannian manifold of P–Sasakian type. Then we have,

Theorem 1. Any weakly symmetric almost r–paracontact Riemannian manifold of P–Sasakian type M satisfies $\alpha + \delta + \beta = 0$.

Proof. Since the manifold is weakly symmetric, from (2.3), by putting $X = \xi$, yields

$$ (D_{\xi}\text{Ric})(Z, U) = \alpha(\xi)\text{Ric}(Z, U) + \beta(Z)\text{Ric}(\xi, U) + \delta(U)\text{Ric}(Z, \xi) + \beta(R(\xi, Z)U) + \delta(R(\xi, U)Z) $$

From (3.13), it follows that

$$ (D_{\xi}\text{Ric})(Z, U) = -\text{Ric}(D_{Z}\xi, U) - \text{Ric}(Z, D_{U}\xi). $$

By virtue of (3.8), we get from

$$ (D_{\xi}\text{Ric})(Z, U) = -\text{Ric}(\phi Z, U) - \text{Ric}(Z, \phi U). $$

Now, since ϕ is skew symmetric and Ricci operator is symmetric, we obtain

$$ (D_{\xi}\text{Ric})(Z, U) = 0. $$

From (4.14) and (4.15), we have

$$ \alpha(\xi)\text{Ric}(Z, U) + \beta(Z)\text{Ric}(\xi, U) + \delta(U)\text{Ric}(Z, \xi) + \beta(R(\xi, Z)U) + \delta(R(\xi, U)Z) = 0 $$

Putting $Z = U = \xi$, in (4.16), we get

$$ \alpha(\xi)\text{Ric}(\xi, \xi) + \beta(\xi)\text{Ric}(\xi, \xi) + \delta(\xi)\text{Ric}(\xi, \xi) + \beta(R(\xi, \xi)\xi) + \delta(R(\xi, \xi)\xi) = 0. $$

And using (3.11), we have

$$ (\alpha(\xi) + \beta(\xi) + \delta(\xi))\text{Ric}(\xi, \xi) = 0. $$

which gives us

$$ \alpha(\xi) + \beta(\xi) + \delta(\xi) = 0. $$

So the vanishing of the 1-form $\alpha + \beta + \delta$ over the vector field ξ is necessary in order that M be a almost r–paracontact Riemannian manifold of P–Sasakian type.

Now we will show that $\alpha + \beta + \delta = 0$ holds for all vector fields on M.

In (2.3), taking $X = Z = \xi$, we get

$$ (D_{\xi}\text{Ric})(\xi, U) = \alpha(\xi)\text{Ric}(\xi, U) + \beta(\xi)\text{Ric}(\xi, U) + \delta(U)\text{Ric}(\xi, \xi) + \beta(R(\xi, \xi)U) + \delta(R(\xi, U)\xi). $$

From (4.19) and (3.11), we get
\[\alpha(\xi_\alpha)Ric(\xi_\alpha, U) + \beta(\xi_\alpha)Ric(\xi_\alpha, U) + \delta(U)Ric(\xi_\alpha, \xi_\alpha) + \delta(R(\xi_\alpha, U)\xi_\alpha) = 0\]
Replacing \(U\) by \(X\) in (4.19) we have
\[\alpha(\xi_\alpha)Ric(\xi_\alpha, X) + \beta(\xi_\alpha)Ric(\xi_\alpha, X) + \delta(X)Ric(\xi_\alpha, \xi_\alpha) + \delta(R(\xi_\alpha, X)\xi_\alpha) = 0.\]
In (2.3), taking \(X = U = \xi_\alpha\), we get
\[(D_{\xi_\alpha}Ric)(Z, \xi_\alpha) = \alpha(\xi_\alpha)Ric(Z, \xi_\alpha) + \beta(Z)Ric(\xi_\alpha, \xi_\alpha) + \delta(\xi_\alpha)Ric(Z, \xi_\alpha) + \beta(R(\xi_\alpha, Z)\xi_\alpha) + \delta(R(\xi_\alpha, \xi_\alpha)Z) = 0.\]
From (4.15) and (3.11), we get
\[\alpha(\xi_\alpha)Ric(Z, \xi_\alpha) + \beta(Z)Ric(\xi_\alpha, \xi_\alpha) + \delta(\xi_\alpha)Ric(Z, \xi_\alpha) + \beta(R(\xi_\alpha, Z)\xi_\alpha) = 0.\]
Replacing \(Z\) by \(X\) in (4.21) we have
\[\alpha(\xi_\alpha)Ric(X, \xi_\alpha) + \beta(X)Ric(\xi_\alpha, \xi_\alpha) + \delta(\xi_\alpha)Ric(X, \xi_\alpha) + \beta(R(\xi_\alpha, X)\xi_\alpha) = 0.\]
In (2.3), taking \(Z = U = \xi_\alpha\), we get
\[(D_XRic)(\xi_\alpha, \xi_\alpha) = \alpha(X)Ric(\xi_\alpha, \xi_\alpha) + \beta(X)Ric(\xi_\alpha, \xi_\alpha) + \delta(\xi_\alpha)Ric(\xi_\alpha, X) + \beta(R(X, \xi_\alpha)\xi_\alpha) + \delta(R(X, \xi_\alpha)\xi_\alpha).\]
We also have
\[(D_XRic)(\xi_\alpha, \xi_\alpha) = 0\]
Using (4.24) in (4.23), we have
\[\alpha(X)Ric(\xi_\alpha, \xi_\alpha) + \beta(X)Ric(\xi_\alpha, \xi_\alpha) + \delta(\xi_\alpha)Ric(\xi_\alpha, X) + \beta(R(X, \xi_\alpha)\xi_\alpha) + \delta(R(X, \xi_\alpha)\xi_\alpha) = 0.\]
Adding (4.20), (4.22) and (4.25), we obtain
\[2(\alpha(\xi_\alpha) + \beta(\xi_\alpha) + \delta(\xi_\alpha))Ric(\xi_\alpha, X) + (\alpha(X) + \delta(X) + \beta(X))Ric(\xi_\alpha, \xi_\alpha) + \delta(R(\xi_\alpha, X)\xi_\alpha) + \beta(R(\xi_\alpha, X)\xi_\alpha) + \delta(R(X, \xi_\alpha)\xi_\alpha) = 0.\]
Using (3.11) and (4.18) in (4.26) we have
\[(\alpha(X) + \delta(X) + \beta(X))Ric(\xi_\alpha, \xi_\alpha) = 0\]
Hence from (4.27), we obtain
\[(4.28)\quad \alpha(X) + \delta(X) + \beta(X) = 0 \quad \text{for all } X.\]

Thus
\[\alpha + \delta + \beta = 0.\]

Our theorem is thus proved.

§ 5. Weakly Ricci-symmetric almost \(\tau\)-paracontact Riemannian manifolds of \(P\)-Sasakian type

In this chapter we investigate weakly Ricci-symmetric almost \(\tau\)-paracontact Riemannian manifolds of \(P\)-Sasakian type. We suppose that the considered weakly Ricci-symmetric manifold is almost \(\tau\)-paracontact Riemannian manifold of \(P\)-Sasakian type. We have,

Theorem 2. Any weakly Ricci-symmetric almost \(\tau\)-paracontact Riemannian manifold of \(P\)-Sasakian type satisfies
\[(5.29)\quad (D_{\xi_{\alpha}}\text{Ric})(Y, Z) = \rho(\xi_{\alpha})\text{Ric}(Y, Z) + \mu(Y)\text{Ric}(\xi_{\alpha}, Z) + v(Z)\text{Ric}(\xi_{\alpha}, Y).\]

By virtue of (4.15) and (5.29), we have
\[(5.30)\quad \rho(\xi_{\alpha})\text{Ric}(Y, Z) + \mu(Y)\text{Ric}(\xi_{\alpha}, Z) + v(Z)\text{Ric}(\xi_{\alpha}, Y) = 0.\]

Putting \(Y = Z = \xi_{\alpha}\) in (5.30), we get
\[(5.31)\quad (\rho(\xi_{\alpha}) + \mu(\xi_{\alpha}) + v(\xi_{\alpha}))\text{Ric}(\xi_{\alpha}, \xi_{\alpha}) = 0,\]

which gives
\[(5.32)\quad \rho(\xi_{\alpha}) + \mu(\xi_{\alpha}) + v(\xi_{\alpha}) = 0.\]

In (2.2), taking \(X = Y = \xi_{\alpha}\), and using (4.15), we get
\[(5.33)\quad (D_{\xi_{\alpha}}\text{Ric})(\xi_{\alpha}, Z) = \rho(\xi_{\alpha})\text{Ric}(\xi_{\alpha}, Z) + \mu(\xi_{\alpha})\text{Ric}(\xi_{\alpha}, Z) + v(Z)\text{Ric}(\xi_{\alpha}, \xi_{\alpha}) = 0.\]

Replacing \(Z\) by \(X\) in (5.33) we have
\[(5.34)\quad (D_{\xi_{\alpha}}\text{Ric})(\xi_{\alpha}, X) = \rho(\xi_{\alpha})\text{Ric}(\xi_{\alpha}, X) + \mu(\xi_{\alpha})\text{Ric}(\xi_{\alpha}, X) + v(X)\text{Ric}(\xi_{\alpha}, \xi_{\alpha}) = 0.\]

In (2.2), taking \(X = Z = \xi_{\alpha}\), and using (4.15), we get
\[(5.35)\quad (D_{\xi_{\alpha}}\text{Ric})(Y, \xi_{\alpha}) = \rho(\xi_{\alpha})\text{Ric}(Y, \xi_{\alpha}) + \mu(\xi_{\alpha})\text{Ric}(\xi_{\alpha}, \xi_{\alpha}) + v(\xi_{\alpha})\text{Ric}(\xi_{\alpha}, Y) = 0.\]
Replacing Y by X in (5.35) we have

$$
(D_{\xi} Ric)(X, \xi) = \rho(\xi) Ric(X, \xi) + \mu(\xi)Ric(\xi, X) + v(\xi)Ric(\xi, X) = 0.
$$

(5.36)

In (2.2), taking $Y = Z = \xi$, and using (4.24), we get

$$
(D_{\xi} Ric)(\xi, \xi) = \rho(X)Ric(\xi, \xi) + \mu(\xi)Ric(X, \xi) + v(\xi)Ric(X, \xi) = 0.
$$

(5.37)

Adding (5.34), (5.36) and (5.37) and then using (4.28), we obtain

$$
2(\rho(\xi) + \mu(\xi) + v(\xi))Ric(\xi, X) + (\rho(X) + \mu(X) + v(X))Ric(\xi, \xi) = 0
$$

From this, it follows that

$$
(\rho(X) + \mu(X) + v(X))Ric(\xi, \xi) = 0.
$$

(5.38)

Hence from (5.38), we have,

$$
\rho(X) + \mu(X) + v(X) = 0, \text{ for all } X.
$$

Thus

$$
\rho + \mu + v = 0.
$$

Hence our theorem is proved.

References

Author’s address:

Nesip Aktan
Afyonkarahisar Kocatepe University, Faculty of Art and Sciences,
Department of Mathematics, Afyonkarahisar, Turkey.
e-mail: naktan@aku.edu.tr

Ali Görgülü
Eskisehir Osmangazi University, Faculty of Art and Sciences,
Department of Mathematics, Eskisehir, Turkey.
e-mail: agorgulu@ogu.edu.tr