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The theory of massive and massless fields of spin 2, after the fundamental investigations
by W. Pauli and M. Fierz, always attracted attention. The most of investigations were
performed with the use of the 2-nd ordered equations. Probably F.I. Fedorov did the first
study within the 1-st order equations. It turned out that the spin 2 particle requires for its
description a 30-component set of tensors. Besides, F.I. Fedorov proposed a more general
theory, which is based on 50-component set of tensors. It turned out that this theory
describes the spin 2 particle with anomalous magnetic moment. In the present work, we
consider this theory in presence of arbitrary electromagnetic field and any Riemannian
space-time background. First we study the 50-component theory for a massive spin 2
particle. In such a generalized framework, there arises non-minimal interaction with the
curved space-time background through Ricci and Riemann tensors. It is important that
the theory under consideration allows for a new and generalized massless limit for spin 2
field. This fact is of special interest, because as known the conventional Pauli - Fierz theory
for massless field does not possess gauge symmetry in curved space-time; in particular, in
models with zero Ricci tensor. We have shown that the a generalized theory possesses
the gauge symmetry in all space - time models for which the Ricci tensor vanishes, this
case is the most interesting in physical applications of General relativity. We study the
50-component theory for a massive spin 2 particle in presence of electromagnetic fields and
any Riemannian space-time background. Such a generalized theory describes the particle
with anomalous magnetic moment; in addition, there arises a non-minimal interaction with
the curved space-time background through Ricci and Riemann tensors.
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1 Introduction

The theory of massive and massless fields of spin 2 after fundamental investigations by Pauli and
Fierz [1], [2], always attracted attention: De Broglie [3], Fedorov et al. [4], Regge [7], Hagen [8], Cox
[9], Bogush et al [10] — [12]. The most of investigations were performed in the frames of 2-nd order
equations. Probably, Fedorov [4] did the first study within the 1-st order equations. It turned out
that the spin 2 particle requires for its description a 30-component set of tensors. Besides, Fedorov
proposed more general theory, which is based on 50-component set of tensors. It turned out that this
theory describes the spin 2 particle with anomalous magnetic moment [5,6].

In the present work, we consider this theory in presence of arbitrary electromagnetic field and
any Riemannian space-time background. First we study the 50-component theory for the massive



particle. In such a generalized theory there arises non-minimal interaction with the curved space-
time background through the Ricci and Riemann tensors. It is important that the theory under
consideration allows for a new and generalized massless limit for spin 2 field. This fact is of special
interest, because as known the conventional Pauli — Fierz theory for massless field does not possess
gauge symmetry in curved space-time, in particular, in all models with the zero Ricci tensor. We
have shown that the generalized theory possesses the gauge symmetry in all space — time models for
which the Ricci tensor vanishes, this case is the most interesting in physical applications of General
relativity.

2 The massive case

We start with the known 50-component system Fedorov et al [4]-[11] for a massive spin 2 particle
with anomalous magnetic moment!. The extension to the generally covariant case is done by simple
changing the ordinary Minkowski tensors and derivatives to covariant ones:

2 M DUV 42 X, D02 4 iM W =0, (2.1)
A3 Do¥ + 2X\4 DPW 4y +iM U =0, (2.2)
A5 Do + 226 DPW ) +iM ¥ =0, (2.3)
A7 (1) W 1 cq (1)) L N8 2) @ 1 e (2)
> (Da\I/b + Dy, — 3 gapDVUL) + 5 (Da\I/b + Dy, — 3 gap DU )
+2X9 DU (ape) — 2M10 ( DV + D Wplag ) + 1M Vi) =0, (2.4)
A1l 1 . ,
5 ( Dc\Ij(ab) — Db\Il(ac) — §gCQD \Il(mb) + ggb“D \Il(mc) ) + M \Ija[bc] =0, (25)
A
% ( Daql(bc) + Db‘ll(ca) + DC\I"(ab)
1 . 1 . 1 . ,
_g GacD \P(mb) - g 9ebD \I/(ma) - g 9ba D \Il(mc) ) + Z]\4"‘]jl(abc) =0, (26)

where D, = V,+1ieA,; V, stands for the covariant derivative, A, is an electromagnetic 4-potential, e
stands for a particle charge, A1, ..., A2 are some numerical parameters obeying the following constraints

2 8 1
2011 — §>\9)\12 =1, MAM+AA3+ —AgAi2 = -,

s 9 13 (2.7)
AMA3 + Ao ds = —— (Al)\4 + A2)\6) ()\3)\7 + )\5)‘8> - T 15
4 12

The complete field function consists of the following tensor set
v, By, Cu, \I/(ab) ) \Ila[bc} ) \Ij(abc) : (28)

In total, it contains 52 components: 1+ 4+ 4 + 10 + 24 + 8.
Recall that in the minimal 30-component theory, the set of involved tensors consists of

¢, P4, (i(ab) ) (i)[ab]c ) (29)

In Minkowski space the metric with signature +1, —1, —, —1) is applied.



The corresponding minimal system is as follows
. _ 1o 1, _
D@y~ ME=0, oDy~ DBy~ M B, =0,
_ _ 1 _
Do®y + Dy®a = - gab D+

1 = - 1 - -
+5 (DF® (g + DF P ppy — anka@[k,ﬁ )= M @) =0,

_ _ 1 _ _ _
Da®(pe) — Dy ®ac) + 3 (96eD*® (k) = Gac D @) — M Ppgpy. = 0.

Here the number of independent components equals to 30:

O(z) = 1, & = 4, P = (10-1)=9, P = 6x4-4-4=16.

(2.10)

Let us prove that excluding from the system (2.1) — (2.6) one vector and 3-rank tensor W (4., we
may reduce the resulting system to minimal form, which contains additional interaction terms with

external electromagnetic and gravitational fields.

(1)

To this end, instead of vectors ¥, ’ and \I'((f), we introduce the new variables

Ba| | M X || T oM | 1 As —X2 || Ba
Co| | A A || 0@ |7 0@ |7 M= | A&7 A || G

Then the system (2.1)—(2.6) can be presented as follows

2 DB, +im ¥ =0,

1
=7 Da¥ +2 (M + Aods) D"Wq) +iM By =0,

(A7A3 4 AsAs) DoVl + 2(AgAs + Ashg) DPW gy +iM Cy =0,

1 1
5 (Dacb + Dbca - 5 gabDCCc)

+2X\g DC\I/(abC) — 210 ( DC\I/a[bC] + DC\I/b[ac]) + 1M \Ij(ab) =0,

A1 1 1 ,
7 (Dc\lj(ab) - Db\IJ(ac) - ggcaDm\Ij(mb) + ggbaDm\I’(mc)) +iM \Ija[bc} =0,

A9 1
?[ a¥e) + Do¥cay + De¥iap) — ggacDm\Il(mb)
1 1 .

_g gcme\I](ma) - ggbaDm\Il(mc)] + +2qu(abc) =0.

Let us multiply eq. (2.14) by (A1 A4 + A2Xg). Taking in mind (2.7). We get

1
—EDG\I/ +2 (/\1)\4 + /\2)\6) ()\7)\4 + )\g)\ﬁ) Db\I/(ba) + M ()\1)\4 + )\2)\6) c,=0.

By substituting the expression of D,V from (2.13), we obtain

2 iM
—g()\l)\4 + )\2)\6) Db\I/(ba) — ? B,

+2(AM1 A1 + A2X6) (ArAg + AsAg) DY () + M (A As + Aad6)Co = 0,

whence it follows

1 2 1
By — 2 [(AAs + Ashg) — S1D"W,, ) |
EYES W iar (At Asde) = 51D W)

Ca:3

(2.11)



This relation permits us to exclude the vector C,. In particular, by substituting the above expres-
sion for C, in eq. (2.15), we derive
1
6(A1 A1 + A2X6)
1 1 1
_m (>‘7>\4 + )\8>\6) - 3:| (D D" \I](nb) + DyD" \Il(na) gabD D" qj(nc))
+2Ag DC\If(abc) —2A10 ( D° \I]a[bc} + D¢ \Ijb[ac}) + M \I](ab) =0.

1
- 5 gachBc)

(DaBb + DbBa

Thus, instead of the equations (2.12)—(2.17), we may consider the equivalent equations

2 DB, +iM U =0, (2.18)
1
=7 Da® 420 + Aa)e) D" ) +iM B, =0, (2.19)
C, = ! Ba — 2 [(Aha + Ashg) — ~]Dmw (2.20)
“T 3N+ dadg) ¢ AN T T A8 g (na) - '
;(DBﬁLDBf1 D°B,)
6(>\1>\4+>\2)\6) abb bPa 9 YJab c
1
ZM [(/\7)\4 + /\8)\6) - g] (D D" \I](nb) + Dy D" \Ij(na) gabD D" \I’(nc))
+2)g DC\I/(abC) —2X10 ( D° ‘lja[bc] + D¢ \Ijb[ac]) + M \Il(ab) =0, (2.21)
A 1 1
2 (D \Ij(ab) quj(ac) gCaD \I](mb) + gbaD \I’(mc)) +iM v albc] = 0, (222)
)\12
KN [Da¥ (pe) + Dp¥ (cay + DeW(ap)
1 1 1
a gacD \I](mb) o gcbD \Ij(ma) gbaD \Il(mc)] + lM\I}(abc) =0. (223)

3

Now, from egs. (2.22) and (2.23), let us express the 3-rank tensors W, and W), in terms of
the 2-rank tensor:

’L)\H 1 1
‘lja[bc] EIYa (D \I](ab) Db\IJ(aC) — ggcaDm\I/(mb) + ggbaDm\I'(mc) ), (2.24)
iA12
Yiabe) = 337 w17 (Da¥ (be) + Dp¥ (cq) + Do (qp)
1 1 1
_ggacDm‘lJ(mb) - ggcme\I’(ma) - ggbaDm\I’(mc))' (2'25)
Now we substitute these expressions into eq. (2.21), which yields
1 1
D.By+ DyB, — = gap DB
6()\1)\4+)\2)\6) ( abb + Db Ba 2 Gab c)

1 1 1
+M [(A7)‘4 + A8)‘6) - g] (DaDclIl(cb) + DyD° \Il(ca) gabDCD \Il(nc))

2XA12 .
+t 3M D (Da\Il(bc) + Db\p(ca) + DC\II(ab)
1 o 1
—39ac D" W) = 396D (1ma) — 5 G0aD U (me))
A0 e 1 m 1 m
—1 M [D (chj(ab) - Db\p(ac) - ggcaD \Ij(mb) + ggbaD qj(mc))

1 1 .
—i—Dc(DC‘I/(ba) — Daqj(bc) — ggcme\Ij(ma) + ggame\Ij(mc)) ] +iM \I](ab) =0.



In the last equation, we are to take into account the following constraints (see (2.7))

1 1 1 8
AoA11 = 5 + 5)\9/\12 s AMAT+ AgAg — 3= —5)\9)\12 .

We also multiply the result by —iM (for brevity let us introduce the notation AgAj2 = p). In this
way, from the last equation, we derive the following one

M
6@(/\1)\4 + /\2>\6)

8 8 4
—p Do DV () — ps Dp DV ) + Ky Gap D D"V (0

1
Y gachBc>

(DaBb + DbBa 2

9 9
S D DBy + 2 DDy gy + 15 DDty — 1o 0 DD
_M%gcchDm\I/(ma) - /’ngbaDcDm\p(mc)
—%DCDC\I/(G,,) + %DcDb\Il(ac) + %ngCquf(mb) - égbaDCDm\I/(mc)
—%DCDC\I/(M) + éDcDa\IJ(bC) + %gcbDCDm\IJ(ma) - égabDCDm\I'(mc)
_MéDCDc\IJ(ab) + N%DcDb\I’(ac) + MégcaDcDm\I’(mb) - MégbaDcDm\Ij(mc)

*%DCDC‘I’(M) + %DCDa\I](bc) + %gcbDCDm\I’(ma) - ggachDm‘I’(mc) + MUy =0, (2.26)

Then, after regrouping the terms, we derive the equation

1
61 ()\1)\4 + )\2)\6)

17 . 1
_7|:D DC\I}(ba) - 2 (D Db\p(ac) +D D \Il(bc )

1
(DaBb + DbBa - 5 gabDCBc)

M
1 . 1
+§ 9ab D" D \I/(nm) - 6 (D D™ \Il(mb) + Dy D™ (ma) ]
M C C
2 (1D, Dal =Wy + [D°, Do) - W) ) + M Wary = 0. (2.27)

Instead of definition (2.24, let us introduce a slightly new tensor variable (the numerical parameter
~ will be fixed later):

Ly 1
(I),[bc}a = (D \Ij(ab) Db\I’(ac) +3

1 m
M 9 3 = YacD \I](mb)) . (228)

game\Ij(mc) - 3

Then we readily derive the identity

(DC [bcla + D* [ac]b)

v

M[ (D°DW gy — DDy (g0 + %DCD’”\D(W) - ggc DED™ )

%(D Do () — DDy ) + g?)ﬂDCDm\II(mC) — BED D™ )| =

— AZ(DCD Vo) — fD Dy 40 — 3D D% () + %DCD’”\P(W)
ggCDCDm\II(mb) gch"’Dm\IJ(ma))



which coincides with the expression in square brackets from eq. (2.27). Therefore, eq. (2.27) may be

re-written as follows (here, we consider v = v/2):

6i </\1/\41+ /\2>\6) (DaBb + DyB, — % gabDCBC> + \}5 (chf[bc]a + ch)’[ac]b)
+ ﬁ( [D€, Da] - W 4oy + [D°, D] -V 409 ) + M Wi =0.

Hence, the system takes the form

2DB, +iM ¥ =0,

1
=7 Da? + 200 A1 + Xake) D"W ) +iM B, =0,

1 1 1
DyBy + DyBa — ~ guyD°B.) + — (D°®' D
6i ()\1/\4+)\2/\6)( aBy+ DyBa = 5 gD Be) +\/§( pela T Placp

+ 2 ([D°, Dal- W o) + (D%, D)Wy ) + M Wiy =0,

1 1 1
E(Dc\y(ab) — qu}(ac) + ggame\I’(mc) — ggacDm\Ij(mb)) + M(I)/[bc]a =0.
Instead of the variables B, and ¥, we will consider the new ones
o = — 1 U, P = ! B (let @) = () -
43N+ A2he) T VB L+ dadg) (ab) (ab)

Thus, we arrive at a modified 30-component first order system
1

—D'® +MP =0,

V2ot

1 2
7 D,® + \/gpb\y’(ba) +M®, =0,
1

1 1
(D@, + D@, — - DC<I>’> —(
\/6 ( a b+ b¥q 2 YGab c + \/5
+ £ (D€, Da] -V by + [D, Dy] - W(,py ¢+ M ¥y =0,
M (ac)

cH! can/
D (I)[bc]a+D (I)[ac]b>

1 1
ﬁ ( DC\P(ab) - Db\lj(ac) + ggabD \IJ(

Through the simple re-designation of the terms

1
le) — ggaCDm\IJ(Zb) ) +M (I);[bc} =0 ;

1 - 1 -
(ab) = 7 P (b)), Ibda = 7 Pipja -

P =—-9, v =v2d,,
The above systems gets the form:

_ _ 1 _ 1 _ _
D@, —M®=0, iDa@—be\I/(ba)—Mcﬁa:O,

3
_ T , 1 _ _
( Dy + Do0 = 5 g D®e ) + 5 ( DBy + DB )
/"L C I c - =
- M([D s Dal— @ ey + [D€, Dy - (I)(ac)> — M & =0,

_ _ 1 _ 1 _ _
DC(I)(ba) - qu)(ca) + 7gbaDm\Il(mc) - 7gcaDm\Ij(mb) -M (I)[cb]a =0.
3 3

6

(2.29)

(2.30)

(2.31)

(2.32)



Hence, by setting p = 0, we obtain the following 30-component system
0x = 1
D®, — M D=0, 3
_ _ 1 _ 1 _ _ _
( D@y + Dp®, — 5 gabDC(I)c ) + 5 ( ch)[ca]b + DC(I)[cb]a ) -M (I>(ab) =0, (233)

_ - 1 - 1 - —
Dc(p(ba) - qu)(ca) + ggbaD \I/(mc) - ggcaD \I](mb) -M (I)[cb]a =0.

Dy® — = D"y — M ®, =0,

W =

Comparing this with the system (2.10), we can see that they differ only in the third equation. It
may be readily shown that in fact the systems are equivalent. Indeed, in the fourth equation of the
system (2.10), let us perform the convolution in indices a and ¢, whence we obtain

_ _ 1 _ _ _
9% Da ®(pey — 9% Dy Pq0) + g(gac goe DF ® (1) — 9% gae D D (31)) — M g°° Doy = 0.

Because g% @ (4¢) = 0, g% gac = 4, we get @?ab} = 0, and therefore the term % Gab D° @ﬁn] from the third
equation of the system (2.10) vanishes identically. Thus, the systems (2.10) and (2.32) are equivalent.
Let us detail the additional interaction term (see the fourth equation in (2.32))

H c 8B c &
Agp = M ([D 7Da]—cb(bc) + [D 7Db]—q)(ac)>' (234)

It suffices to consider the first term
[D€, Da] - @ () = [Ve + ieAc, Va + ieda] - ®,° = (VeVa — VoVe) 0,6 +ieFeq ,°.
Taking in mind the rule
(VeVa = VaVe)Ape = —=Ank R g = Apn R o =

(VeVa = VoV A = —ARY oo — AR o,

b ca

we find (remembering the symmetry of the curvature tensor)
(VVo = VoVO) Ape = Reqon A" + A" Rna
and hence the needed commutator takes the form
(VV4 — VaV)Ppe = Reg tn @ + Ree®C . (2.35)

Therefore, we have B B B B
[D€, Do)~ @(pe) = i€Fea®y” + Req pn @ + Rac®C)

Adding the symmetric term, we find the needed expression for the above additional interaction term

Aab — % ([ch Da]—(i)(bc) + [DC, Db]—i)(ac)>
= ﬁ{ € (P Fep + ,Fea) + (Rea 5n®" 4 Rep an®™") + (Rac®®) + Rbcéca} . (2.36)

This relation means that the parameter p, which in absence of a curved space time background,
was interpreted as related to anomalous magnetic moment of the spin 2 particle, and also determines
an additional interaction with the space-time geometry through the Ricci and the Riemann curvature
tensors.



3 Massless limit, gauge solutions

The theory under consideration allows for the massless limit the new form (in comparison with the
ordinary Pauli — Fierz theory)

_ 1 _ 1 _ _
D, =0, 3 D,® — 3 D" 4y = a
_ _ 1 _ 1 _ _
(Daéb + qu)a - 5 gachcI)c) + 5 (DC(I)[ca]b + ch)[cb]a) - MAab =0 5 (3'1)

De® () — Dy®(cq) + %gbaDm\Il(mc) - égcaquj(mb) = Pl -
where
Aap = Rean®" + Repan @™ + Rac®y + Rpc®C, (3.2)
dimensions of the involved quantities are as follows

o] = (2], [Bu) = (8], [Bpuye] = |

7 u) = 1. (3.3)

These modified equations (3.1) may be of special interest because, as shown in [10], the conventional
Pauli — Fierz massless theory does not possess gauge symmetry in the curved space-time, and requires
some modification by introducing non-minimal interaction terms by hands. The problem of existence
or non-existence of the gauge symmetry in the generalized massless theory still needs additional study.
We shall further investigate it again, now starting with the system (3.1).

Because different authors use different conventions on definitions of Riemann and Ricci tensor, we
recall the definition applied in the present paper [12]:

Roc _ araa 81_‘%,0 T IW T F’Y . 3.4
Bpa_ﬁxp_(?x”—i_wﬁﬂ_ Yo Bo? (3-4)

the commutators of covariant derivatives, acting on tensors of 1-st and 2-nd ranks:

V,Vg—=Vg,V,| Ay = [V,,Vg] Aq = RUQBPAU, (3.5)
VoV, =V, Vo] Aag = Vo, V)] Aap = ngpngw + R apo Ay, (3.6)
We turn to the minimal system

Ved, =0, 3.7

| =
§Va¢ - gv (Pa[-} == @0“ (38)

Liong s 1 by O T T 1 s
5 (v By + V' Bpa — 5005V D0 ) + (va% + Vaa — 5905V @M) —0, (3.9)
_ _ 1 _ _ _

voc(I)Ba' - V,B(I)aa + § <gﬁavu¢au - gaavM(I),B,u> = q)oz/o’o" (310)

As known, the gauge solutions for main constituents are determined by the formulas (which are
obtained from those in Minkowski space by the evident covariant extension)

_ _ 1
D¢ =VFAs, B55=VaAg+Vgds — 5908V A (3.11)

where Ag(x) is an arbitrary vector field.



By simple calculations for the concomitant vector gauge component, we obtain the expression

= 1
o5 =3 (vavﬂAﬂ — VPV A, — R‘;Aa>. (3.12)
The equation V®S = 0 leads to
2
—3V* (RS 4,) =0. (3.13)

This relationship becomes identity 0 = 0, only if R,5(x) = 0.
From equation (3.10) we obtain the following expression for the gauge 3-rank tensor

‘I)aﬁa = V5 (VaAp = VgAa)

1
_g (gﬁava - gaavﬁ) v'uA;L

1
+§ (gﬁavuv,uAa — Gac V'V Aﬁ)
+R“05QAH + RuﬁaaA# - R" cmﬁA +

1
m
+§ (g,BURZA,u - gaaRBAu) . (3.14)

Now we substitute these expressions (3.12) and (3.14) in eq. (3.9). At this, we will consider

separately the part wgeo (which contains the terms with Riemann and Ricci tensors), and the part

Page (which contains the terms with covariant derivatives):

5G —~COV Tgeom
q’[aﬁ]a Plaflo + w[aﬁ]c ) (3.15)

where
(ﬁﬁfg]fa =V, (VaAg — VﬁAa)

1 1
_g (gﬂava - gaavﬁ) VNAM + g (gﬁav”vquz - gaav“vuAﬁ) ’

1
eom
Pt = R oy R g A= R s it 5 <950RZAN - gngAu) . (3.16)

J,Ba
Then eq. (3.9) may be written formally as follows
Py Ty = (3.17)

First, let us derive expression for the term ngOV We find (see eq. (3.9))

fV”LpﬁgV [V“Vﬁ (V#Aa - V#VQA#> L [VUVU, w} A+

3
1
+3 (vﬁvavma - VBVUVUAQ)} , (3.18)

1
2

v# P9 = [v“va (Vids = VuVs4,) - égaﬂ VoV, V4] 4,

% (VaVsV7 4y — VaV7V,45) | (3.19)



By applying a similar decomposition for the vector (3.12), we get

(Vas% Ry goCOV - *gagvu cov)

2
1
= 3| VaVsV7 4y = VaV7VoAs + V5VaV 4, = VsV, A,
1
5 as (V9,97 4, = VIV, 4, )| (3.20)

By summing up (3.18), (3.19) and (3.20), after regrouping the similar terms, for the covariant part
in eq. (3.9), we derive the following result

% [(V7V5V0 Ao = V5V7VoAa) + (VIVaVoAg = Va VoV, Ag) +
+(VaVsVIo Ay — VIVGV3A,) + (VsVa VI Ay — VIV 5V, A ) -
o (VIV,VFA, — VJWVMAU)] + B = (3.21)
which transforms to
%( [V, V3] Voda + [V, Val Vo Ag + [Va Vs, V] Ay + [V5Va, V] Ay
008 V7V, V] A4, ) + 9850 = (3.22)
Further, with the use of the identities

VoV, V] Ay = Vo [V, V7] Ay + [Va, V7] V54,
V5V, VO] Ay = V5 [Va, V] Ag + [V 3, V7] Vo Ao,
[VoVy, V¥ A, = V# [V, V7] Ay + [V*, V]V, Ay,

we obtain as result of eq. (3.9), the following

{%( [V, V5] Vo Ao + [V, Va] Vo Ag
+Va Vs, VI Ay + [Va, VI VsAs + V3 [Va, V] Ay
+ V5, V7] Vady + VH [V,), V7] Ag + [V9, V] V4, ) | + 0550 = (3.23)
Taking into account the formulas (3.5), we can present the terms in brackets {...} as geometrical
quantities,
[V, V3] Voo = R7, VoA, + R, 7V, Aq,
[V, Va] Vods = Ry ”v A+ RY, OV, Ag,
Vs [va,VU]A = V5 (R",7,A,),
V5, V] Vade = R7,7,Vady + R7,7,V, Ay,
Va V5, V7] Ag = Vo (R4, ).
[Va, VI VpAs = R,7 VA, + R Vo Ay,
VAV, VI Ay =V (RVUUMAW) )
[VE, V7V, Ae = R,7MV AL + RY TNV Y A, (3.24)

Then, allowing for the symmetry properties of Riemann and Ricci tensors, we arrive at
1 g ag g ag
5 [900V" (REAG) = As (VoRE + VaRG) = RE (29545 + Vudg)
~R (2Vad, — Voda) | + 0l =0, (3.25)

10



Now, we are to perform similar calculations for the geometric part wgeom.
The summands in the first brackets of (3.9) take the form

%vwgg‘g” = S 9 (R e ) + 9% (R 5,45 ) = 9 (R 5,45

+% (gaEV“ (RZA7> - Vg (Rngv)) }v
wgg;m = ; V4 (R4 ) + V9 (R, A0) =V (R,545)

1
+3 (gaW“ (RJA,) = Va <REAW>) } (3.26)
The terms in the second brackets of eq. (3.9) yield
- - 1 - 171 - " "
(voﬂzjﬁ + Vﬁ@% - §gaﬂv“¢u> - g [igaﬂv” (Rqu') - va (RBAU) — Vg (RQAU) } . (327)

Summing the last three expressions, for qﬁgeom’ we obtain

GET =V (R, Ay) + 7 (0,45 ) + %gaﬂv“ (RLAy) =
—% [Va (R3A7) + V5 (R1A,)] (3.28)

Thus, we find the form of (3.9), written with the use of Riemann and Ricci tensors

A% (RZAU) — A, (V3RS + VQR%) + V# (R"&WAL7 + RGQBMAJ)

3 lea 1 g g
-5 (RZV A, + R7 — BV As) + 3 (RIVsApg+ R3V,A,) =0 (3.29)
whence it follows
VH( ?BapAo + R o5, As )
=VH'A; (Rga, + R%0p,) + Ao (VR 50, + VIR 5,
= V' Ay (R + Rap) + {A7 (VuRY gy + ViR, ) | (3.30)
With the use of the differential Bianchi identity [12]
ViR gy + ViR 55 = VRao + VaRgs, — 2V Rap, (3.31)
the previous equation transforms to
GV (R AS) = 2% 4 Ry TP Ay (g + )
3 g ag 1 g g
) (RIV3A, + R7 — BV As) + 3 (RIVsAz + R3V,Aq) = 0; (3.32)

this is the result of eq. (3.9) for the gauge solution.
Recall that the modified system (3.1)

- 1_ -
VP, =0, —Va® —
1 ong I
9 (V Ppap +V (puﬁa)
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_ _ 1 _ _ _
+ <VQ(I>5 +Vgd, — 2gaﬁV“<I>“> — U ([V“, Va] (I)B# + [V“, Vg] (I)Otu) =0,

_ _ 1 _ _ _
vaq)ﬁa - VB(I)CM + g (gﬁavuq)a,u - gaavu@ﬁu) = (I)aﬁa
being specified for the gauge solutions differ from the initial one only by the term
—p([VH,Va] @y + [VH, V] o) ,

taking in mind that the term —% 9apVH®,,7 identically vanishes.
Let us try to find the coefficient y, in order to get the combination of Ricci and Riemann tensor
which cancel the terms with the Riemann tensor in the expression (3.32). Taking into account identities

[V, Vo] @y + [V9, V5] @y = By, + ROy + (Rp) + B ) Do (3.33)
and
R1®s, + R)®a,
= R (VgA, + Vo Ag) + R} (VaA, + Vo As) — RagV° 4, (3.34)
(Rl + B od") @ = 2V (B, + R ) + RagV7 Ay, (3.35)
we obtain

(9%, Vo] @p + [V, V5] @ = 29, (R0 + B, ) + RagV7 A,
+R), (VgA, +V,Ag) + Rg (VaA, +V,Ay) — RygV7 As (3.36)

Comparing (3.32), we conclude that the coefficient p should be taken as p = 1/2. With such a
choice of u, the equation (3.9) for gauge solutions takes the form

9ap V" (R Ag) — 2A7VoRag — 2 (R{V3As + RFVaAs) = 0. (3.37)

We immediately conclude that for the whole space-time model with vanishing Ricci tensor, the
system of massless equations (3.1) permits existence of the gauge solution - in other words, the system
possesses the gauge symmetry.
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