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Abstract. We classify almost Yamabe and Yamabe solitons on Lorentzian
para (briefly, LP) Sasakian manifolds whose potential vector field is torse-
forming, admitting a generalized symmetric metric connection of type
(a, B). Certain results of such solitons on C'R-submanifolds of L P-Sasakian
manifolds with respect to a generalized symmetric metric connection are
obtained. Finally, a non-trivial example is given to validate our some
results.

M.S.C. 2010: 53C15, 53C21, 53C25, 53C40.
Key words: Almost Yamabe soliton; torse-forming vector field; L P-Sasakian mani-
fold; C'R-submanifold; generalized symmetric metric connections of type («, 3).

1 Introduction

Much progress has been done in recent years in the study of soliton solutions of the
Ricci flow, the mean curvature flow and the Yamabe flow. Soliton solutions correspond
to self-similar solutions of the corresponding flow. The Yamabe flow,

(1) 2 gl1) = ~R(t)g(0),

where R(t) is the scalar curvature of the metric g(t), was introduced by Hamilton
[10], as an approach to solve the Yamabe problem. In dimension n(= 2), the Yamabe
flow is equivalent to the Ricci flow. However, in dimension n > 2 the Yamabe and
Ricci flow do not agree, since the first one preserves the conformal class of the metric
but the Ricci flow does not in general.

A Yamabe soliton on a Riemannian manifold (M, g) of dimension n is a special
solution of the Yamabe flow. A triplet structure (g, k, A) satisfies

(12) S Eg(X.Y) = (5~ N)g(X,Y)

for all X, ¥ on M is known as a Yamabe soliton, where £,; denotes the Lie derivative of
the metric g along the vector field &, d is the scalar curvature and A is a real constant.
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The beauty of such soliton depends on the flavor of A\. The soliton is said to be
expanding, steady or shrinking according as A > 0, A = 0 or A < 0, respectively.
If A\ € C(M), then the metric satisfying (1.2) is called almost Yamabe soliton
[1]. Thus, the almost Yamabe solitons are the generalization of Yamabe solitons.
Moreover, if & is the gradient of some function?on M, then it is known as a gradient
Yamabe soliton. In context of geometry, the Yamabe solitons are special solution of
Yamabe flow under some regulation. There are several geometers that light up quite
extensively on the beauty of Yamabe flow and Yamabe soliton ([6], [7], [9], [11]).

A vector field k on a Riemannian manifold (M, g) is known as a torse-forming
vector field [17] if it satisfies

(1.3) Vxk=¢vX +0(X)k, VX € x(M),

where 1 € C*°(M) and 6 is a 1-form. The beauty of such vector field as follows:

i) it is concircular if the 1-form # vanishes identically [19],

ii) for concurrent, ¥ = 1 and 6 = 0 [18],

iii) it is recurrent if ¢p = 0,

iv) for parallel if ¢ =60 = 0.

In 2017, Chen [5] initiated a new type vector field known as torqued vector field if the
vector field k satisfying (1.2) with 8(x) = 0, where 1 is called the torqued function
with the 1-form 6, called the torqued form of .

In 1989, Matsumoto [12] introduced the notion of Lorentzian para-Sasakian man-

ifolds. Mihai and Rosca [14] studied the same manifolds independently and they
obtained several results on such manifolds. Lorentzian para-Sasakian manifolds have
also been studied by Matsumoto and Mihai [13] and Mihai, Shaikh and De [15]. In
[16] Perktas, Kilic and Tripathi investigated curvature tensors with respect to semi-
symmetric connection in a Lorentzian para-Sasakian manifold. Recently, Chaubey
with De [3, 4] characterized the Lorentzian manifolds with quarter-symmetric con-
nections.
The sections of this paper are organized as follows. After introduction, Section 2
contains some definitions and basic results of L P-Sasakian manifolds. In Section 3,
we recall generalized symmetric metric connection of type («, ) for LP-Sasakian
manifold. Section 4 is devoted to C' R-submanifolds of LP-Sasakian manifolds with
respect to a generalized symmetric metric connection of type (a, ). In Section 5,
we study Yamabe soliton whose potential vector field is torse-forming vector field
on L P-Sasakian manifold with respect to such connection. Section 6 concerns with
the study of Yamabe soliton with a torse-forming vector field on C'R-submanifolds of
L P-Sasakian manifolds. Furthermore, we study almost Yamabe soliton with torse-
forming vector field by taking ' and k™ as tangential and normal components of such
vector field on C R-submanifolds of L P-Sasakian manifolds in Section 7.

2 LP-Sasakian Manifolds

A differentiable manifold M™ of dimension n is called a Lorentzian para-Sasakian
manifold (briefly, LP-Sasakian manifold) ([12],[14]), if it admits a (1,1) tensor field
¢, a contravariant vector field &, a 1-form 7 and the Lorentzian metric g such that

(2.1) n(€) = -1,
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(2.2) ¢*(X) = X +n(X)E,

(2.3) 9(@X,¢Y) = g(X,Y) +n(X)n(Y),

(2.4) 9(X, &) = n(X),

(2.5) Vx§=¢X,

(2.6) (Vx¢)(Y) = g(X,Y)E+n(Y)X + 2n(X)n(Y),

where V is the Levi-Civita connection with respect to the Lorentzian metric g. It can
be easily seen that in an LP-Sasakian manifold M™ (¢, &, 7, g), the following relations
hold:

(2.7) 66 =0, n(¢X) =0, rank(¢) =n— 1.
If we write
(2.8) P(X,Y) =g(oX,Y)

for any vector field X and Y on M™, then the tensor field ®(X,Y) is a symmetric
(0,2) tensor field [12]. Also, since the vector 7 is closed in an LP-Sasakian manifold
([12],]15]), we have

(2.9) (Vxn)(Y) = ®(X,Y), (X,£)=0

for any vector field X and Y on M™. Let M"™(¢,&,7n,9) be an n-dimensional LP-
Sasakian manifold, then the following relations hold ([13],[15]):

(2.10) 9(R(X,Y)Z, &) = g(Y, Z)n(X) = g(X, Z)n(Y),
(2.11) g(R(, X)Y = g(X,Y)§ —n(Y)X,
(2.12) R(X,Y)§ =n(Y)X —n(X)Y,

(2.13) R(&, X)§ = X +n(X)¢,

(2.14) S(X,€) = (n = 1)n(X),

(2.15) S(¢X,¢Y) = S(X,Y) + (n = 1)n(X)n(Y)

for any vector fields X, Y and Z on M", where R and S are the curvature tensor and
Ricci tensor of M™(¢,&,n,g), respectively.
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Let M be a submanifold of an LP-Sasakian manifold M™(¢,&,1m,9). The Gauss and
Weingarten formulas are given by

(2.16) VxY =VxY +h(X,Y), VX,Y e D(TM),

(2.17) VxN = —AyX + V%N, VN e I(T+M),

where VxY and {h(X,Y), V% N} belong to I'(T'M) and T'(T- M), respectively.

3 Generalized Symmetric Metric Connection of type

(o, B)

Let V be a linear connection and V be a Levi-Civita connection of an I P-Sasakian
manifold M™(¢,&,1,9).

Lemma 3.1. [2/ In an LP-Sasakian manifold M™(¢,&,n,q), the generalized sym-
metric metric connection V of type (o, B) is given by

(B1)  VxY =VxY +a{n(¥)X - g(X,Y)&} + B{n(Y)dX — g(¢X,Y)¢}

for all X and Y on M™. If we choose (o, 8)=(1,0) and («,3)=(0,1), the gener-
alized symmetric metric connection reduces to a semi-symmetric metric connection
and quarter-symmetric metric connection, respectively. These two connections play

important roles in geometry and physics.

Lemma 3.2. [2] Let M™(¢,&,1n,9) be an LP-Sasakian manifold with a generalized
symmetric metric connection V. Then we have the following relations:

(Vxo)(Y) = [(1-B){g(X, V) +2n(X)n(Y)} —a®(X,Y)¢+(1-B)n(Y) X —an(Y)$X,
Vx&=(1-p)gpX — aX — an(X)E,
(Vxm)(Y) = (1= B)2(X,Y) — ag(¢X, ¢Y),
R(X,Y)E = (1= B8+ B){n(V)X - n(X)Y} +a(l - B){n(X)¢Y —n(Y)eX},
R(EY)E= (1= B+ ) {n(Y)E+ Y} +a(B - 1)gY,
and S(X,Y)=S(X,Y) + {—aB+ (n—2)(aB — a) + (8> — 2B)trace®}®(X,Y)

+{—2a% + B — B* + na® + (aff — a)trace®}g(X,Y)
(32) +H—2a% +n(a® + 8- %) In(X)n(Y)

forany X, Y € (TM).
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4 ('R-Submanifolds of an L P-Sasakian manifold with
Generalized Symmetric metric connection of type

(o, B)

Definition 4.1. [8] An n-dimensional Riemannian manifold (M, g) of an L P-Sasakian
manifold M™(¢,&,n, g) is called a C R-submanifold if £ is tangent to M and there exists
on M a differentiable distribution D : @ — D, C T,(M) such that

i) D is invariant under ¢, i.e., 9D C D.

ii) The orthogonal complement distribution D+ : x — D C T, M of the distribution
D on M is totally real, i.e., 9D+ C T+M.

Definition 4.2. [8] If the distribution D (resp., D*) is horizontal (resp., vertical),
then the pair (D, D') is called &-horizontal (resp., &-vertical) if & € T'(D) (resp.,
¢ € T(D1)). The CR-submanifold is also called ¢-horizontal (resp., ¢-vertical) if
¢ e T(D) (resp.,& € T'(D1)).

The orthogonal complement ¢D+ € T+ M is given by
(4.1) TM =D @D+, T*M = ¢D* @ p,
where gp=p.

Let M be a C'R-submanifold of an LP-Sasakian manifold M"(¢,£,n,g) with a

generalized symmetric metric connection V. For any X € I'(TM) and N € ['(T+ M),
we can write

(4.2) X = PX +QX, PX €T(D), QX €T(Dh),

(4.3) #N = BN +CN, BN €T(D*), CN € T(u).

The Gauss and Weingarten formulas with respect to V are, respectively, given by
(4.4) TxY = Vx¥ + (X, Y),

(4.5) VxN =—AyX + VEN

for any X, Y € T'(TM), where §XY, AnX € (T M). Here %, h and Ay are called

the induced connection on M, the second fundamental form and the Weingarten

mapping with respect to V, respectively. In view of (2.16), (3.1) and (4.4), we get
VxY +h(X,Y) = VxY + h(X,Y) + a{n(Y)X — g(X,Y)¢}

(4.6) +B{n(Y)¢X — g(6X,Y)E}

Using (4.2) and (4.3) in equation (4.6) and comparing the tangential and normal

components on both sides, we obtain

(47) PVxY = PVxY +an(Y)PX — ag(X,Y) P + Bn(Y)$PX — Bg(¢X,Y) P,

(4.8) hX,Y) = h(X,Y) + Bn(Y)¢QX,

(49)  QVxY = QVxY +an(Y)QX — ag(X,Y)QE — Bg(6X,YV)QE
for any X,Y € (TM).
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5 Yamabe solitons whose potential vector field is
torse-forming
As per this consequence of our analysis in this section we have the following geometric
characterization of an LP-Sasakian manifold M™(¢,£,n, g) admitting a generalized
symmetric metric connection V of type (a, 8). Thus, in view of our thought we can
state the following:
Theorem 5.1. Let (g,k,\) be a Yamabe soliton on an n-dimensional LP-Sasakian

manifold M™($,&,m,9), n > 1, with respect to a generalized symmetric metric con-
nection of type (o, B). If k is a torse-forming vector field, then (g,k,\) is expand-

ing, steady and shrinking according as 1 — 6 — LL0(k) + a(n — 1)n(k)} % 0, unless
Y —6— LL0(k) + a(n — 1)n(k)} is constant.

Proof. Let (g, k, \) be a Yamabe soliton on M™ (¢, £, n, g) with respect to a generalized
symmetric metric connection of type («, 8). So from (1.2), we have

(5.1) S (Eg)(X.Y) = (6~ Ng(X,Y).

From the definition of Lie derivative, equations (1.3) and (3.1), we obtain

(Eng)(Xv Y)= g(ﬁxf% Y) +g(X, ﬁyﬁ)
=2¢g(X,Y) +0(X)g(k,Y) +0(Y)g(x, X)
+a{2n(k)g(X,Y) — g(X, x)n(Y) — (Y, x)n(X)}
(5.2) +6{2n(k)g(¢X,Y) — g(6X, k)n(Y) — g(¢Y, k)n(X)}

for all X,Y € x(M). With the help of (5.1) and (5.2), we get

(=3 = Ng(X,¥) = {O(X)g(s,¥) + (¥ )yl X))
+an(r)g(X,Y) + n(k)g(¢X,Y)
~S{9(X.0m(Y) + g(V.m)n(X))

(53) DL X mm(Y) + g6V RIn(X)}.

Taking an orthonormal frame field and then contracting (5.3), we have

< 1
(5.4) A=Y —06— E{G(R) + a(n—1)n(k)}.
This leads to Theorem 5.1. O

In this sequel, we write the following corollaries.

Corollary 5.2. Let (g,%,A) be a Yamabe soliton on an n-dimensional LP-Sasakian
manifold M™($,&,m,9), n > 1, with respect to a generalized symmetric metric con-
nection of type (a, 8). Then following relations hold
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K Existence condition Natgigaﬁysg?tg)?;afiﬁgi e
P —6— w—g—l{H(H)—i—a(n—
torse-forming %{9(5) +a(n—1n(k)} = 1)n(f£)} L
constant " >
concircular $—0- %{a(n — Un(k)} = (O g - %{O‘(n = Dn(x)} =0
constant >
concurrent 1-0- %{a(n — n(k)} = 1 —g— l{a(” = )n(k)} =0
constant " >
recurrent 0~ %{0(5) +a(n—1n(k)} = g— %{9(”)‘*‘@(”_ n(k)} =0
constant >
parallel 6= 2{a(n— ()} = 5 Haln —Dnr)} =0
constant ’ >
torqued v=o—fatn =D}l = | y_5_1iam—-1mx)}Z0
constant " >

Corollary 5.3. Let (g,k,\) be a Yamabe soliton on an n-dimensional LP-Sasakian
manifold M™(¢,€,m,9), n > 1, with respect to a generalized symmetric metric con-
nection of type (a, 5)=(1,0). If k is torse-forming vector field, then (g,k,\) is ex-

panding, steady and shrinking according as 1 — 6 — L{0(k) + (n—1)n(k)} % 0, unless
Y —b— L{0(k) + (n — 1)n(k)} is constant.
Corollary 5.4. Let M"™(¢,&,1n,9) be an n(> 1)-dimensional LP-Sasakian manifold

endowed with a generalized symmetric metric connection of type (o, 8)=(0,1). If
(g, K, ) be a Yamabe soliton on M™ and k is a torse-forming vector field, then (g, Kk, \)
is expanding, steady and shrinking according as ¢ — g — L{0(r)} % 0, unless ¥ — g —
LL6(k)} is constant.

Corollary 5.5. Let (g,k,\) be a Yamabe soliton on an n-dimensional LP-Sasakian

manifold M™(¢,&,m,9), n > 1, with respect to a generalized symmetric metric con-
nection of type (o, §)=(0,1). Then the following relations hold

K Ezistence condition Nature of solitons
torse-forming | ¥ — 6 — 1{6(r)}=constant Y —b— LLo(r)} % 0
concircular P — d=constant Y — ) % 0
concurrent 1 — d=constant B) % 1
recurrent 5 — LL6(k)} =constant 65— L{6(k)} % 0
parallel d=constant B % 0
torqued P — § =constant P — ) % 0
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Corollary 5.6. Let (g,k,A) be a Yamabe soliton on an n-dimensional LP-Sasakian
manifold M™($,&,m,9), n > 1, with respect to a generalized symmetric metric con-
nection of type («, 8)=(1,0). Then following relations hold

p Existence condition Nature of solitons (sh'rinking,
steady or expanding)
R 5 <
torse-forming =0 — {0(k) + (n - d’*é*%{g(’“)*(”*l)n(@} ~
1)n(k)}=constant 0
q— =
concircular ¥ —=06—{(n- _5—1r(n -1 <0
- 1)n(k) y=constant v il Jn(r)} >
1=5— H(n— G <
¢ " 1-b6-1{(n-1 =0
concurren 1))} —tomstant —{(n—=1)n(k)} S
6— L{0(k) + (n — F <
t n 0—+{0(k)+(n—1 =0
recurren V(s =constant —{0(k) + (n—1)n(k)} S
parallel | §— H{(n — Vn(r)}=constant | 3 — i{(n—Ln(x)} £ 0
ro— =
torqued ¢ —06—{(n- —5—1i(n—-1 <0
e 1)n(k)}=constant v ”{(n Jn(s)} >

6 Yamabe solitons whose potential vector field is
torse-forming on C'R-submanifold of an
L P-Sasakian manifold

In this section, we study Yamabe soliton whose potential vector field is a torse-forming
on C' R-submanifolds of an L P-Sasakian manifold with respect to the induced connec-

tion V of type (o, ). We state the following theorem as:
Theorem 6.1. Let the CR-submanifold M of an LP-Sasakian manifold M™(¢,&,1m, g),

n > 1, admitting a generalized symmetric metric connection Vv is &-horizontal (resp.

&-vertical) and D is parallel with respect to v. If (g, K, A\) be a Yamabe soliton on M
and Kk is a torse-forming vector field, then (g,k,\) is expanding, steady or shrinking

according as 1 — b — LL0(k)+a(n—1)n(k)} % 0, unless 1 — 6 — LI0(k)+a(n—1)n(x)}

18 constant.

Proof. If M is &-horizontal for all X, Y € I'(D) and D is parallel with respect to %,
then in view of (4.7), we have

(6.1)  Vx¥ =VxY +afn(Y)X - g(X,Y)E} + B{n(Y)eX — g(¢X,Y)E}.

With the help of Lemma 3.1, we conclude that the induced connection V is also a
generalized symmetric metric connection of type (a, 8). This leads to the statement
of the Theorem 6.1. (]

In this sequel, we write the following corollaries.
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Corollary 6.2. Let a C R-submanifold M of an LP-Sasakian manifold M™(¢,&,m, g),
n > 1, admitting a generalized symmetric metric connection V is &-horizontal (resp.

&-vertical) and D is parallel with respect to V. If (g, k, \) be a Yamabe soliton on M
and K 1s a torse-forming vector field, then the following results hold.

. Eristence condition Nature of solitons (. sﬁrinking,
steady or expanding)
Ty —5—1rp —
torse-forming Y= 0= {0(5) +aln - v i (H><+ ol
1)n(x)} = constant ()} ~ 0
concircular $—0- %{a(n - Dn(x)} = - g - %{0‘(” = Dn(k)} =0
constant >
concurrent 1-6- %{a(n — Unk)} = 1- g — H{a(n - 1)n(x)} =0
constant " >
S =
recurrent 0= 7 {0(r) +a(n—1)n(k)} = 5_%{9(“)‘*‘@(”_1)7)(“)} =0
constant >
S _ =
parallel 0 = yla(n —1n(k)} = §— %{0‘(” —1)n(k)} =0
constant >
torqued Y =0- %{a(n — Un(k)} = ( —E— Ha(n —1)n(x)} =0
constant " >

Corollary 6.3. Let a CR-submanifold M of an LP-Sasakian manifold M™(¢,&,1, g),
n > 1, admitting a generalized symmetric metric connection V is &-horizontal (resp.
&-vertical) and D is parallel with respect to v of type (o, B) = (0,1). If (g,K,N)

be a Yamabe soliton on M and k is a torse-forming vector field, then the following
relations hold.

p Eristence condition Nature of solitons (. s@rinking,
steady or expanding)
~ S <
torse-forming Y=o %{9(&)+(n—1)n(5)} = | ¥—0- %{0(5)+(n71)n(ﬁ)} >
constant 0
concircular P—0- %{(n— Ln(w)} = 1/;_3— l{(n_ Din(k)} =0
constant " >
concurrent -0~ %{(n — n(k)} = 1- . %{(n —n(x)} =0
constant >
recurrent 0 =3 {0(m) + (n=Dm(r)} = | §_ L{0(k) + (n— )n(x)} =0
constant >
parallel 5— %{(n—l)n(/{)} = constant ) — %{(n —1)n(x)} % 0
torqued el %{(n— Un(k)} = 1/1—5— %{(n—l)n(ﬂ)} =0
constant >

Corollary 6.4. Let a CR-submanifold M of an LP-Sasakian manifold M™(¢,€,1, g),

n > 1, admitting a generalized symmetric metric connection V is &-horizontal (resp.
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§-vertical) and D is parallel with respect to V of type (o, B) = (1,0). If (g,k,A)
be a Yamabe soliton on M and k is a torse-forming vector field, then (g,r,\) is

expanding, steady or shrinking according as 1 —§ — LL0(k) + (n—1)n(k)} % 0, unless
Y —b— LL0(k) + (n — 1)n(k)} is constant.

Corollary 6.5. Let a CR-submanifold M of an LP-Sasakian manifold M™(¢,&,n,g),
n > 1, admitting a generalized symmetric metric connection V is &-horizontal (resp.
&-vertical) and D is parallel with respect to v of type (o, ) = (0,1). If (g,k,\) be a
Yamabe soliton on M and k is a torse -forming vector field, then (g, Kk, \) is expanding,

steady or shrinking according as p— 5—7{9( )} % 0, unless 1/)—5—%{9(/@)} is constant.

Corollary 6.6. Let (g,
manifold M™(¢,€,1m,9)
nection of type («, 5)=(0

Kk, A) be a Yamabe soliton on n-dimensional LP-Sasakian
(n > 1), with respect to generalized symmetric metric con-
1). Then following relations hold.

o,

p Eristence condition Nature of solitons (. s@rznkmg,
steady or expanding)
torse-forming Y —6— LL0(r)} =constant ¢ —0— +{0(r)} % 0
. = s <
concircular Y — d=constant -0 N 0
concurrent 5 =constant ) % 1
recurrent 6 — %{9(&)}zconsmnt 0 — +10(r)} % 0
pamllel gzconstant 8 % 0
torqued ¢ — d=constant =0 % 0

7 Almost Yamabe solitons whose potential vector
field is torse-forming on C'R-submanifold of an
L P-Sasakian manifold

In this section, we classify almost Yamabe solitons whose potential field is torse-
forming on C'R-submanifold of an L P-Sasakian manifold with respect to a generalized
symmetric metric connection of type (, ). At this stage, we denote x* and k" as
tangential and normal components of such vector field. For almost Yamabe soliton
we have the following.

Theorem 7.1. An almost Yamabe soliton (g, ', \) on a CR-submanifold of an LP-
Sasakian manifold M™(¢,&,1,9), n > 1, with a generalized symmetric metric connec-
tion of type («, B) satisfies

(5= A=+ n(s™)g(X,¥) = g(ATX, V) + S{0(X)g(s, V) +0(V)g(X, )}

(7.1) +§{g(f€”7¢X)n(Y) +g(oY, ™" )n(X)}
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for any vector fields X, Y on M.
Proof. In view of (1.3), (3.1), (4.4) and (4.5), we have
WX +0(P)k = Vxk = Vx (k' +£") = Vxrt + h(X, &) + () oQX
(7.2) —An X + VxE" + an(k™)X + Bn(s™)¢X — Bg(oX, k")E.
On comparing tangential and normal components of (7.2), we obtain
(7.3)  Vxr' =¢X +0(P)k+ A X — an(k™) X — Bn(s")oX + Bg(oX, K™)E
and
(7.4) h(X, k') = ~VE&" - Bn(x")9QX.
From the definition of Lie derivative and (7.4), we have
Lg(X,Y) = 209(X,Y) + 29(ALX,Y) = 2n(r")g(X, Y) + 0(X)g(r, V)
(7.5) +0(Y)g(X, k) + B{g(s", o X)n(Y) + g(¢Y, k")n(X)}.
Using (7.5) in (1.2), we yield

(5= A=k n(5)g(X,Y) = g(AZX,Y) + S{0(X)g(s,Y) + 00 )g(X, r)}

(76) 2 40(rm 0X)n(¥) + (6. k(X))
This proves our assertion. ([l

Corollary 7.2. If an almost Yamabe soliton (g,kt,\) on a CR-submanifold of an
LP-Sasakian manifold M™($,€,m,9), n > 1, with a generalized symmetric metric
connection of type («, B) is minimal, then

(7.7) (6 =X =t +n(k"))n = 0(k).

Corollary 7.3. Let (g,x%, ) be an almost Yamabe soliton on a CR-submanifold of
an LP-Sasakian manifold M™(¢,€,m,9), n > 1, and the distribution is {-horizontal
(resp. &-vertical), XY € I'(D), D is parallel with induced connection V of type
(a, B). Then we have

(35— A= 04 n(E")g(X,¥) = g(ALX, Y) + {O(X)g(r, )+ 0(Y (X, )}
(T8) A {eRnoXY) + a0V R In(X)}

for any vector fields X,Y on M.

Corollary 7.4. If an almost Yamabe soliton (g, k¢, \) on CR-submanifold of an LP-
Sasakian manifold M™(¢,&,1,9), (n > 1) and the distribution is £-horizontal (resp.
E-vertical), X,Y € T(D), D is parallel with induced connection N of type (o, B) is
minimal, then

(7.9) (0= A= +n(K")n = 0(k)
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8 Example

Example.4.1 Let us consider a 4-dimensional differentiable manifold M = {(z,y, 2,t) €
R4 (2,9,2,t) # 0}, where (z,v, 2,t) is the standard coordinate in R%. Let (e1, €2, €3, €4)
be a set of linearly independent vector fields at each point of M, and is defined by

0 0 0 0
er=e""t— eg=eVTi—, e3=e"T = ey= —.
0z

Ox dy ot
Define a Lorentzian metric g on M as:
0 if i#£ ]
gij:g(ei,ej): -1 lf Z:]:4 .
1 otherwise

Let 1 be the 1-form associated with the Lorentzian metric g by

n(X) = g(X, eq)
for any X € I'(T'M), where I'(T'M) is the set of all smooth vector fields on M. If the
(1,1)-tensor field ¢ is defined by

¢ (e1) = e1, ¢ (e2) = ea, ¢ (e3) = es, ¢ (e4) =0,

then by the linearity properties of ¢ and g, we can easily verify the following relations:
n(ed) = =1, ¢*(X) =X +n(X)es, g(¢X,0Y)=g(X,Y)+ n(X)n(Y)

forany X, Y € I'(T'M). Thus for e4 = &, the structure (¢, &, 7, g) leads to a Lorentzian
paracontact structure and the manifold endowed with the Lorentzian paracontact
structure is known as the Lorentzian paracontact manifold of dimension 4.

The non-vanishing components of the Lie bracket are calculated as:

le1,ea] = e1, [ea,eq] =eq, [es,eq] =es.

If V denotes the Levi-Civita connection with respect to the Lorentzian metric g. Then
for e4 = &, the Koszul’s formula gives

Ve e1 = eq, Veea=0, Ve, e3 =0, Ve, 4 = €1,
VGQel - Oa v62€2 = 64) V€263 = 07 V€2€4 - 62)
Vezer =0, Vezea =0, Veses = €4, Vegeq =e3,
Ve4€1 = 0, V€4€2 = 07 V€4€3 = 0, Ve464 =0.
From the above equations, it can be easily verify that Vxe; = ¢X holds for each

X € x(M). Thus, the Lorentzian paracontact manifold is an LP-Sasakian manifold
of dimension 4. Using (3.1), we calculate the generalized symmetric metric connection

V of type (a, 8) as follows.

66161:(170475)64, 66162:0, 66163:0, 66164:(170475)61,
66261 =0, 66262 =(1—-a-p)ey, §e2€3 =0, §e264 = (1 —a—pP)es,

v6361 =0, v€362:07 66363:(1—(1—5)64, 68364:(]-_04_6)637
66461 = 07 66462 = O7 66483 = O7 66464 =0.
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Again, the relation from Proposition 3.1, i.e., Vyes = (1 — 8)¢X — aX — an(X)es
holds for each X € x(M). Thus, the Lorentzian paracontact manifold is an LP-
Sasakian manifold admitting a generalized symmetric metric connection V of type
(a,B).

In light of the above equations, the non-vanishing components of the curvature
tensor are given by

E(el,ez)el =—(1l-a- 5)2627 R(ei,e3)er = —(1 —a — 5)263,
E(el,&;) 1=—(1—a-Pey, E(el,ez)@ =(1—a-p)%e,

e
E(eg, es)ea=—(1—a— 5)2637 ﬁ(€27 eq)ea = —(1 — a — Bey,

E(el,eg)eg =(1—a—B)%e, §(€2,63)63 =(1—a— B)%e,,

R(es,eq)es = —(1—a— Ples, R(er,es)es = —(1—a— Pey,

R(ez, e4)64 = —(1 —a— 5)62, R(B?’, 64)64 = —(1 S 5)6&

The Ricci tensor S of M is defined as S(X,Y) = Zle e: g(R(ei, X)Y, e;), where
g; = g(e;, e;). Thus we have

3(1—a—p)? 0 0 0

~ B 0 31— a— 8)? 0 0

S(eiej) = 0 0 3(1—a— )2 0
0 0 0 31— a—B)?

and the scalar curvature 522?:1 S(eivej) =6(1 —a—B)>~
Since {eq, 2, e3,e4} forms a basis for a 4-dimensional LP-Sasakian manifold. Thus
any vector fields X,Y, Z € xy(M*) can be written as

X =aje1+biestciez+dies, Y = ase;+boes+coes+daey, Z = azey+bzea+czes+dsey,
where a;, b;, c;,d; € RT, i =1,2,3,4 such that

2(02 — dg)(alag + b1b3 —+ 6163) — (Cg — dg)((ll(LQ
B + b1by + 6162) — (Cl — dl)(agag + bobsg + 02(33)

— 0.
2 ajaz + b1bs 4+ c1c3 — dids 7£

If we consider the 1-form 6 by 6(X)=g(X, (1 — a — B)ey), for any X € x(M) and
considering ¥ € C°(M) as

2(62 — dg)(alag + b1b3 + 6103)
B — (c3 —d3)(arag + biby + c1ca) — (c1 — di)(azaz + babs + cacs)

Y= 2 aias + b1bs + c1e3 — dids

So the relation

(8.1) ViY =X +0(X)Y,
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holds. As per this consequences, Y is a torse-forming vector field. Thus from (5.2),
we get

(Ly9)(X,2) = g(VxY.Z) + g(X,VY)
— 209(X, Z) + 0(X)g(Y, Z) + 0(Z)g(Y, X)
+o{2n(Y)g(X, Z) — (X, Y)n(Z) — 9(Z.Y)n(X)}
(82) +68{2n(Y)g(¢X, Z) — g(¢ X, Y)n(Z) — g(¢Z,Y )n(X)}.
Also, we calculate
9(X,Z) = a1a3 + b1b3 + c1c3 — dids,
g(Y, Z) = agag + babs + cocs — dods,
(83) g(YV, X) = ajag + b1bs + c1c0 — dids.
Also,
0(X)=—(1-a-p)d,
0Y)=—-(1—-a—p)ds,
(8.4) 0(Z)=—-(1—-a—B)ds.

With the help of above equations, equation (8.2) reduces to

%(ng)(X, Z) = ¢{aias + bibs + c1c3 — dids} — %(1 —a— B){di(azas
+baobs + cacs — dads) + dz(arag + bibs + c1co — dide) } + %{2(02 —ds)(aras
+b1b3 + c1c3 — did3) — (c3 — ds)(a1a2 + biba + c1co — didy)

—(e1 — di)(asas + babs + cacs — dads)} + §{2(c2 ~ do)(aras + bibs + crcs)
(8.5) —(e3 —ds)(aras + biba + c1c2) — (¢1 — di)(azas + babs + cac3)}.

Also,

(86) (gf )\)g(X, Z) = (6(1 - — ﬂ)z) — )\){alag + b1b3 + C1C3 — dldg}

We consider that ajas+b1b3+cic3—dids # 0, 2dq (a2a3+b2b3+0203—d2d3)+2d3(a1a2+
b1b2—|—6102—dldg)+d2(a1a3+b1b3+6103—dldg)zo and —2(63—d3)(a1a2—|—b1b2+6102—
d1d2) — 2(61 — d1)(a2a3 + bgbg +coC3 — dgdg) - 3(62 — dg)(aﬂlg + bibg +cic3 — d1d3)20.

Thus we get (g,Y,)) is a Yamabe soliton, i.e., £y g(X, Z)=(6 — \)g(X, Z) holds,
unless
1
A=y =6(1—a=p)" = {~(1—a=pB)ds+3a(cs — do)}
T 1
(8.7) =¢—0— Z{G(Y) + 3an(Y) }=constant.

So the existence of Yamabe soliton (g, Y, A) on a 4-dimensional L P-Sasakian manifold
admitting a generalized symmetric metric connection V of type («, ) with potential
vector field Y as torse-forming. Thus the Theorems 5.1 and 6.1 are verified.
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